示例#1
0
 def __init__(self, data_processor, model, trainer, pred_gap):
     self.data_processor = data_processor
     self.model = model
     self.pred_gap = pred_gap
     self.marker_buffer = RingBuffer(
         np.zeros(data_processor.n_samples_in_buffer, dtype=np.int32))
     self.trainer = trainer
示例#2
0
 def initialize(self, n_chans):
     self.running_mean = None
     self.running_var = None
     self.sample_buffer = RingBuffer(
         np.zeros((self.n_samples_in_buffer, n_chans), dtype=np.float32))
     self.y_buffer = RingBuffer(
         np.zeros((self.n_samples_in_buffer), dtype=np.float32))
示例#3
0
 def __init__(self, data_processor, model, trainer, pred_freq):
     self.data_processor = data_processor
     self.model = model
     self.pred_freq = pred_freq
     self.marker_buffer = RingBuffer(np.zeros(
         data_processor.n_samples_in_buffer, 
         dtype=np.int32))
     self.trainer = trainer
示例#4
0
class StandardizeProcessor(object):
    def __init__(self, factor_new=1e-3, eps=1e-4, n_samples_in_buffer=10000):
        self.factor_new = factor_new
        self.eps = eps
        self.n_samples_in_buffer = n_samples_in_buffer

    def initialize(self, n_chans):
        self.running_mean = None
        self.running_var = None
        self.sample_buffer = RingBuffer(
            np.zeros((self.n_samples_in_buffer, n_chans), dtype=np.float32))
        self.y_buffer = RingBuffer(
            np.zeros((self.n_samples_in_buffer), dtype=np.float32))

    def process_samples(self, samples):
        standardized_samples = self.update_and_standardize(samples)
        self.sample_buffer.extend(standardized_samples)

    def update_and_standardize(self, samples):
        if self.running_mean is not None:
            assert self.running_var is not None
            next_means = exponential_running_mean(samples,
                                                  factor_new=self.factor_new,
                                                  start_mean=self.running_mean)

            demeaned = samples - next_means
            next_vars = exponential_running_var_from_demeaned(
                demeaned,
                factor_new=self.factor_new,
                start_var=self.running_var)
            standardized = demeaned / np.maximum(self.eps, np.sqrt(next_vars))
            self.running_mean = next_means[-1]
            self.running_var = next_vars[-1]
            return standardized
        else:
            self.running_mean = np.mean(samples, axis=0)
            self.running_var = np.var(samples, axis=0)
            return (samples - self.running_mean) / np.maximum(
                self.eps, np.sqrt(self.running_var))

    def get_samples(self, start, stop):
        return self.sample_buffer[start:stop]
示例#5
0
class OnlineCoordinator(object):
    """ Online coordinator accepts samples, preprocesses them with 
    data processor,  calls model to supply predictions
    when necessary.
    Online coordinator is mainly responsible
    for cutting out correct time windows for the model to predict on. """
    def __init__(self, data_processor, model, trainer, pred_freq):
        self.data_processor = data_processor
        self.model = model
        self.pred_freq = pred_freq
        self.marker_buffer = RingBuffer(np.zeros(
            data_processor.n_samples_in_buffer, 
            dtype=np.int32))
        self.trainer = trainer

    def initialize(self, n_chans):
        assert self.data_processor.__class__.__name__ == 'StandardizeProcessor', (
            "Else change atleast trainer.py add_training_blocks_from_old_data ",
            "function")
        self.data_processor.initialize(n_chans)
        self.n_samples = 0
        self.i_last_pred = -1
        self.last_pred = None
        self.model.initialize()
        self.n_samples_pred_window = self.model.get_n_samples_pred_window()
        self.trainer.set_predicting_model(self.model.model) # lasagne model...
        self.trainer.set_data_processor(self.data_processor)
        self.trainer.set_marker_buffer(self.marker_buffer)

    def receive_samples(self, samples):
        """Expect samples in timexchan format"""
        sensor_samples = samples[:,:-1]
        markers = samples[:,-1]
        assert np.all([m in [0,1,2,3,4,5] for m in markers]), ("Expect all "
            "markers to be from 0-5, instead got {:s}".format(markers))
        self.marker_buffer.extend(markers)
        self.data_processor.process_samples(sensor_samples)
        self.n_samples += len(samples)
        if self.should_do_next_prediction():
            self.predict()
        # important to do after marker buffer and data processor
        # have processed samples...
        self.trainer.process_markers(markers)

    def should_do_next_prediction(self):
        return (self.n_samples >= self.n_samples_pred_window and 
            self.n_samples > (self.i_last_pred + self.pred_freq))

    def predict(self):
        # Compute how many samples we already have past the
        # sample we wanted to predict
        # keep in mind: n_samples = n_samples (number of samples)
        # so how many samples are we past
        # last prediction + prediction frequency
        # -1 at the end below since python  indexing is zerobased
        n_samples_after_pred = min(self.n_samples - 
            self.n_samples_pred_window,
            self.n_samples - self.i_last_pred - self.pred_freq - 1)
        assert n_samples_after_pred < self.pred_freq, ("Other case "
            "not implemented yet")
        start = -self.n_samples_pred_window - n_samples_after_pred
        end = -n_samples_after_pred
        if end == 0:
            end = None
        topo = self.data_processor.get_samples(start, end)
        self.last_pred = self.model.predict(topo)
        # -1 since we have 0-based indexing in python
        self.i_last_pred = self.n_samples - n_samples_after_pred - 1

    
    def pop_last_prediction_and_sample_ind(self):
        last_pred = self.last_pred
        self.last_pred = None
        return last_pred, self.i_last_pred

    def has_new_prediction(self):
        return self.last_pred is not None
示例#6
0
class OnlineCoordinator(object):
    """ Online coordinator accepts samples, preprocesses them with 
    data processor,  calls model to supply predictions
    when necessary.
    Online coordinator is mainly responsible
    for cutting out correct time windows for the model to predict on. """
    def __init__(self, data_processor, model, trainer, pred_gap):
        self.data_processor = data_processor
        self.model = model
        self.pred_gap = pred_gap
        self.marker_buffer = RingBuffer(
            np.zeros(data_processor.n_samples_in_buffer, dtype=np.int32))
        self.trainer = trainer

    def initialize(self, n_chans):
        assert self.data_processor.__class__.__name__ == 'StandardizeProcessor', (
            "Else change atleast trainer.py add_training_blocks_from_old_data ",
            "function")
        self.data_processor.initialize(n_chans)
        self.n_samples = 0
        self.i_last_pred = -1
        self.last_pred = None
        self.model.initialize()
        self.n_samples_pred_window = self.model.get_n_samples_pred_window()
        self.trainer.set_predicting_model(self.model.model)  # lasagne model...
        self.trainer.set_data_processor(self.data_processor)
        self.trainer.set_marker_buffer(self.marker_buffer)

    def receive_samples(self, samples):
        """Expect samples in timexchan format"""
        sensor_samples = samples[:, :-1]
        markers = samples[:, -1]
        assert np.all([
            m in [0, 1, 2, 3, 4, 5] for m in markers
        ]), ("Expect all "
             "markers to be from 0-5, instead got {:s}".format(markers))
        self.marker_buffer.extend(markers)
        self.data_processor.process_samples(sensor_samples)
        self.n_samples += len(samples)
        if self.should_do_next_prediction():
            self.predict()
        # important to do after marker buffer and data processor
        # have processed samples...
        self.trainer.process_markers(markers)

    def should_do_next_prediction(self):
        return (self.n_samples >= self.n_samples_pred_window
                and self.n_samples > (self.i_last_pred + self.pred_gap))

    def predict(self):
        # Compute how many samples we already have past the
        # sample we wanted to predict
        # keep in mind: n_samples = n_samples (number of samples)
        # so how many samples are we past
        # last prediction + prediction frequency
        # -1 at the end below since python  indexing is zerobased
        n_samples_after_pred = min(
            self.n_samples - self.n_samples_pred_window,
            self.n_samples - self.i_last_pred - self.pred_gap - 1)
        assert n_samples_after_pred < self.pred_gap, (
            "Other case "
            "(multiple predictions should have happened in one "
            "block that was sent) not implemented yet")
        start = -self.n_samples_pred_window - n_samples_after_pred
        end = -n_samples_after_pred
        if end == 0:
            end = None
        topo = self.data_processor.get_samples(start, end)
        self.last_pred = self.model.predict(topo)
        # -1 since we have 0-based indexing in python
        self.i_last_pred = self.n_samples - n_samples_after_pred - 1

    def pop_last_prediction_and_sample_ind(self):
        last_pred = self.last_pred
        self.last_pred = None
        return last_pred, self.i_last_pred

    def has_new_prediction(self):
        return self.last_pred is not None
示例#7
0
 def _init_data(self):
     self._data = dict()
     for sensor_name in self._sensor_names:
         self._data[sensor_name] = RingBuffer(
             np.sin(np.linspace(0, 10, 1000)))