def create_model_lstm(n_classes, input_time_length, in_chans=22): set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel # final_conv_length determines the size of the receptive field of the ConvNet lstm_size = 30 lstm_layers = 1 print("#### LSTM SIZE {} ####".format(lstm_size)) print("#### LSTM LAYERS {} ####".format(lstm_layers)) model = ShallowFBCSPLSTM(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, lstm_size=lstm_size, lstm_layers=lstm_layers, n_filters_time=lstm_size, n_filters_spat=lstm_size, final_conv_length=4, pool_time_length=20, pool_time_stride=5).create_network() to_dense_prediction_model(model) if cuda: model.cuda() return model
def __init__(self, in_chans, n_classes, input_time_length): super(HybridNetModule, self).__init__() deep_model = Deep4Net( in_chans, n_classes, n_filters_time=20, n_filters_spat=30, n_filters_2=40, n_filters_3=50, n_filters_4=60, input_time_length=input_time_length, final_conv_length=2, ).create_network() shallow_model = ShallowFBCSPNet( in_chans, n_classes, input_time_length=input_time_length, n_filters_time=30, n_filters_spat=40, filter_time_length=28, final_conv_length=29, ).create_network() reduced_deep_model = nn.Sequential() for name, module in deep_model.named_children(): if name == "conv_classifier": new_conv_layer = nn.Conv2d( module.in_channels, 60, kernel_size=module.kernel_size, stride=module.stride, ) reduced_deep_model.add_module("deep_final_conv", new_conv_layer) break reduced_deep_model.add_module(name, module) reduced_shallow_model = nn.Sequential() for name, module in shallow_model.named_children(): if name == "conv_classifier": new_conv_layer = nn.Conv2d( module.in_channels, 40, kernel_size=module.kernel_size, stride=module.stride, ) reduced_shallow_model.add_module("shallow_final_conv", new_conv_layer) break reduced_shallow_model.add_module(name, module) to_dense_prediction_model(reduced_deep_model) to_dense_prediction_model(reduced_shallow_model) self.reduced_deep_model = reduced_deep_model self.reduced_shallow_model = reduced_shallow_model self.final_conv = nn.Conv2d(100, n_classes, kernel_size=(1, 1), stride=1)
def train(config): cuda = True model = config['model'] if model == 'deep': model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=2, config=config).create_network() to_dense_prediction_model(model) if cuda: model.cuda() log.info("Model: \n{:s}".format(str(model))) dummy_input = np_to_var(train_set.X[:1, :, :, None]) if cuda: dummy_input = dummy_input.cuda() out = model(dummy_input) n_preds_per_input = out.cpu().data.numpy().shape[2] optimizer = optim.Adam(model.parameters()) iterator = CropsFromTrialsIterator(batch_size=60, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) stop_criterion = Or([MaxEpochs(20), NoDecrease('valid_misclass', 80)]) monitors = [ LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'), CroppedTrialMisclassMonitor(input_time_length=input_time_length), RuntimeMonitor() ] model_constraint = MaxNormDefaultConstraint() loss_function = lambda preds, targets: F.nll_loss( th.mean(preds, dim=2, keepdim=False), targets) exp = Experiment(model, train_set, valid_set, test_set, iterator=iterator, loss_function=loss_function, optimizer=optimizer, model_constraint=model_constraint, monitors=monitors, stop_criterion=stop_criterion, remember_best_column='valid_misclass', run_after_early_stop=True, cuda=cuda) exp.run() print(exp.rememberer) return exp.rememberer.lowest_val
def finalized_model_to_dilated(self, model): to_dense_prediction_model(model) conv_classifier = model.conv_classifier model.conv_classifier = nn.Conv2d(conv_classifier.in_channels, conv_classifier.out_channels, (global_vars.get('final_conv_size'), conv_classifier.kernel_size[1]), stride=conv_classifier.stride, dilation=conv_classifier.dilation)
def compile(self, loss, optimizer, metrics, cropped=False, seed=0): self.loss = loss self._ensure_network_exists() if cropped: to_dense_prediction_model(self.network) if not hasattr(optimizer, 'step'): optimizer_class = find_optimizer(optimizer) optimizer = optimizer_class(self.network.parameters()) self.optimizer = optimizer self.metrics = metrics self.seed_rng = RandomState(seed) self.cropped = cropped self.compiled = True
def compile( self, loss, optimizer, extra_monitors=None, cropped=False, iterator_seed=0, ): """ Setup training for this model. Parameters ---------- loss: function (predictions, targets) -> torch scalar optimizer: `torch.optim.Optimizer` or string Either supply an optimizer or the name of the class (e.g. 'adam') extra_monitors: List of Braindecode monitors, optional In case you want to monitor additional values except for loss, misclass and runtime. cropped: bool Whether to perform cropped decoding, see cropped decoding tutorial. iterator_seed: int Seed to seed the iterator random generator. Returns ------- """ self.loss = loss self._ensure_network_exists() if cropped: model_already_dense = np.any( [ hasattr(m, "dilation") and (m.dilation != 1) and (m.dilation) != (1, 1) for m in self.network.modules() ] ) if not model_already_dense: to_dense_prediction_model(self.network) else: log.info("Seems model was already converted to dense model...") if not hasattr(optimizer, "step"): optimizer_class = find_optimizer(optimizer) optimizer = optimizer_class(self.network.parameters()) self.optimizer = optimizer self.extra_monitors = extra_monitors # Already setting it here, so multiple calls to fit # will lead to different batches being drawn self.seed_rng = RandomState(iterator_seed) self.cropped = cropped self.compiled = True
def make_regressor(self): """ Transforms the model from a network suited for classification into a network suited for regression by removing the last softmax layer :return: """ if not self.regressed: new_model = nn.Sequential() for name, module in self.model.named_children(): # print(name) if 'softmax' in name: break new_model.add_module(name, module) new_model.add_module('squeeze_out', Expression(squeeze_out)) self.model = new_model to_dense_prediction_model(self.model) self.regressed = True
def create_model(n_classes, input_time_length, in_chans=22): set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=4, pool_time_length=20, pool_time_stride=5).create_network() to_dense_prediction_model(model) if cuda: model.cuda() return model
def build_model(input_time_length, n_chans, n_classes, cropped=False): model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, final_conv_length='auto') if cropped: final_conv_length = model.final_conv_length model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=final_conv_length) model = model.create_network() if cropped: to_dense_prediction_model(model) return model
def build_cropped_model(model_name, n_chans, n_classes, config): # input_time_length: # will determine how many crops are processed in parallel # supercrop, number of crops taken through network together # final_conv_length: # will determine how many crops are processed in parallel # we manually set the length of the final convolution layer # to some length that makes the receptive field of the # ConvNet smaller than the number of samples in a trial cropped_input_time_length = config['cropped']['input_time_length'] final_conv_length_shallow = config['cropped']['final_conv_length_shallow'] final_conv_length_deep = config['cropped']['final_conv_length_deep'] if model_name == 'shallow': model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=cropped_input_time_length, final_conv_length=final_conv_length_shallow) \ .create_network() elif model_name == 'deep': model = Deep4Net(n_chans, n_classes, input_time_length=cropped_input_time_length, final_conv_length=final_conv_length_deep) \ .create_network() to_dense_prediction_model(model) return model
def run_exp(max_recording_mins, n_recordings, sec_to_cut, duration_recording_mins, max_abs_val, max_min_threshold, max_min_expected, shrink_val, max_min_remove, batch_set_zero_val, batch_set_zero_test, sampling_freq, low_cut_hz, high_cut_hz, exp_demean, exp_standardize, moving_demean, moving_standardize, channel_demean, channel_standardize, divisor, n_folds, i_test_fold, input_time_length, final_conv_length, pool_stride, n_blocks_to_add, sigmoid, model_constraint, batch_size, max_epochs, only_return_exp): cuda = True preproc_functions = [] preproc_functions.append(lambda data, fs: ( data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs)) preproc_functions.append(lambda data, fs: (data[:, :int( duration_recording_mins * 60 * fs)], fs)) if max_abs_val is not None: preproc_functions.append( lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs)) if max_min_threshold is not None: preproc_functions.append(lambda data, fs: (clean_jumps( data, 200, max_min_threshold, max_min_expected, cuda), fs)) if max_min_remove is not None: window_len = 200 preproc_functions.append(lambda data, fs: (set_jumps_to_zero( data, window_len=window_len, threshold=max_min_remove, cuda=cuda, clip_min_max_to_zero=True), fs)) if shrink_val is not None: preproc_functions.append(lambda data, fs: (shrink_spikes( data, shrink_val, 1, 9, ), fs)) preproc_functions.append(lambda data, fs: (resampy.resample( data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq)) preproc_functions.append(lambda data, fs: (bandpass_cnt( data, low_cut_hz, high_cut_hz, fs, filt_order=4, axis=1), fs)) if exp_demean: preproc_functions.append(lambda data, fs: (exponential_running_demean( data.T, factor_new=0.001, init_block_size=100).T, fs)) if exp_standardize: preproc_functions.append( lambda data, fs: (exponential_running_standardize( data.T, factor_new=0.001, init_block_size=100).T, fs)) if moving_demean: preproc_functions.append(lambda data, fs: (padded_moving_demean( data, axis=1, n_window=201), fs)) if moving_standardize: preproc_functions.append(lambda data, fs: (padded_moving_standardize( data, axis=1, n_window=201), fs)) if channel_demean: preproc_functions.append(lambda data, fs: (demean(data, axis=1), fs)) if channel_standardize: preproc_functions.append(lambda data, fs: (standardize(data, axis=1), fs)) if divisor is not None: preproc_functions.append(lambda data, fs: (data / divisor, fs)) dataset = DiagnosisSet(n_recordings=n_recordings, max_recording_mins=max_recording_mins, preproc_functions=preproc_functions) if not only_return_exp: X, y = dataset.load() splitter = Splitter( n_folds, i_test_fold, ) if not only_return_exp: train_set, valid_set, test_set = splitter.split(X, y) del X, y # shouldn't be necessary, but just to make sure else: train_set = None valid_set = None test_set = None set_random_seeds(seed=20170629, cuda=cuda) if sigmoid: n_classes = 1 else: n_classes = 2 in_chans = 21 net = Deep4Net( in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=final_conv_length, pool_time_length=pool_stride, pool_time_stride=pool_stride, n_filters_2=50, n_filters_3=80, n_filters_4=120, ) model = net_with_more_layers(net, n_blocks_to_add, nn.MaxPool2d) if sigmoid: model = to_linear_plus_minus_net(model) optimizer = optim.Adam(model.parameters()) to_dense_prediction_model(model) log.info("Model:\n{:s}".format(str(model))) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, in_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] log.info("{:d} predictions per input/trial".format(n_preds_per_input)) iterator = CropsFromTrialsIterator(batch_size=batch_size, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) if sigmoid: loss_function = lambda preds, targets: binary_cross_entropy_with_logits( th.mean(preds, dim=2)[:, 1, 0], targets.type_as(preds)) else: loss_function = lambda preds, targets: F.nll_loss( th.mean(preds, dim=2)[:, :, 0], targets) if model_constraint is not None: model_constraint = MaxNormDefaultConstraint() monitors = [ LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'), CroppedTrialMisclassMonitor(input_time_length), RuntimeMonitor(), ] stop_criterion = MaxEpochs(max_epochs) batch_modifier = None if batch_set_zero_val is not None: batch_modifier = RemoveMinMaxDiff(batch_set_zero_val, clip_max_abs=True, set_zero=True) if (batch_set_zero_val is not None) and (batch_set_zero_test == True): iterator = ModifiedIterator( iterator, batch_modifier, ) batch_modifier = None exp = Experiment(model, train_set, valid_set, test_set, iterator, loss_function, optimizer, model_constraint, monitors, stop_criterion, remember_best_column='valid_misclass', run_after_early_stop=True, batch_modifier=batch_modifier, cuda=cuda) if not only_return_exp: exp.run() else: exp.dataset = dataset exp.splitter = splitter return exp
def test_cropped_decoding(): import mne from mne.io import concatenate_raws # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes) # Load each of the files parts = [mne.io.read_raw_edf(path, preload=True, stim_channel='auto', verbose='WARNING') for path in physionet_paths] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events = mne.find_events(raw, shortest_event=0, stim_channel='STI 014') # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude='bads') # Extract trials, only using EEG channels epoched = mne.Epochs(raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True) import numpy as np from braindecode.datautil.signal_target import SignalAndTarget # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 train_set = SignalAndTarget(X[:60], y=y[:60]) test_set = SignalAndTarget(X[60:], y=y[60:]) from braindecode.models.shallow_fbcsp import ShallowFBCSPNet from torch import nn from braindecode.torch_ext.util import set_random_seeds from braindecode.models.util import to_dense_prediction_model # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_time_length = 450 n_classes = 2 in_chans = train_set.X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=12).create_network() to_dense_prediction_model(model) if cuda: model.cuda() from torch import optim optimizer = optim.Adam(model.parameters()) from braindecode.torch_ext.util import np_to_var # determine output size test_input = np_to_var( np.ones((2, in_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] print("{:d} predictions per input/trial".format(n_preds_per_input)) from braindecode.datautil.iterators import CropsFromTrialsIterator iterator = CropsFromTrialsIterator(batch_size=32, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) from braindecode.torch_ext.util import np_to_var, var_to_np import torch.nn.functional as F from numpy.random import RandomState import torch as th from braindecode.experiments.monitors import compute_preds_per_trial_from_crops rng = RandomState((2017, 6, 30)) losses = [] accuracies = [] for i_epoch in range(4): # Set model to training mode model.train() for batch_X, batch_y in iterator.get_batches(train_set, shuffle=False): net_in = np_to_var(batch_X) if cuda: net_in = net_in.cuda() net_target = np_to_var(batch_y) if cuda: net_target = net_target.cuda() # Remove gradients of last backward pass from all parameters optimizer.zero_grad() outputs = model(net_in) # Mean predictions across trial # Note that this will give identical gradients to computing # a per-prediction loss (at least for the combination of log softmax activation # and negative log likelihood loss which we are using here) outputs = th.mean(outputs, dim=2, keepdim=False) loss = F.nll_loss(outputs, net_target) loss.backward() optimizer.step() # Print some statistics each epoch model.eval() print("Epoch {:d}".format(i_epoch)) for setname, dataset in (('Train', train_set), ('Test', test_set)): # Collect all predictions and losses all_preds = [] all_losses = [] batch_sizes = [] for batch_X, batch_y in iterator.get_batches(dataset, shuffle=False): net_in = np_to_var(batch_X) if cuda: net_in = net_in.cuda() net_target = np_to_var(batch_y) if cuda: net_target = net_target.cuda() outputs = model(net_in) all_preds.append(var_to_np(outputs)) outputs = th.mean(outputs, dim=2, keepdim=False) loss = F.nll_loss(outputs, net_target) loss = float(var_to_np(loss)) all_losses.append(loss) batch_sizes.append(len(batch_X)) # Compute mean per-input loss loss = np.mean(np.array(all_losses) * np.array(batch_sizes) / np.mean(batch_sizes)) print("{:6s} Loss: {:.5f}".format(setname, loss)) losses.append(loss) # Assign the predictions to the trials preds_per_trial = compute_preds_per_trial_from_crops(all_preds, input_time_length, dataset.X) # preds per trial are now trials x classes x timesteps/predictions # Now mean across timesteps for each trial to get per-trial predictions meaned_preds_per_trial = np.array( [np.mean(p, axis=1) for p in preds_per_trial]) predicted_labels = np.argmax(meaned_preds_per_trial, axis=1) accuracy = np.mean(predicted_labels == dataset.y) accuracies.append(accuracy * 100) print("{:6s} Accuracy: {:.1f}%".format( setname, accuracy * 100)) np.testing.assert_allclose( np.array(losses), np.array([1.703004002571106, 1.6295261979103088, 0.71168938279151917, 0.70825588703155518, 0.58231228590011597, 0.60176041722297668, 0.46629951894283295, 0.51184913516044617]), rtol=1e-4, atol=1e-5) np.testing.assert_allclose( np.array(accuracies), np.array( [50.0, 46.666666666666664, 60.0, 53.333333333333336, 68.333333333333329, 66.666666666666657, 88.333333333333329, 83.333333333333343]), rtol=1e-4, atol=1e-5)
def test_eeg_classifier(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes, update_path=False) # Load each of the files parts = [ mne.io.read_raw_edf(path, preload=True, stim_channel="auto", verbose="WARNING") for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads") # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_window_samples = 450 n_classes = 2 in_chans = X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_window_samples=input_window_samples, final_conv_length=12, ) to_dense_prediction_model(model) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, in_chans, input_window_samples, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] train_set = create_from_X_y(X[:48], y[:48], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) valid_set = create_from_X_y(X[48:60], y[48:60], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) cropped_cb_train = CroppedTrialEpochScoring( "accuracy", name="train_trial_accuracy", lower_is_better=False, on_train=True, ) cropped_cb_valid = CroppedTrialEpochScoring( "accuracy", on_train=False, name="valid_trial_accuracy", lower_is_better=False, ) clf = EEGClassifier( model, cropped=True, criterion=CroppedLoss, criterion__loss_function=nll_loss, optimizer=optim.Adam, train_split=predefined_split(valid_set), batch_size=32, callbacks=[ ("train_trial_accuracy", cropped_cb_train), ("valid_trial_accuracy", cropped_cb_valid), ], ) clf.fit(train_set, y=None, epochs=4) expected = [{ 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.6639312505722046 }, { 'train_batch_size': 32, 'train_loss': 2.6161606311798096 }, { 'train_batch_size': 32, 'train_loss': 1.627132773399353 }, { 'valid_batch_size': 24, 'valid_loss': 0.9677614569664001 }], 'epoch': 1, 'train_batch_count': 3, 'train_loss': 1.9690748850504558, 'train_loss_best': True, 'train_trial_accuracy': 0.4791666666666667, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 0.9677614569664001, 'valid_loss_best': True, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': True }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.3829222917556763 }, { 'train_batch_size': 32, 'train_loss': 1.3123714923858643 }, { 'train_batch_size': 32, 'train_loss': 1.0109959840774536 }, { 'valid_batch_size': 24, 'valid_loss': 1.9435862302780151 }], 'epoch': 2, 'train_batch_count': 3, 'train_loss': 1.2354299227396648, 'train_loss_best': True, 'train_trial_accuracy': 0.5, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 1.9435862302780151, 'valid_loss_best': False, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': False }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.172208547592163 }, { 'train_batch_size': 32, 'train_loss': 0.8899562954902649 }, { 'train_batch_size': 32, 'train_loss': 1.0232216119766235 }, { 'valid_batch_size': 24, 'valid_loss': 0.9585554599761963 }], 'epoch': 3, 'train_batch_count': 3, 'train_loss': 1.0284621516863506, 'train_loss_best': True, 'train_trial_accuracy': 0.5, 'train_trial_accuracy_best': False, 'valid_batch_count': 1, 'valid_loss': 0.9585554599761963, 'valid_loss_best': True, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': False }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 0.9693693518638611 }, { 'train_batch_size': 32, 'train_loss': 0.900641918182373 }, { 'train_batch_size': 32, 'train_loss': 0.8839665651321411 }, { 'valid_batch_size': 24, 'valid_loss': 0.873468816280365 }], 'epoch': 4, 'train_batch_count': 3, 'train_loss': 0.9179926117261251, 'train_loss_best': True, 'train_trial_accuracy': 0.625, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 0.873468816280365, 'valid_loss_best': True, 'valid_trial_accuracy': 0.4166666666666667, 'valid_trial_accuracy_best': False }] history_without_dur = [{k: v for k, v in h.items() if k != "dur"} for h in clf.history] assert_deep_allclose(expected, history_without_dur, atol=1e-3, rtol=1e-3)
def runModel(mode): cudnn.benchmark = True start = time.time() #mode = str(sys.argv[1]) #X,y,test_X,test_y = loadSubNormData(mode='all') #X,y,test_X,test_y = loadNEDCdata(mode=mode) #data = np.load('sessionsData/data%s-sessions.npy'%mode[:3]) #labels = np.load('sessionsData/labels%s-sessions.npy'%mode[:3]) data = np.load('data%s.npy' % mode[:3]) labels = np.load('labels%s.npy' % mode[:3]) X, y, test_X, test_y = splitDataRandom_Loaded(data, labels, mode) print('Mode - %s Total n: %d, Test n: %d' % (mode, len(y) + len(test_y), len(test_y))) #return 0 #X = addDataNoise(X,band=[1,4]) #test_X = addDataNoise(test_X,band=[1,4]) max_shape = np.max([list(x.shape) for x in X], axis=0) assert max_shape[1] == int(config.duration_recording_mins * config.sampling_freq * 60) n_classes = 2 n_recordings = None # set to an integer, if you want to restrict the set size sensor_types = ["EEG"] n_chans = 19 #21 max_recording_mins = 35 # exclude larger recordings from training set sec_to_cut = 60 # cut away at start of each recording duration_recording_mins = 5 #20 # how many minutes to use per recording test_recording_mins = 5 #20 max_abs_val = 800 # for clipping sampling_freq = 100 divisor = 10 # divide signal by this test_on_eval = True # teston evaluation set or on training set # in case of test on eval, n_folds and i_testfold determine # validation fold in training set for training until first stop n_folds = 10 i_test_fold = 9 shuffle = True model_name = 'linear' #'deep'#'shallow' 'linear' n_start_chans = 25 n_chan_factor = 2 # relevant for deep model only input_time_length = 6000 final_conv_length = 1 model_constraint = 'defaultnorm' init_lr = 1e-3 batch_size = 64 max_epochs = 35 # until first stop, the continue train on train+valid cuda = True # False if model_name == 'shallow': model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, final_conv_length=final_conv_length).create_network() elif model_name == 'deep': model = Deep4Net(n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, stride_before_pool=True).create_network() elif (model_name == 'deep_smac'): if model_name == 'deep_smac': do_batch_norm = False else: assert model_name == 'deep_smac_bnorm' do_batch_norm = True double_time_convs = False drop_prob = 0.244445 filter_length_2 = 12 filter_length_3 = 14 filter_length_4 = 12 filter_time_length = 21 final_conv_length = 1 first_nonlin = elu first_pool_mode = 'mean' first_pool_nonlin = identity later_nonlin = elu later_pool_mode = 'mean' later_pool_nonlin = identity n_filters_factor = 1.679066 n_filters_start = 32 pool_time_length = 1 pool_time_stride = 2 split_first_layer = True n_chan_factor = n_filters_factor n_start_chans = n_filters_start model = Deep4Net(n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, batch_norm=do_batch_norm, double_time_convs=double_time_convs, drop_prob=drop_prob, filter_length_2=filter_length_2, filter_length_3=filter_length_3, filter_length_4=filter_length_4, filter_time_length=filter_time_length, first_nonlin=first_nonlin, first_pool_mode=first_pool_mode, first_pool_nonlin=first_pool_nonlin, later_nonlin=later_nonlin, later_pool_mode=later_pool_mode, later_pool_nonlin=later_pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, stride_before_pool=True).create_network() elif model_name == 'shallow_smac': conv_nonlin = identity do_batch_norm = True drop_prob = 0.328794 filter_time_length = 56 final_conv_length = 22 n_filters_spat = 73 n_filters_time = 24 pool_mode = 'max' pool_nonlin = identity pool_time_length = 84 pool_time_stride = 3 split_first_layer = True model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_filters_time, n_filters_spat=n_filters_spat, input_time_length=input_time_length, final_conv_length=final_conv_length, conv_nonlin=conv_nonlin, batch_norm=do_batch_norm, drop_prob=drop_prob, filter_time_length=filter_time_length, pool_mode=pool_mode, pool_nonlin=pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, ).create_network() elif model_name == 'linear': model = nn.Sequential() model.add_module("conv_classifier", nn.Conv2d(n_chans, n_classes, (600, 1))) model.add_module('softmax', nn.LogSoftmax(dim=1)) model.add_module('squeeze', Expression(lambda x: x.squeeze(3))) else: assert False, "unknown model name {:s}".format(model_name) to_dense_prediction_model(model) if config.cuda: model.cuda() test_input = np_to_var( np.ones((2, config.n_chans, config.input_time_length, 1), dtype=np.float32)) if config.cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] iterator = CropsFromTrialsIterator( batch_size=config.batch_size, input_time_length=config.input_time_length, n_preds_per_input=n_preds_per_input) #model.add_module('softmax', nn.LogSoftmax(dim=1)) model.eval() mode[2] = str(mode[2]) mode[3] = str(mode[3]) modelName = '-'.join(mode[:4]) #params = th.load('sessionsData/%sModel%s-sessions.pt'%(modelName,mode[4])) #params = th.load('%sModel%s.pt'%(modelName,mode[4])) params = th.load('linear/%sModel%s.pt' % (modelName, mode[4])) model.load_state_dict(params) if config.test_on_eval: #test_X, test_y = test_dataset.load() #test_X, test_y = loadNEDCdata(mode='eval') max_shape = np.max([list(x.shape) for x in test_X], axis=0) assert max_shape[1] == int(config.test_recording_mins * config.sampling_freq * 60) if not config.test_on_eval: splitter = TrainValidTestSplitter(config.n_folds, config.i_test_fold, shuffle=config.shuffle) train_set, valid_set, test_set = splitter.split(X, y) else: splitter = TrainValidSplitter(config.n_folds, i_valid_fold=config.i_test_fold, shuffle=config.shuffle) train_set, valid_set = splitter.split(X, y) test_set = SignalAndTarget(test_X, test_y) del test_X, test_y del X, y # shouldn't be necessary, but just to make sure datasets = OrderedDict( (('train', train_set), ('valid', valid_set), ('test', test_set))) for setname in ('train', 'valid', 'test'): #setname = 'test' #print("Compute predictions for {:s}...".format(setname)) dataset = datasets[setname] if config.cuda: preds_per_batch = [ var_to_np(model(np_to_var(b[0]).cuda())) for b in iterator.get_batches(dataset, shuffle=False) ] else: preds_per_batch = [ var_to_np(model(np_to_var(b[0]))) for b in iterator.get_batches(dataset, shuffle=False) ] preds_per_trial = compute_preds_per_trial( preds_per_batch, dataset, input_time_length=iterator.input_time_length, n_stride=iterator.n_preds_per_input) mean_preds_per_trial = [ np.mean(preds, axis=(0, 2)) for preds in preds_per_trial ] mean_preds_per_trial = np.array(mean_preds_per_trial) all_pred_labels = np.argmax(mean_preds_per_trial, axis=1).squeeze() all_target_labels = dataset.y acc_per_class = [] for i_class in range(n_classes): mask = all_target_labels == i_class acc = np.mean(all_pred_labels[mask] == all_target_labels[mask]) acc_per_class.append(acc) misclass = 1 - np.mean(acc_per_class) #print('Acc:{}, Class 0:{}, Class 1:{}'.format(np.mean(acc_per_class),acc_per_class[0],acc_per_class[1])) if setname == 'test': testResult = np.mean(acc_per_class) return testResult
def exp(subject_id): import torch test_subj = np.r_[subject_id] print('test subj:' + str(test_subj)) #20% validation train_size = int(0.9* len(splitted['session_T'])) test_size = len(splitted['session_T']) - train_size # train_set, valid_set = torch.utils.data.random_split(splitted['session_T'], [train_size, test_size]) train_set = splitted['session_T'] test_set = splitted['session_E'] # model = Deep4Net( # n_chans, # n_classes, # input_window_samples=input_window_samples, # final_conv_length="auto", # ) from torch.utils.data import Dataset, ConcatDataset crop_size = 1000 # embedding_net = Deep4Net_origin(n_classes, n_chans, crop_size) # model = FcClfNet(embedding_net) model = ShallowFBCSPNet( n_chans, n_classes, input_window_samples=input_window_samples, final_conv_length='auto', ) from braindecode.models.util import to_dense_prediction_model, get_output_shape to_dense_prediction_model(model) n_preds_per_input = get_output_shape(model, 22, input_window_samples)[2] print("n_preds_per_input : ", n_preds_per_input) print(model) batch_size =8 epochs = 200 lr = 0.0625 * 0.01 weight_decay = 0 train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) # valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False) # Send model to GPU if cuda: model.cuda() from torch.optim import lr_scheduler import torch.optim as optim import argparse parser = argparse.ArgumentParser(description='cross subject domain adaptation') parser.add_argument('--batch-size', type=int, default=50, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=50, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=True, help='For Saving the current Model') args = parser.parse_args() args.gpuidx = 0 args.seed = 0 args.use_tensorboard = False args.save_model = False optimizer = optim.AdamW(model.parameters(), lr=0.01, weight_decay=0.5 * 0.001) # scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=1) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs-1) import pandas as pd results_columns = ['test_loss', 'test_accuracy'] df = pd.DataFrame(columns=results_columns) for epochidx in range(1, epochs): print(epochidx) train_crop(10, model, device, train_loader,optimizer,scheduler,cuda, args.gpuidx) test_loss, test_score = eval_crop(model, device, test_loader) results = { 'test_loss': test_loss, 'test_accuracy': test_score} df = df.append(results, ignore_index=True) print(results) return df
def run_exp(max_recording_mins, n_recordings, sec_to_cut, duration_recording_mins, max_abs_val, shrink_val, sampling_freq, divisor, n_folds, i_test_fold, final_conv_length, model_constraint, batch_size, max_epochs, n_filters_time, n_filters_spat, filter_time_length, conv_nonlin, pool_time_length, pool_time_stride, pool_mode, pool_nonlin, split_first_layer, do_batch_norm, drop_prob, time_cut_off_sec, start_time, input_time_length, only_return_exp): kwargs = locals() for model_param in [ 'final_conv_length', 'n_filters_time', 'n_filters_spat', 'filter_time_length', 'conv_nonlin', 'pool_time_length', 'pool_time_stride', 'pool_mode', 'pool_nonlin', 'split_first_layer', 'do_batch_norm', 'drop_prob', ]: kwargs.pop(model_param) nonlin_dict = { 'elu': elu, 'relu': relu, 'relu6': relu6, 'tanh': tanh, 'square': square, 'identity': identity, 'log': safe_log, } assert input_time_length == 6000 # copy over from early seizure # make proper n_classes = 2 in_chans = 21 cuda = True set_random_seeds(seed=20170629, cuda=cuda) model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=final_conv_length, n_filters_time=n_filters_time, filter_time_length=filter_time_length, n_filters_spat=n_filters_spat, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, conv_nonlin=nonlin_dict[conv_nonlin], pool_mode=pool_mode, pool_nonlin=nonlin_dict[pool_nonlin], split_first_layer=split_first_layer, batch_norm=do_batch_norm, batch_norm_alpha=0.1, drop_prob=drop_prob).create_network() to_dense_prediction_model(model) if cuda: model.cuda() model.eval() test_input = np_to_var( np.ones((2, in_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() try: out = model(test_input) except RuntimeError: raise ValueError("Model receptive field too large...") n_preds_per_input = out.cpu().data.numpy().shape[2] n_receptive_field = input_time_length - n_preds_per_input if n_receptive_field > 6000: raise ValueError("Model receptive field ({:d}) too large...".format( n_receptive_field)) # For future, here optionally add input time length instead model = ShallowFBCSPNet(in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=final_conv_length, n_filters_time=n_filters_time, filter_time_length=filter_time_length, n_filters_spat=n_filters_spat, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, conv_nonlin=nonlin_dict[conv_nonlin], pool_mode=pool_mode, pool_nonlin=nonlin_dict[pool_nonlin], split_first_layer=split_first_layer, batch_norm=do_batch_norm, batch_norm_alpha=0.1, drop_prob=drop_prob).create_network() return common.run_exp(model=model, **kwargs)
def run_exp( data_folders, n_recordings, sensor_types, n_chans, max_recording_mins, sec_to_cut, duration_recording_mins, test_recording_mins, max_abs_val, sampling_freq, divisor, test_on_eval, n_folds, i_test_fold, shuffle, model_name, n_start_chans, n_chan_factor, input_time_length, final_conv_length, model_constraint, init_lr, batch_size, max_epochs, cuda, ): import torch.backends.cudnn as cudnn cudnn.benchmark = True preproc_functions = [] preproc_functions.append(lambda data, fs: ( data[:, int(sec_to_cut * fs):-int(sec_to_cut * fs)], fs)) preproc_functions.append(lambda data, fs: (data[:, :int( duration_recording_mins * 60 * fs)], fs)) if max_abs_val is not None: preproc_functions.append( lambda data, fs: (np.clip(data, -max_abs_val, max_abs_val), fs)) preproc_functions.append(lambda data, fs: (resampy.resample( data, fs, sampling_freq, axis=1, filter='kaiser_fast'), sampling_freq)) if divisor is not None: preproc_functions.append(lambda data, fs: (data / divisor, fs)) dataset = DiagnosisSet(n_recordings=n_recordings, max_recording_mins=max_recording_mins, preproc_functions=preproc_functions, data_folders=data_folders, train_or_eval='train', sensor_types=sensor_types) if test_on_eval: if test_recording_mins is None: test_recording_mins = duration_recording_mins test_preproc_functions = copy(preproc_functions) test_preproc_functions[1] = lambda data, fs: (data[:, :int( test_recording_mins * 60 * fs)], fs) test_dataset = DiagnosisSet(n_recordings=n_recordings, max_recording_mins=None, preproc_functions=test_preproc_functions, data_folders=data_folders, train_or_eval='eval', sensor_types=sensor_types) X, y = dataset.load() max_shape = np.max([list(x.shape) for x in X], axis=0) assert max_shape[1] == int(duration_recording_mins * sampling_freq * 60) if test_on_eval: test_X, test_y = test_dataset.load() max_shape = np.max([list(x.shape) for x in test_X], axis=0) assert max_shape[1] == int(test_recording_mins * sampling_freq * 60) if not test_on_eval: splitter = TrainValidTestSplitter(n_folds, i_test_fold, shuffle=shuffle) train_set, valid_set, test_set = splitter.split(X, y) else: splitter = TrainValidSplitter(n_folds, i_valid_fold=i_test_fold, shuffle=shuffle) train_set, valid_set = splitter.split(X, y) test_set = SignalAndTarget(test_X, test_y) del test_X, test_y del X, y # shouldn't be necessary, but just to make sure set_random_seeds(seed=20170629, cuda=cuda) n_classes = 2 if model_name == 'shallow': model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, final_conv_length=final_conv_length).create_network() elif model_name == 'deep': model = Deep4Net(n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, stride_before_pool=True).create_network() elif (model_name == 'deep_smac'): if model_name == 'deep_smac': do_batch_norm = False else: assert model_name == 'deep_smac_bnorm' do_batch_norm = True double_time_convs = False drop_prob = 0.244445 filter_length_2 = 12 filter_length_3 = 14 filter_length_4 = 12 filter_time_length = 21 final_conv_length = 1 first_nonlin = elu first_pool_mode = 'mean' first_pool_nonlin = identity later_nonlin = elu later_pool_mode = 'mean' later_pool_nonlin = identity n_filters_factor = 1.679066 n_filters_start = 32 pool_time_length = 1 pool_time_stride = 2 split_first_layer = True n_chan_factor = n_filters_factor n_start_chans = n_filters_start model = Deep4Net(n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, batch_norm=do_batch_norm, double_time_convs=double_time_convs, drop_prob=drop_prob, filter_length_2=filter_length_2, filter_length_3=filter_length_3, filter_length_4=filter_length_4, filter_time_length=filter_time_length, first_nonlin=first_nonlin, first_pool_mode=first_pool_mode, first_pool_nonlin=first_pool_nonlin, later_nonlin=later_nonlin, later_pool_mode=later_pool_mode, later_pool_nonlin=later_pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, stride_before_pool=True).create_network() elif model_name == 'shallow_smac': conv_nonlin = identity do_batch_norm = True drop_prob = 0.328794 filter_time_length = 56 final_conv_length = 22 n_filters_spat = 73 n_filters_time = 24 pool_mode = 'max' pool_nonlin = identity pool_time_length = 84 pool_time_stride = 3 split_first_layer = True model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_filters_time, n_filters_spat=n_filters_spat, input_time_length=input_time_length, final_conv_length=final_conv_length, conv_nonlin=conv_nonlin, batch_norm=do_batch_norm, drop_prob=drop_prob, filter_time_length=filter_time_length, pool_mode=pool_mode, pool_nonlin=pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, ).create_network() elif model_name == 'linear': model = nn.Sequential() model.add_module("conv_classifier", nn.Conv2d(n_chans, n_classes, (600, 1))) model.add_module('softmax', nn.LogSoftmax()) model.add_module('squeeze', Expression(lambda x: x.squeeze(3))) else: assert False, "unknown model name {:s}".format(model_name) to_dense_prediction_model(model) log.info("Model:\n{:s}".format(str(model))) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, n_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() log.info("In shape: {:s}".format(str(test_input.cpu().data.numpy().shape))) out = model(test_input) log.info("Out shape: {:s}".format(str(out.cpu().data.numpy().shape))) n_preds_per_input = out.cpu().data.numpy().shape[2] log.info("{:d} predictions per input/trial".format(n_preds_per_input)) iterator = CropsFromTrialsIterator(batch_size=batch_size, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) optimizer = optim.Adam(model.parameters(), lr=init_lr) loss_function = lambda preds, targets: F.nll_loss( th.mean(preds, dim=2, keepdim=False), targets) if model_constraint is not None: assert model_constraint == 'defaultnorm' model_constraint = MaxNormDefaultConstraint() monitors = [ LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'), CroppedDiagnosisMonitor(input_time_length, n_preds_per_input), RuntimeMonitor(), ] stop_criterion = MaxEpochs(max_epochs) batch_modifier = None run_after_early_stop = True exp = Experiment(model, train_set, valid_set, test_set, iterator, loss_function, optimizer, model_constraint, monitors, stop_criterion, remember_best_column='valid_misclass', run_after_early_stop=run_after_early_stop, batch_modifier=batch_modifier, cuda=cuda) exp.run() return exp
def run_exp(test_on_eval, sensor_types, n_chans, max_recording_mins, test_recording_mins, n_recordings, sec_to_cut_at_start, sec_to_cut_at_end, duration_recording_mins, max_abs_val, clip_before_resample, sampling_freq, divisor, n_folds, i_test_fold, shuffle, merge_train_valid, model_name, n_start_chans, n_chan_factor, input_time_length, final_conv_length, stride_before_pool, optimizer, learning_rate, weight_decay, scheduler, model_constraint, batch_size, max_epochs, log_dir, only_return_exp, np_th_seed): cuda = True if ('smac' in model_name) and (input_time_length is None): input_time_length = 12000 fix_input_length_for_smac = True else: fix_input_length_for_smac = False set_random_seeds(seed=np_th_seed, cuda=cuda) n_classes = 2 if model_name == 'shallow': model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, final_conv_length=final_conv_length).create_network() elif model_name == 'deep': model = Deep4Net( n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, stride_before_pool=stride_before_pool).create_network() elif (model_name == 'deep_smac') or (model_name == 'deep_smac_bnorm'): if model_name == 'deep_smac': do_batch_norm = False else: assert model_name == 'deep_smac_bnorm' do_batch_norm = True double_time_convs = False drop_prob = 0.244445 filter_length_2 = 12 filter_length_3 = 14 filter_length_4 = 12 filter_time_length = 21 final_conv_length = 1 first_nonlin = elu first_pool_mode = 'mean' first_pool_nonlin = identity later_nonlin = elu later_pool_mode = 'mean' later_pool_nonlin = identity n_filters_factor = 1.679066 n_filters_start = 32 pool_time_length = 1 pool_time_stride = 2 split_first_layer = True n_chan_factor = n_filters_factor n_start_chans = n_filters_start model = Deep4Net(n_chans, n_classes, n_filters_time=n_start_chans, n_filters_spat=n_start_chans, input_time_length=input_time_length, n_filters_2=int(n_start_chans * n_chan_factor), n_filters_3=int(n_start_chans * (n_chan_factor**2.0)), n_filters_4=int(n_start_chans * (n_chan_factor**3.0)), final_conv_length=final_conv_length, batch_norm=do_batch_norm, double_time_convs=double_time_convs, drop_prob=drop_prob, filter_length_2=filter_length_2, filter_length_3=filter_length_3, filter_length_4=filter_length_4, filter_time_length=filter_time_length, first_nonlin=first_nonlin, first_pool_mode=first_pool_mode, first_pool_nonlin=first_pool_nonlin, later_nonlin=later_nonlin, later_pool_mode=later_pool_mode, later_pool_nonlin=later_pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, stride_before_pool=True).create_network() elif model_name == 'shallow_smac': conv_nonlin = identity do_batch_norm = True drop_prob = 0.328794 filter_time_length = 56 final_conv_length = 22 n_filters_spat = 73 n_filters_time = 24 pool_mode = 'max' pool_nonlin = identity pool_time_length = 84 pool_time_stride = 3 split_first_layer = True model = ShallowFBCSPNet( in_chans=n_chans, n_classes=n_classes, n_filters_time=n_filters_time, n_filters_spat=n_filters_spat, input_time_length=input_time_length, final_conv_length=final_conv_length, conv_nonlin=conv_nonlin, batch_norm=do_batch_norm, drop_prob=drop_prob, filter_time_length=filter_time_length, pool_mode=pool_mode, pool_nonlin=pool_nonlin, pool_time_length=pool_time_length, pool_time_stride=pool_time_stride, split_first_layer=split_first_layer, ).create_network() elif model_name == 'deep_smac_new': from torch.nn.functional import elu, relu, relu6, tanh from braindecode.torch_ext.functions import identity, square, safe_log n_filters_factor = 1.9532637176784269 n_filters_start = 61 deep_kwargs = { "batch_norm": False, "double_time_convs": False, "drop_prob": 0.3622676569047184, "filter_length_2": 9, "filter_length_3": 6, "filter_length_4": 10, "filter_time_length": 17, "final_conv_length": 5, "first_nonlin": elu, "first_pool_mode": "max", "first_pool_nonlin": identity, "later_nonlin": relu6, "later_pool_mode": "max", "later_pool_nonlin": identity, "n_filters_time": n_filters_start, "n_filters_spat": n_filters_start, "n_filters_2": int(n_filters_start * n_filters_factor), "n_filters_3": int(n_filters_start * (n_filters_factor**2.0)), "n_filters_4": int(n_filters_start * (n_filters_factor**3.0)), "pool_time_length": 1, "pool_time_stride": 4, "split_first_layer": True, "stride_before_pool": True, } model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, **deep_kwargs).create_network() elif model_name == 'shallow_smac_new': from torch.nn.functional import elu, relu, relu6, tanh from braindecode.torch_ext.functions import identity, square, safe_log shallow_kwargs = { "conv_nonlin": square, "batch_norm": True, "drop_prob": 0.10198630723385381, "filter_time_length": 51, "final_conv_length": 1, "n_filters_spat": 200, "n_filters_time": 76, "pool_mode": "max", "pool_nonlin": safe_log, "pool_time_length": 139, "pool_time_stride": 49, "split_first_layer": True, } model = ShallowFBCSPNet(in_chans=n_chans, n_classes=n_classes, input_time_length=input_time_length, **shallow_kwargs).create_network() elif model_name == 'linear': model = nn.Sequential() model.add_module("conv_classifier", nn.Conv2d(n_chans, n_classes, (600, 1))) model.add_module('softmax', nn.LogSoftmax()) model.add_module('squeeze', Expression(lambda x: x.squeeze(3))) elif model_name == '3path': virtual_chan_1x1_conv = True mean_across_features = False drop_prob = 0.5 n_start_filters = 10 early_bnorm = False n_classifier_filters = 100 later_kernel_len = 5 extra_conv_stride = 4 # dont forget to reset n_preds_per_blabla model = create_multi_start_path_net( in_chans=n_chans, virtual_chan_1x1_conv=virtual_chan_1x1_conv, n_start_filters=n_start_filters, early_bnorm=early_bnorm, later_kernel_len=later_kernel_len, extra_conv_stride=extra_conv_stride, mean_across_features=mean_across_features, n_classifier_filters=n_classifier_filters, drop_prob=drop_prob) else: assert False, "unknown model name {:s}".format(model_name) if not model_name == '3path': to_dense_prediction_model(model) log.info("Model:\n{:s}".format(str(model))) time_cut_off_sec = np.inf start_time = time.time() # fix input time length in case of smac models if fix_input_length_for_smac: assert ('smac' in model_name) and (input_time_length == 12000) if cuda: model.cuda() test_input = np_to_var( np.ones((2, n_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() try: out = model(test_input) except: raise ValueError("Model receptive field too large...") n_preds_per_input = out.cpu().data.numpy().shape[2] n_receptive_field = input_time_length - n_preds_per_input input_time_length = 2 * n_receptive_field exp = common.run_exp( max_recording_mins, n_recordings, sec_to_cut_at_start, sec_to_cut_at_end, duration_recording_mins, max_abs_val, clip_before_resample, sampling_freq, divisor, n_folds, i_test_fold, shuffle, merge_train_valid, model, input_time_length, optimizer, learning_rate, weight_decay, scheduler, model_constraint, batch_size, max_epochs, only_return_exp, time_cut_off_sec, start_time, test_on_eval, test_recording_mins, sensor_types, log_dir, np_th_seed, ) return exp
def test_predict_trials(): ds = MOABBDataset('BNCI2014001', subject_ids=1) ds1 = ds.split([0])['0'] # determine original trial size windows_ds1 = create_windows_from_events( ds1, ) trial_size = windows_ds1[0][0].shape[1] # create two windows per trial, where windows maximally overlap window_size_samples = trial_size - 1 window_stride_samples = 5 windows_ds1 = create_windows_from_events( ds1, window_size_samples=window_size_samples, window_stride_samples=window_stride_samples, drop_last_window=False, ) in_chans = windows_ds1[0][0].shape[0] n_classes = len(windows_ds1.get_metadata()['target'].unique()) model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, ) to_dense_prediction_model(model) output_shape = get_output_shape(model, in_chans, window_size_samples) # the number of samples required to get 1 output receptive_field_size = window_size_samples - output_shape[-1] + 1 preds, targets = predict_trials(model, windows_ds1) # some model, cropped data assert preds.shape[-1] + receptive_field_size - 1 == trial_size assert preds.shape[1] == n_classes assert preds.shape[0] == targets.shape[0] metadata = windows_ds1.get_metadata() expected_targets = metadata[metadata['i_window_in_trial'] == 0][ 'target'].values np.testing.assert_array_equal(expected_targets, targets) # some model, trialwise data windows_ds2 = create_windows_from_events(ds1) with pytest.warns(UserWarning, match='This function was designed to predict' ' trials from cropped datasets.'): predict_trials(model, windows_ds2) # cropped EEGClassifier, cropped data clf = EEGClassifier( model, criterion=torch.nn.NLLLoss, optimizer=optim.AdamW, train_split=None, optimizer__lr=0.0625 * 0.01, optimizer__weight_decay=0, batch_size=64, ) clf.initialize() clf.predict_trials(windows_ds1, return_targets=True) # cropped EEGClassifier, trialwise data with pytest.warns(UserWarning, match="This method was designed to predict " "trials in cropped mode. Calling it " "when cropped is False will give the " "same result as '.predict'."): clf.predict_trials(windows_ds2)
def test_eeg_classifier(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes, update_path=False) # Load each of the files parts = [ mne.io.read_raw_edf(path, preload=True, stim_channel="auto", verbose="WARNING") for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads") # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_time_length = 450 n_classes = 2 in_chans = X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=12, ) to_dense_prediction_model(model) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, in_chans, input_time_length, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] train_set = CroppedXyDataset(X[:60], y=y[:60], input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) cropped_cb_train = CroppedTrialEpochScoring( "accuracy", name="train_trial_accuracy", lower_is_better=False, on_train=True, ) cropped_cb_valid = CroppedTrialEpochScoring( "accuracy", on_train=False, name="valid_trial_accuracy", lower_is_better=False, ) clf = EEGClassifier( model, criterion=CroppedNLLLoss, optimizer=optim.Adam, train_split=TrainTestSplit( train_size=0.8, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input, ), batch_size=32, callbacks=[ ("train_trial_accuracy", cropped_cb_train), ("valid_trial_accuracy", cropped_cb_valid), ], ) clf.fit(train_set.X, train_set.y, epochs=4) expected = [ { "batches": [ { "train_loss": 2.0750882625579834, "train_batch_size": 32 }, { "train_loss": 3.09424090385437, "train_batch_size": 32 }, { "train_loss": 1.079931378364563, "train_batch_size": 32 }, { "valid_loss": 2.3208131790161133, "valid_batch_size": 24 }, ], "epoch": 1, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 2.083086848258972, "train_loss_best": True, "valid_loss": 2.3208131790161133, "valid_loss_best": True, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": True, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": True, }, { "batches": [ { "train_loss": 1.827332615852356, "train_batch_size": 32 }, { "train_loss": 1.4135494232177734, "train_batch_size": 32 }, { "train_loss": 1.1295170783996582, "train_batch_size": 32 }, { "valid_loss": 1.4291356801986694, "valid_batch_size": 24 }, ], "epoch": 2, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.4567997058232625, "train_loss_best": True, "valid_loss": 1.4291356801986694, "valid_loss_best": True, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": False, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, { "batches": [ { "train_loss": 1.1495535373687744, "train_batch_size": 32 }, { "train_loss": 2.356320381164551, "train_batch_size": 32 }, { "train_loss": 0.9548418521881104, "train_batch_size": 32 }, { "valid_loss": 2.248246908187866, "valid_batch_size": 24 }, ], "epoch": 3, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.4869052569071453, "train_loss_best": False, "valid_loss": 2.248246908187866, "valid_loss_best": False, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": False, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, { "batches": [ { "train_loss": 1.2157528400421143, "train_batch_size": 32 }, { "train_loss": 1.1182057857513428, "train_batch_size": 32 }, { "train_loss": 0.9163083434104919, "train_batch_size": 32 }, { "valid_loss": 0.9732739925384521, "valid_batch_size": 24 }, ], "epoch": 4, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.083422323067983, "train_loss_best": True, "valid_loss": 0.9732739925384521, "valid_loss_best": True, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": False, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, ] history_without_dur = [{k: v for k, v in h.items() if k != "dur"} for h in clf.history] assert_deep_allclose(history_without_dur, expected, atol=1e-3, rtol=1e-3)
def exp(subject_id): dataset = MOABBDataset(dataset_name="BNCI2014001", subject_ids=subject_id) from braindecode.datautil.preprocess import exponential_moving_standardize from braindecode.datautil.preprocess import MNEPreproc, NumpyPreproc, preprocess low_cut_hz = 0. # low cut frequency for filtering high_cut_hz = 49. # high cut frequency for filtering # Parameters for exponential moving standardization factor_new = 1e-3 init_block_size = 1000 preprocessors = [ # keep only EEG sensors MNEPreproc(fn='pick_types', eeg=True, meg=False, stim=False), # convert from volt to microvolt, directly modifying the numpy array NumpyPreproc(fn=lambda x: x * 1e6), # bandpass filter MNEPreproc(fn='filter', l_freq=low_cut_hz, h_freq=high_cut_hz), # exponential moving standardization # NumpyPreproc(fn=exponential_moving_standardize, factor_new=factor_new, # init_block_size=init_block_size) ] # Transform the data preprocess(dataset, preprocessors) ###################################################################### # Create model and compute windowing parameters # --------------------------------------------- # ###################################################################### # In contrast to trialwise decoding, we first have to create the model # before we can cut the dataset into windows. This is because we need to # know the receptive field of the network to know how large the window # stride should be. # ###################################################################### # We first choose the compute/input window size that will be fed to the # network during training This has to be larger than the networks # receptive field size and can otherwise be chosen for computational # efficiency (see explanations in the beginning of this tutorial). Here we # choose 1000 samples, which are 4 seconds for the 250 Hz sampling rate. # input_window_samples = 1000 ###################################################################### # Now we create the model. To enable it to be used in cropped decoding # efficiently, we manually set the length of the final convolution layer # to some length that makes the receptive field of the ConvNet smaller # than ``input_window_samples`` (see ``final_conv_length=30`` in the model # definition). # import torch from braindecode.util import set_random_seeds from braindecode.models import ShallowFBCSPNet, Deep4Net cuda = torch.cuda.is_available( ) # check if GPU is available, if True chooses to use it device = 'cuda:1' if cuda else 'cpu' if cuda: torch.backends.cudnn.benchmark = True seed = 20190706 # random seed to make results reproducible # Set random seed to be able to reproduce results set_random_seeds(seed=seed, cuda=cuda) n_classes = 4 # Extract number of chans from dataset n_chans = dataset[0][0].shape[0] # model = Deep4Net( # n_chans, # n_classes, # input_window_samples=input_window_samples, # final_conv_length="auto", # ) # # # # embedding_net = Deep4Net_origin(4, 22, input_window_samples) # model = FcClfNet(embedding_net) model = ShallowFBCSPNet( n_chans, n_classes, input_window_samples=input_window_samples, final_conv_length=30, ) print(model) # Send model to GPU if cuda: model.cuda(device) ###################################################################### # And now we transform model with strides to a model that outputs dense # prediction, so we can use it to obtain predictions for all # crops. # from braindecode.models.util import to_dense_prediction_model, get_output_shape to_dense_prediction_model(model) n_preds_per_input = get_output_shape(model, n_chans, input_window_samples)[2] print("n_preds_per_input : ", n_preds_per_input) print(model) ###################################################################### # Cut the data into windows # ------------------------- # ###################################################################### # In contrast to trialwise decoding, we have to supply an explicit window size and window stride to the # ``create_windows_from_events`` function. # import numpy as np from braindecode.datautil.windowers import create_windows_from_events trial_start_offset_seconds = -0.5 # Extract sampling frequency, check that they are same in all datasets sfreq = dataset.datasets[0].raw.info['sfreq'] assert all([ds.raw.info['sfreq'] == sfreq for ds in dataset.datasets]) # Calculate the trial start offset in samples. trial_start_offset_samples = int(trial_start_offset_seconds * sfreq) # Create windows using braindecode function for this. It needs parameters to define how # trials should be used. windows_dataset = create_windows_from_events( dataset, trial_start_offset_samples=trial_start_offset_samples, trial_stop_offset_samples=0, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input, drop_last_window=False, preload=True, ) ###################################################################### # Split the dataset # ----------------- # # This code is the same as in trialwise decoding. # from braindecode.datasets.base import BaseConcatDataset splitted = windows_dataset.split('session') train_set = splitted['session_T'] valid_set = splitted['session_E'] lr = 0.0625 * 0.01 weight_decay = 0 batch_size = 8 n_epochs = 100 train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) # valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False) test_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False) # Send model to GPU if cuda: model.cuda(device) from torch.optim import lr_scheduler import torch.optim as optim import argparse parser = argparse.ArgumentParser( description='cross subject domain adaptation') parser.add_argument('--batch-size', type=int, default=50, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=50, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument( '--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=True, help='For Saving the current Model') args = parser.parse_args() args.gpuidx = 0 args.seed = 0 args.use_tensorboard = False args.save_model = False optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay) # scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0=10, T_mult=1) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=n_epochs - 1) import pandas as pd results_columns = ['test_loss', 'test_accuracy'] df = pd.DataFrame(columns=results_columns) for epochidx in range(1, n_epochs): print(epochidx) train_crop(10, model, device, train_loader, optimizer, scheduler, cuda, args.gpuidx) test_loss, test_score = eval_crop(model, device, test_loader) results = {'test_loss': test_loss, 'test_accuracy': test_score} df = df.append(results, ignore_index=True) print(results) return df
def test_variable_length_trials_cropped_decoding(): cuda = False set_random_seeds(seed=20210726, cuda=cuda) # create fake tuh abnormal dataset tuh = _TUHAbnormalMock(path='') # fake variable length trials by cropping first recording splits = tuh.split([[i] for i in range(len(tuh.datasets))]) preprocess( concat_ds=splits['0'], preprocessors=[ Preprocessor('crop', tmax=300), ], ) variable_tuh = BaseConcatDataset( [splits[str(i)] for i in range(len(tuh.datasets))]) # make sure we actually have different length trials assert any(np.diff([ds.raw.n_times for ds in variable_tuh.datasets]) != 0) # create windows variable_tuh_windows = create_fixed_length_windows( concat_ds=variable_tuh, window_size_samples=1000, window_stride_samples=1000, drop_last_window=False, mapping={ True: 1, False: 0 }, ) # create train and valid set splits = variable_tuh_windows.split( [[i] for i in range(len(variable_tuh_windows.datasets))]) variable_tuh_windows_train = BaseConcatDataset( [splits[str(i)] for i in range(len(tuh.datasets) - 1)]) variable_tuh_windows_valid = BaseConcatDataset( [splits[str(len(tuh.datasets) - 1)]]) for x, y, ind in variable_tuh_windows_train: break train_split = predefined_split(variable_tuh_windows_valid) # initialize a model model = ShallowFBCSPNet( in_chans=x.shape[0], n_classes=len(tuh.description.pathological.unique()), ) to_dense_prediction_model(model) if cuda: model.cuda() # create and train a classifier clf = EEGClassifier( model, cropped=True, criterion=CroppedLoss, criterion__loss_function=torch.nn.functional.nll_loss, optimizer=torch.optim.Adam, batch_size=32, callbacks=['accuracy'], train_split=train_split, ) clf.fit(variable_tuh_windows_train, y=None, epochs=3) # make sure it does what we expect np.testing.assert_allclose( clf.history[:, 'train_loss'], np.array([ 0.689495325088501, 0.1353449523448944, 0.006638816092163324, ]), rtol=1e-1, atol=1e-1, ) np.testing.assert_allclose( clf.history[:, 'valid_loss'], np.array([ 2.925871, 3.611423, 4.23494, ]), rtol=1e-1, atol=1e-1, )
def run_exp_on_high_gamma_dataset(train_filename, test_filename, low_cut_hz, model_name, max_epochs, max_increase_epochs, np_th_seed, debug): train_set, valid_set, test_set = load_train_valid_test( train_filename=train_filename, test_filename=test_filename, low_cut_hz=low_cut_hz, debug=debug) if debug: max_epochs = 4 set_random_seeds(np_th_seed, cuda=True) #torch.backends.cudnn.benchmark = True# sometimes crashes? n_classes = int(np.max(train_set.y) + 1) n_chans = int(train_set.X.shape[1]) input_time_length = 1000 if model_name == 'deep': model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=2).create_network() elif model_name == 'shallow': model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=30).create_network() to_dense_prediction_model(model) model.cuda() model.eval() out = model(np_to_var(train_set.X[:1, :, :input_time_length, None]).cuda()) n_preds_per_input = out.cpu().data.numpy().shape[2] optimizer = optim.Adam(model.parameters(), weight_decay=0, lr=1e-3) iterator = CropsFromTrialsIterator(batch_size=60, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input, seed=np_th_seed) monitors = [ LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'), CroppedTrialMisclassMonitor(input_time_length=input_time_length), RuntimeMonitor() ] model_constraint = MaxNormDefaultConstraint() loss_function = lambda preds, targets: F.nll_loss(th.mean(preds, dim=2), targets) run_after_early_stop = True do_early_stop = True remember_best_column = 'valid_misclass' stop_criterion = Or([ MaxEpochs(max_epochs), NoDecrease('valid_misclass', max_increase_epochs) ]) exp = Experiment(model, train_set, valid_set, test_set, iterator=iterator, loss_function=loss_function, optimizer=optimizer, model_constraint=model_constraint, monitors=monitors, stop_criterion=stop_criterion, remember_best_column=remember_best_column, run_after_early_stop=run_after_early_stop, cuda=True, do_early_stop=do_early_stop) exp.run() return exp
def create_model(in_channels, num_classes, cuda=True): def squeeze_out(x): assert x.size()[1] == num_classes and x.size()[3] == 1 return x.squeeze(3).transpose(1, 2) if cfg.TRAINING.MODEL.lower() == 'rnn': model = RNNs(in_channels=in_channels) elif 'deep4' in cfg.TRAINING.MODEL.lower(): if 'wide' in cfg.TRAINING.MODEL.lower(): pool_length = 4 pool_stride = 4 elif 'narrow' in cfg.TRAINING.MODEL.lower(): pool_length = 2 pool_stride = 2 else: pool_length = 3 pool_stride = 3 model = Deep4Net(in_chans=in_channels, n_classes=num_classes, input_time_length=cfg.TRAINING.CROP_LEN, pool_time_length=pool_length, pool_time_stride=pool_stride, final_conv_length=2, stride_before_pool=True).create_network() # remove softmax new_model = nn.Sequential() for name, module in model.named_children(): if name == 'softmax': # continue break new_model.add_module(name, module) # remove empty final dimension and permute output shape new_model.add_module('squeeze', Expression(squeeze_out)) # if num_classes > 1: # def transpose_class_time(x): # return x.transpose(2, 1) # # new_model.add_module('trans', Expression(transpose_class_time)) model = new_model to_dense_prediction_model(model) elif cfg.TRAINING.MODEL.lower() == 'deep5': # pool_time_length=3 # pool_time_stride=3 model = Deep5Net(in_chans=in_channels, n_classes=num_classes, input_time_length=cfg.TRAINING.CROP_LEN, final_conv_length=2, stride_before_pool=True).create_network() # remove softmax new_model = nn.Sequential() for name, module in model.named_children(): if name == 'softmax': # continue break new_model.add_module(name, module) # remove empty final dimension and permute output shape new_model.add_module('squeeze', Expression(squeeze_out)) # if num_classes > 1: # def transpose_class_time(x): # return x.transpose(2, 1) # # new_model.add_module('trans', Expression(transpose_class_time)) model = new_model to_dense_prediction_model(model) elif cfg.TRAINING.MODEL.lower() == 'shallow': model = Shallow(in_chans=in_channels, n_classes=num_classes, input_time_length=cfg.TRAINING.CROP_LEN, final_conv_length=2).create_network() # remove softmax new_model = nn.Sequential() for name, module in model.named_children(): if name == 'softmax': break new_model.add_module(name, module) # remove empty final dimension and permute output shape new_model.add_module('squeeze', Expression(squeeze_out)) to_dense_prediction_model(model) elif cfg.TRAINING.MODEL.lower() == 'hybrid': model = Hybrid(in_channels=in_channels) elif cfg.TRAINING.MODEL.lower() == 'tcn': raise NotImplementedError else: assert False, f"Unknown Model {cfg.TRAINING.MODEL}" optimizer = optim.Adam(model.parameters(), lr=cfg.OPTIMIZATION.BASE_LR, weight_decay=cfg.OPTIMIZATION.WEIGHT_DECAY) scheduler = CosineAnnealingLR(optimizer, T_max=cfg.TRAINING.MAX_EPOCHS) if cuda: model.cuda() model.eval() metric = lambda targets, predictions: np.corrcoef(targets, predictions)[0, 1] loss_fun = mse_loss logger.info(model) return model, optimizer, scheduler, loss_fun, metric
def test_cropped_decoding(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data( subject_id, event_codes, update_path=False ) # Load each of the files parts = [ mne.io.read_raw_edf( path, preload=True, stim_channel="auto", verbose="WARNING" ) for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types( raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads" ) # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_time_length = 450 n_classes = 2 in_chans = X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_time_length=input_time_length, final_conv_length=12, ) to_dense_prediction_model(model) if cuda: model.cuda() # Perform forward pass to determine how many outputs per input n_preds_per_input = get_output_shape(model, in_chans, input_time_length)[2] train_set = CroppedXyDataset(X[:60], y[:60], input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) valid_set = CroppedXyDataset(X[60:], y=y[60:], input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) train_split = predefined_split(valid_set) clf = EEGClassifier( model, cropped=True, criterion=CroppedLoss, criterion__loss_function=torch.nn.functional.nll_loss, optimizer=optim.Adam, train_split=train_split, batch_size=32, callbacks=['accuracy'], ) clf.fit(train_set, y=None, epochs=4) np.testing.assert_allclose( clf.history[:, 'train_loss'], np.array( [ 1.455306, 1.455934, 1.210563, 1.065806 ] ), rtol=1e-4, atol=1e-5, ) np.testing.assert_allclose( clf.history[:, 'valid_loss'], np.array( [ 2.547288, 1.51785, 1.394036, 1.064355 ] ), rtol=1e-4, atol=1e-4, ) np.testing.assert_allclose( clf.history[:, 'train_accuracy'], np.array( [ 0.5, 0.5, 0.5, 0.533333 ] ), rtol=1e-4, atol=1e-5, ) np.testing.assert_allclose( clf.history[:, 'valid_accuracy'], np.array( [ 0.533333, 0.466667, 0.533333, 0.5 ] ), rtol=1e-4, atol=1e-5, )
def test_eeg_classifier(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes, update_path=False) # Load each of the files parts = [ mne.io.read_raw_edf(path, preload=True, stim_channel="auto", verbose="WARNING") for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads") # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_window_samples = 450 n_classes = 2 in_chans = X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_window_samples=input_window_samples, final_conv_length=12, ) to_dense_prediction_model(model) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, in_chans, input_window_samples, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] train_set = create_from_X_y(X[:48], y[:48], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) valid_set = create_from_X_y(X[48:60], y[48:60], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) cropped_cb_train = CroppedTrialEpochScoring( "accuracy", name="train_trial_accuracy", lower_is_better=False, on_train=True, ) cropped_cb_valid = CroppedTrialEpochScoring( "accuracy", on_train=False, name="valid_trial_accuracy", lower_is_better=False, ) clf = EEGClassifier( model, criterion=CroppedLoss, criterion__loss_function=nll_loss, optimizer=optim.Adam, train_split=predefined_split(valid_set), batch_size=32, callbacks=[ ("train_trial_accuracy", cropped_cb_train), ("valid_trial_accuracy", cropped_cb_valid), ], ) clf.fit(train_set, y=None, epochs=4) expected = [ { "batches": [ { "train_loss": 1.9391239881515503, "train_batch_size": 32 }, { "train_loss": 2.895704507827759, "train_batch_size": 32 }, { "train_loss": 1.0713893175125122, "train_batch_size": 32 }, { "valid_loss": 1.1811838150024414, "valid_batch_size": 24 }, ], "epoch": 1, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.9687392711639404, "train_loss_best": True, "valid_loss": 1.1811838150024414, "valid_loss_best": True, "train_trial_accuracy": 0.4791666666666667, "train_trial_accuracy_best": True, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": True, }, { "batches": [ { "train_loss": 1.5488793849945068, "train_batch_size": 32 }, { "train_loss": 1.1174801588058472, "train_batch_size": 32 }, { "train_loss": 1.1525697708129883, "train_batch_size": 32 }, { "valid_loss": 2.202029228210449, "valid_batch_size": 24 }, ], "epoch": 2, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.2729764382044475, "train_loss_best": True, "valid_loss": 2.202029228210449, "valid_loss_best": False, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": True, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, { "batches": [ { "train_loss": 1.0049529075622559, "train_batch_size": 32 }, { "train_loss": 1.0266971588134766, "train_batch_size": 32 }, { "train_loss": 1.0799436569213867, "train_batch_size": 32 }, { "valid_loss": 1.0638500452041626, "valid_batch_size": 24 }, ], "epoch": 3, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 1.0371979077657063, "train_loss_best": True, "valid_loss": 1.0638500452041626, "valid_loss_best": True, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": False, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, { "batches": [ { "train_loss": 1.0052555799484253, "train_batch_size": 32 }, { "train_loss": 0.8479514718055725, "train_batch_size": 32 }, { "train_loss": 0.9589881300926208, "train_batch_size": 32 }, { "valid_loss": 0.8794112801551819, "valid_batch_size": 24 }, ], "epoch": 4, "train_batch_count": 3, "valid_batch_count": 1, "train_loss": 0.9373983939488729, "train_loss_best": True, "valid_loss": 0.8794112801551819, "valid_loss_best": True, "train_trial_accuracy": 0.5, "train_trial_accuracy_best": False, "valid_trial_accuracy": 0.5, "valid_trial_accuracy_best": False, }, ] history_without_dur = [{k: v for k, v in h.items() if k != "dur"} for h in clf.history] assert_deep_allclose(expected, history_without_dur, atol=1e-3, rtol=1e-3)
def test_eeg_classifier(): # 5,6,7,10,13,14 are codes for executed and imagined hands/feet subject_id = 1 event_codes = [5, 6, 9, 10, 13, 14] # This will download the files if you don't have them yet, # and then return the paths to the files. physionet_paths = mne.datasets.eegbci.load_data(subject_id, event_codes, update_path=False) # Load each of the files parts = [ mne.io.read_raw_edf(path, preload=True, stim_channel="auto", verbose="WARNING") for path in physionet_paths ] # Concatenate them raw = concatenate_raws(parts) # Find the events in this dataset events, _ = mne.events_from_annotations(raw) # Use only EEG channels eeg_channel_inds = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False, exclude="bads") # Extract trials, only using EEG channels epoched = mne.Epochs( raw, events, dict(hands=2, feet=3), tmin=1, tmax=4.1, proj=False, picks=eeg_channel_inds, baseline=None, preload=True, ) # Convert data from volt to millivolt # Pytorch expects float32 for input and int64 for labels. X = (epoched.get_data() * 1e6).astype(np.float32) y = (epoched.events[:, 2] - 2).astype(np.int64) # 2,3 -> 0,1 # Set if you want to use GPU # You can also use torch.cuda.is_available() to determine if cuda is available on your machine. cuda = False set_random_seeds(seed=20170629, cuda=cuda) # This will determine how many crops are processed in parallel input_window_samples = 450 n_classes = 2 in_chans = X.shape[1] # final_conv_length determines the size of the receptive field of the ConvNet model = ShallowFBCSPNet( in_chans=in_chans, n_classes=n_classes, input_window_samples=input_window_samples, final_conv_length=12, ) to_dense_prediction_model(model) if cuda: model.cuda() # determine output size test_input = np_to_var( np.ones((2, in_chans, input_window_samples, 1), dtype=np.float32)) if cuda: test_input = test_input.cuda() out = model(test_input) n_preds_per_input = out.cpu().data.numpy().shape[2] train_set = create_from_X_y(X[:48], y[:48], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) valid_set = create_from_X_y(X[48:60], y[48:60], drop_last_window=False, window_size_samples=input_window_samples, window_stride_samples=n_preds_per_input) cropped_cb_train = CroppedTrialEpochScoring( "accuracy", name="train_trial_accuracy", lower_is_better=False, on_train=True, ) cropped_cb_valid = CroppedTrialEpochScoring( "accuracy", on_train=False, name="valid_trial_accuracy", lower_is_better=False, ) clf = EEGClassifier( model, criterion=CroppedLoss, criterion__loss_function=nll_loss, optimizer=optim.Adam, train_split=predefined_split(valid_set), batch_size=32, callbacks=[ ("train_trial_accuracy", cropped_cb_train), ("valid_trial_accuracy", cropped_cb_valid), ], ) clf.fit(train_set, y=None, epochs=4) expected = [{ 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.9391239881515503 }, { 'train_batch_size': 32, 'train_loss': 2.895704507827759 }, { 'train_batch_size': 32, 'train_loss': 1.0713887214660645 }, { 'valid_batch_size': 24, 'valid_loss': 1.18110191822052 }], 'epoch': 1, 'train_batch_count': 3, 'train_loss': 1.9687390724817913, 'train_loss_best': True, 'train_trial_accuracy': 0.4791666666666667, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 1.18110191822052, 'valid_loss_best': True, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': True }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.6741573810577393 }, { 'train_batch_size': 32, 'train_loss': 0.9984264373779297 }, { 'train_batch_size': 32, 'train_loss': 1.1340471506118774 }, { 'valid_batch_size': 24, 'valid_loss': 2.5375664234161377 }], 'epoch': 2, 'train_batch_count': 3, 'train_loss': 1.2688769896825154, 'train_loss_best': True, 'train_trial_accuracy': 0.5, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 2.5375664234161377, 'valid_loss_best': False, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': False }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 0.8795645833015442 }, { 'train_batch_size': 32, 'train_loss': 1.0339491367340088 }, { 'train_batch_size': 32, 'train_loss': 1.19275963306427 }, { 'valid_batch_size': 24, 'valid_loss': 1.655737042427063 }], 'epoch': 3, 'train_batch_count': 3, 'train_loss': 1.0354244510332744, 'train_loss_best': True, 'train_trial_accuracy': 0.5, 'train_trial_accuracy_best': False, 'valid_batch_count': 1, 'valid_loss': 1.655737042427063, 'valid_loss_best': False, 'valid_trial_accuracy': 0.5, 'valid_trial_accuracy_best': False }, { 'batches': [{ 'train_batch_size': 32, 'train_loss': 1.1963350772857666 }, { 'train_batch_size': 32, 'train_loss': 0.8621770143508911 }, { 'train_batch_size': 32, 'train_loss': 1.099318265914917 }, { 'valid_batch_size': 24, 'valid_loss': 1.0293445587158203 }], 'epoch': 4, 'train_batch_count': 3, 'train_loss': 1.0526101191838582, 'train_loss_best': False, 'train_trial_accuracy': 0.625, 'train_trial_accuracy_best': True, 'valid_batch_count': 1, 'valid_loss': 1.0293445587158203, 'valid_loss_best': True, 'valid_trial_accuracy': 0.25, 'valid_trial_accuracy_best': False }] history_without_dur = [{k: v for k, v in h.items() if k != "dur"} for h in clf.history] assert_deep_allclose(expected, history_without_dur, atol=1e-3, rtol=1e-3)
def exp(subject_id): import torch input_window_samples = 1000 cuda = torch.cuda.is_available() # check if GPU is available, if True chooses to use it device = 'cuda:0' if cuda else 'cpu' if cuda: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False seed = 20190706 # random seed to make results reproducible # Set random seed to be able to reproduce results random.seed(seed) torch.manual_seed(seed) if cuda: torch.cuda.manual_seed_all(seed) np.random.seed(seed) n_classes = 4 PATH = '../datasets/' with open(PATH + 'bcic_datasets_[0,49].pkl', 'rb') as f: data = pickle.load(f) import torch print('subject:' + str(subject_id)) #make train test tr = [] val =[] test_train_split = 0.5 dataset= data[subject_id] dataset_size = len(dataset) indices = list(range(dataset_size)) test_split = int(np.floor(test_train_split * dataset_size)) train_indices, test_indices = indices[:test_split], indices[test_split:] np.random.shuffle(train_indices) #분석 sample_data = data[0].dataset sample_data.psd() from mne.viz import plot_epochs_image import mne plot_epochs_image(sample_data, picks=['C3','C4']) label = sample_data.read_label() sample_data.plot_projs_topomap() train_sampler = SubsetRandomSampler(train_indices) test_sampler = SubsetRandomSampler(test_indices) from braindecode.models import ShallowFBCSPNet model = ShallowFBCSPNet( 22, n_classes, input_window_samples=input_window_samples, final_conv_length=30, ) from braindecode.models.util import to_dense_prediction_model, get_output_shape to_dense_prediction_model(model) n_preds_per_input = get_output_shape(model, 22, input_window_samples)[2] print("n_preds_per_input : ", n_preds_per_input) print(model) # crop_size =1000 # # # # # model = ShallowNet_dense(n_classes, 22, crop_size) # # print(model) epochs = 100 # For deep4 they should be: lr = 1 * 0.01 weight_decay = 0.5 * 0.001 batch_size = 8 train_set = torch.utils.data.Subset(dataset,indices= train_indices) test_set = torch.utils.data.Subset(dataset,indices= test_indices) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False) # Send model to GPU if cuda: model.cuda(device=device) from torch.optim import lr_scheduler import torch.optim as optim import argparse parser = argparse.ArgumentParser(description='cross subject domain adaptation') parser.add_argument('--batch-size', type=int, default=50, metavar='N', help='input batch size for training (default: 64)') parser.add_argument('--test-batch-size', type=int, default=50, metavar='N', help='input batch size for testing (default: 1000)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 10)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.5, metavar='M', help='SGD momentum (default: 0.5)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--log-interval', type=int, default=10, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--save-model', action='store_true', default=True, help='For Saving the current Model') args = parser.parse_args() args.gpuidx = 0 args.seed = 0 args.use_tensorboard = False args.save_model = False lr = 0.0625 * 0.01 weight_decay = 0 optimizer = optim.AdamW(model.parameters(), lr=lr, weight_decay=weight_decay) # scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=200) scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max = epochs-1) # # #test lr # lr = [] # for i in range(200): # scheduler.step() # lr.append(scheduler.get_lr()) # # import matplotlib.pyplot as plt # plt.plot(lr) import pandas as pd results_columns = ['test_loss', 'test_accuracy'] df = pd.DataFrame(columns=results_columns) for epochidx in range(1, epochs): print(epochidx) train_crop(10, model, device, train_loader,optimizer,scheduler,cuda, args.gpuidx) test_loss, test_score = eval_crop(model, device, test_loader) results = {'test_loss': test_loss, 'test_accuracy': test_score} df = df.append(results, ignore_index=True) print(results) return df
optimizer_lr = 0.01 optimizer_weight_decay = 0.0005 else: raise ValueError(f'{model_name} unknown') new_model = torch.nn.Sequential() for name, module_ in model.named_children(): if "softmax" in name: continue new_model.add_module(name, module_) model = new_model if cuda: model.cuda() to_dense_prediction_model(model) n_preds_per_input = get_output_shape(model, n_chans, input_window_samples)[2] train_set, valid_set = create_compatible_dataset('./data/BCICIV_4_mat/sub1_comp.mat') # dataset = create_fixed_length_windows( # dataset, # start_offset_samples=0, # stop_offset_samples=0, # window_size_samples=input_window_samples, # window_stride_samples=n_preds_per_input, # drop_last_window=False, # drop_bad_windows=True, # ) # splits = dataset.split("session")
def run_exp(data_folder, subject_id, low_cut_hz, model, cuda): train_filename = 'A{:01d}T.gdf'.format(subject_id) test_filename = 'A{:01d}E.gdf'.format(subject_id) train_filepath = os.path.join(data_folder, train_filename) test_filepath = os.path.join(data_folder, test_filename) train_label_filepath = train_filepath.replace('.gdf', '.mat') test_label_filepath = test_filepath.replace('.gdf', '.mat') train_loader = BCICompetition4Set2A( train_filepath, labels_filename=train_label_filepath) test_loader = BCICompetition4Set2A( test_filepath, labels_filename=test_label_filepath) #print(train_loader) train_cnt = train_loader.load() test_cnt = test_loader.load() # Preprocessing train_cnt = train_cnt.drop_channels(['STI 014', 'EOG-left', 'EOG-central', 'EOG-right']) assert len(train_cnt.ch_names) == 22 # lets convert to millvolt for numerical stability of next operations train_cnt = mne_apply(lambda a: a * 1e6, train_cnt) train_cnt = mne_apply( lambda a: bandpass_cnt(a, low_cut_hz, 38, train_cnt.info['sfreq'], filt_order=3, axis=1), train_cnt) train_cnt = mne_apply( lambda a: exponential_running_standardize(a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, train_cnt) test_cnt = test_cnt.drop_channels(['STI 014', 'EOG-left', 'EOG-central', 'EOG-right']) assert len(test_cnt.ch_names) == 22 test_cnt = mne_apply(lambda a: a * 1e6, test_cnt) test_cnt = mne_apply( lambda a: bandpass_cnt(a, low_cut_hz, 38, test_cnt.info['sfreq'], filt_order=3, axis=1), test_cnt) test_cnt = mne_apply( lambda a: exponential_running_standardize(a.T, factor_new=1e-3, init_block_size=1000, eps=1e-4).T, test_cnt) marker_def = OrderedDict([('Left Hand', [1]), ('Right Hand', [2],), ('Foot', [3]), ('Tongue', [4])]) ival = [-500, 4000] train_set = create_signal_target_from_raw_mne(train_cnt, marker_def, ival) test_set = create_signal_target_from_raw_mne(test_cnt, marker_def, ival) train_set, valid_set = split_into_two_sets(train_set, first_set_fraction=0.8) set_random_seeds(seed=20190706, cuda=cuda) n_classes = 4 n_chans = int(train_set.X.shape[1]) input_time_length=1000 if model == 'shallow': model = ShallowFBCSPNet(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=30).create_network() elif model == 'deep': model = Deep4Net(n_chans, n_classes, input_time_length=input_time_length, final_conv_length=2).create_network() to_dense_prediction_model(model) if cuda: model.cuda() log.info("Model: \n{:s}".format(str(model))) dummy_input = np_to_var(train_set.X[:1, :, :, None]) if cuda: dummy_input = dummy_input.cuda() out = model(dummy_input) n_preds_per_input = out.cpu().data.numpy().shape[2] optimizer = optim.Adam(model.parameters()) iterator = CropsFromTrialsIterator(batch_size=60, input_time_length=input_time_length, n_preds_per_input=n_preds_per_input) stop_criterion = Or([MaxEpochs(800), NoDecrease('valid_misclass', 80)]) monitors = [LossMonitor(), MisclassMonitor(col_suffix='sample_misclass'), CroppedTrialMisclassMonitor( input_time_length=input_time_length), RuntimeMonitor()] model_constraint = MaxNormDefaultConstraint() loss_function = lambda preds, targets: F.nll_loss( th.mean(preds, dim=2, keepdim=False), targets) exp = Experiment(model, train_set, valid_set, test_set, iterator=iterator, loss_function=loss_function, optimizer=optimizer, model_constraint=model_constraint, monitors=monitors, stop_criterion=stop_criterion, remember_best_column='valid_misclass', run_after_early_stop=True, cuda=cuda) exp.run() return exp