示例#1
0
    def get(self, xpha, xamp, n_perm=200, n_jobs=-1):
        """Get the erpac mesure between an xpha and xamp signals.

        Args:
            xpha: array
                Signal for phase. The shape of xpha should be :
                (n_electrodes x n_pts x n_trials)

            xamp: array
                Signal for amplitude. The shape of xamp should be :
                (n_electrodes x n_pts x n_trials)

        Kargs:
            n_perm: integer, optional, [def: 200]
                Number of permutations for normalizing the cfc mesure.

            n_jobs: integer, optional, [def: -1]
                Control the number of jobs for parallel computing. Use 1, 2, ..
                depending of your number or cores. -1 for all the cores.

            If the same signal is used (example : xpha=x and xamp=x), this mean
            the program compute a local erpac.

        Returns:
            xerpac: array
                The erpac mesure of size :
                (n_amplitude x n_phase x n_electrodes x n_windows)

            pvalue: array
                The associated p-values of size :
                (n_amplitude x n_phase x n_electrodes x n_windows)
        """
        # Check and get methods:
        xpha, xamp = _cfcCheck(xpha, xamp, self._npts)
        npha, namp = self._nPha, self._nAmp
        phaMeth = self._pha.get(self._sf, self._pha.f, self._npts)
        ampMeth = self._amp.get(self._sf, self._amp.f, self._npts)

        # Extract phase and amplitude:
        nelec, npts, ntrials = xpha.shape
        xp, xa = cfcparafilt(xpha, xamp, n_jobs, self)

        # Window:
        if not (self._window == [(0, npts)]):
            xp = binArray(xp, self._window, axis=2)[0]
            xa = binArray(xa, self._window, axis=2)[0]
            npts = xp.shape[2]

        # Extract ERPAC and surrogates:
        iteract = product(range(nelec), range(npha), range(namp))
        xerpac = np.zeros((nelec, npha, namp, npts))
        pval = np.empty_like(xerpac)
        for e, p, a in iteract:
            xerpac[e, p, a, :], pval[e, p,
                                     a, :] = _erpac(xp[e, p, ...], xa[e, a,
                                                                      ...],
                                                    n_perm, n_jobs)

        return xerpac, pval
示例#2
0
    def get(self, xpha, xamp, n_perm=200, n_jobs=-1):
        """Get the erpac mesure between an xpha and xamp signals.

        Args:
            xpha: array
                Signal for phase. The shape of xpha should be :
                (n_electrodes x n_pts x n_trials)

            xamp: array
                Signal for amplitude. The shape of xamp should be :
                (n_electrodes x n_pts x n_trials)

        Kargs:
            n_perm: integer, optional, [def: 200]
                Number of permutations for normalizing the cfc mesure.

            n_jobs: integer, optional, [def: -1]
                Control the number of jobs for parallel computing. Use 1, 2, ..
                depending of your number or cores. -1 for all the cores.

            If the same signal is used (example : xpha=x and xamp=x), this mean
            the program compute a local erpac.

        Returns:
            xerpac: array
                The erpac mesure of size :
                (n_amplitude x n_phase x n_electrodes x n_windows)

            pvalue: array
                The associated p-values of size :
                (n_amplitude x n_phase x n_electrodes x n_windows)
        """
        # Check and get methods:
        xpha, xamp = _cfcCheck(xpha, xamp, self._npts)
        npha, namp = self._nPha, self._nAmp
        phaMeth = self._pha.get(self._sf, self._pha.f, self._npts)
        ampMeth = self._amp.get(self._sf, self._amp.f, self._npts)
        
        # Extract phase and amplitude:
        nelec, npts, ntrials = xpha.shape
        xp, xa = cfcparafilt(xpha, xamp, n_jobs, self)

        # Window:
        if not (self._window == [(0, npts)]):
            xp = binArray(xp, self._window, axis=2)[0]
            xa = binArray(xa, self._window, axis=2)[0]
            npts = xp.shape[2]

        # Extract ERPAC and surrogates:
        iteract = product(range(nelec), range(npha), range(namp))
        xerpac = np.zeros((nelec, npha, namp, npts))
        pval = np.empty_like(xerpac)
        for e, p, a in iteract:
            xerpac[e, p, a, :], pval[e, p, a, :] = _erpac(xp[e, p, ...],
                                  xa[e, a, ...], n_perm, n_jobs)
        
        return xerpac, pval
示例#3
0
    def __init__(self, sf, npts, kind, f, baseline, norm, method, window,
                 width, step, split, time, meanT, **kwargs):

        # Check the type of f:
        if (len(f) == 4) and isinstance(f[0], (int, float)):
            f = binarize(f[0], f[1], f[2], f[3], kind='list')
        # Manage time and frequencies:
        self._window, self.xvec = _manageWindow(npts,
                                                window=window,
                                                width=width,
                                                step=step,
                                                time=time)
        self.f, self._fSplit, self._fSplitIndex = _manageFrequencies(
            f, split=split)
        # Get variables :
        self._baseline = baseline
        self._norm = norm
        self._width = width
        self._step = step
        self._split = split
        self._nf = len(self.f)
        self._sf = sf
        self._npts = npts
        self.yvec = [round((k[0] + k[1]) / 2) for k in self.f]
        self._kind = kind
        self._fobj = fextract(method, kind, **kwargs)
        self._meanT = meanT
        if (self._window is not None) and (time is not None):
            self.xvec = binArray(time, self._window)[0]
        self.xvec = list(self.xvec)
示例#4
0
    def __init__(self, pha_f, pha_kind, pha_meth, pha_cycle,
                 amp_f, amp_kind, amp_meth, amp_cycle,
                 sf, npts, window, width, step, time, **kwargs):
        # Define windows and frequency :
        self._pha = fextract(kind=pha_kind, method=pha_meth,
                             cycle=pha_cycle, **kwargs)
        self._amp = fextract(kind=amp_kind, method=amp_meth,
                             cycle=amp_cycle, **kwargs)
        self._window, xvec = _manageWindow(npts, window=window,
                                           width=width, step=step,
                                           time=time)
        self._pha.f, _, _ = _manageFrequencies(pha_f, split=None)
        self._amp.f, _, _ = _manageFrequencies(amp_f, split=None)
        if time is None:
            time = np.arange(npts)
        if self._window is None:
            self._window = [(0, npts)]
            self.time = np.array(self._window).mean()
            # self.xvec = [0, npts]
        else:
            self.time = binArray(time, self._window)[0]

        # Get variables :
        self._width = width
        self._step = step
        self._nPha = len(self._pha.f)
        self._nAmp = len(self._amp.f)
        self._sf = sf
        self._npts = npts
        self._nwin = len(self._window)
        self.pha = [np.mean(k) for k in self._pha.f]
        self.amp = [np.mean(k) for k in self._amp.f]
示例#5
0
    def __init__(self, sf, npts, kind, f, baseline, norm, method, window,
                 width, step, split, time, meanT, **kwargs):

        # Check the type of f:
        if (len(f) == 4) and isinstance(f[0], (int, float)):
            f = binarize(f[0], f[1], f[2], f[3], kind='list')
        # Manage time and frequencies:
        self._window, self.xvec = _manageWindow(
            npts, window=window, width=width, step=step, time=time)
        self.f, self._fSplit, self._fSplitIndex = _manageFrequencies(
            f, split=split)
        # Get variables :
        self._baseline = baseline
        self._norm = norm
        self._width = width
        self._step = step
        self._split = split
        self._nf = len(self.f)
        self._sf = sf
        self._npts = npts
        self.yvec = [round((k[0]+k[1])/2) for k in self.f]
        self._kind = kind
        self._fobj = fextract(method, kind, **kwargs)
        self._meanT = meanT
        if (self._window is not None) and (time is not None):
            self.xvec = binArray(time, self._window)[0]
        self.xvec = list(self.xvec)
示例#6
0
def _get(x, self):
    """Sub get function.

    Get the spectral info of x.
    """
    # Unpack args :
    bsl, norm, n_perm = self._baseline, self._norm, self._n_perm
    maxstat, tail, metric = self._mxst, self._2t, self._metric
    statmeth = self._statmeth

    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)
    nf, npts, nt = xF.shape

    # Mean through trials:
    if self._meanT:
        xF = np.mean(xF, 2)
        xF = xF[..., np.newaxis]

    # Normalize power :
    if norm is not 0:
        xFm = np.mean(xF[:, bsl[0]:bsl[1], :], 1)
        baseline = np.tile(xFm[:, np.newaxis, :], [1, xF.shape[1], 1])
        xFn = normalize(xF, baseline, norm=norm)
        del xFm, baseline
    else:
        baseline = np.zeros(xF.shape)
        xFn = xF

    # Mean Frequencies :
    xFn, _ = binArray(xFn, self._fSplitIndex, axis=0)

    # Mean time :
    if self._window is not None:
        xFn, xvec = binArray(xFn, self._window, axis=1)

    # Statistical evaluation :
    if (norm is not 0) and (self._statmeth is not 'none'):
        pvalues = _evalstat(xF, xFm, statmeth, n_perm, metric,
                            maxstat, tail)
    else:
        pvalues = np.matrix([0])

    return xFn  # , pvalues
示例#7
0
def _get(x, self):
    """Sub get function.

    Get the spectral info of x.
    """
    # Unpack args :
    bsl, norm, n_perm = self._baseline, self._norm, self._n_perm
    maxstat, tail, metric = self._mxst, self._2t, self._metric
    statmeth = self._statmeth

    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)
    nf, npts, nt = xF.shape

    # Mean through trials:
    if self._meanT:
        xF = np.mean(xF, 2)
        xF = xF[..., np.newaxis]

    # Normalize power :
    if norm is not 0:
        xFm = np.mean(xF[:, bsl[0]:bsl[1], :], 1)
        baseline = np.tile(xFm[:, np.newaxis, :], [1, xF.shape[1], 1])
        xFn = normalize(xF, baseline, norm=norm)
        del xFm, baseline
    else:
        baseline = np.zeros(xF.shape)
        xFn = xF

    # Mean Frequencies :
    xFn, _ = binArray(xFn, self._fSplitIndex, axis=0)

    # Mean time :
    if self._window is not None:
        xFn, xvec = binArray(xFn, self._window, axis=1)

    # Statistical evaluation :
    if (norm is not 0) and (self._statmeth is not 'none'):
        pvalues = _evalstat(xF, xFm, statmeth, n_perm, metric, maxstat, tail)
    else:
        pvalues = np.matrix([0])

    return xFn  # , pvalues
示例#8
0
def _get(x, self):
    """Sub get function.

    Get the spectral info of x.
    """
    # Unpack args :
    bsl, norm = self._baseline, self._norm
    n_perm, statmeth = self._n_perm, self._statmeth

    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)
    nf, npts, nt = xF.shape

    # Statistical evaluation :
    if (n_perm is not 0) and (bsl is not None) and (statmeth is not None):
        pvalues = _evalstat(self, xF, bsl)
    else:
        pvalues = None

    # Mean through trials:
    if self._meanT:
        xF = np.mean(xF[..., np.newaxis], 2)

    # Normalize power :
    if (norm is not None) and (bsl is not None):
        xFm = np.mean(xF[:, bsl[0]:bsl[1], :], 1)
        baseline = np.tile(xFm[:, np.newaxis, :], [1, xF.shape[1], 1])
        xF = normalize(xF, baseline, norm=norm)

    # Mean Frequencies :
    xF, _ = binArray(xF, self._fSplitIndex, axis=0)

    # Mean time :
    if self._window is not None:
        xF, _ = binArray(xF, self._window, axis=1)

    return xF, pvalues
示例#9
0
def _get(x, self):
    """Sub get function.

    Get the spectral info of x.
    """
    # Unpack args :
    bsl, norm = self._baseline, self._norm
    n_perm, statmeth = self._n_perm, self._statmeth

    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)
    nf, npts, nt = xF.shape

    # Statistical evaluation :
    if (n_perm is not 0) and (bsl is not None) and (statmeth is not None):
        pvalues = _evalstat(self, xF, bsl)
    else:
        pvalues = None

    # Mean through trials:
    if self._meanT:
        xF = np.mean(xF[..., np.newaxis], 2)

    # Normalize power :
    if (norm is not None) and (bsl is not None):
        xFm = np.mean(xF[:, bsl[0]:bsl[1], :], 1)
        baseline = np.tile(xFm[:, np.newaxis, :], [1, xF.shape[1], 1])
        xF = normalize(xF, baseline, norm=norm)

    # Mean Frequencies :
    xF, _ = binArray(xF, self._fSplitIndex, axis=0)

    # Mean time :
    if self._window is not None:
        xF, _ = binArray(xF, self._window, axis=1)

    return xF, pvalues
示例#10
0
def _phase(x, self):
    """Sub-phase function
    """
    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)

    # Mean time :
    if self._window is not None:
        xF, _ = binArray(xF, self._window, axis=1)
    nf, npts, nt = xF.shape

    # Get p-value:
    if self._getstat:
        pvalues = np.zeros((nf, npts), dtype=float)
        for f in range(nf):
            for k in range(npts):
                pvalues[f, k] = circ_rtest(xF[f, k, :])[0]
    else:
        pvalues = None

    return xF, pvalues
示例#11
0
def _phase(x, self):
    """Sub-phase function
    """
    # Get the filter properties and apply:
    fMeth = self._fobj.get(self._sf, self._fSplit, self._npts)
    xF = self._fobj.apply(x, fMeth)

    # Mean time :
    if self._window is not None:
        xF, _ = binArray(xF, self._window, axis=1)
    nf, npts, nt = xF.shape

    # Get p-value:
    if self._getstat:
        pvalues = np.zeros((nf, npts), dtype=float)
        for f in range(nf):
            for k in range(npts):
                pvalues[f, k] = circ_rtest(xF[f, k, :])[0]
    else:
        pvalues = None

    return xF, pvalues
示例#12
0
def _evalstat(self, x, bsl):
    """Statistical evaluation of features

    [x] = [xn] = (nFce, npts, nTrials)
    """
    # Unpack variables:
    statmeth = self._statmeth
    n_perm = self._n_perm
    tail = self._2t
    maxst = self._mxst

    # Mean Frequencies :
    x, _ = binArray(x, self._fSplitIndex, axis=0)

    # Get the baseline and set to same shape of x:
    xFm = np.mean(x[:, bsl[0]:bsl[1], :], 1)

    # Mean time :
    if self._window is not None:
        x, _ = binArray(x, self._window, axis=1)

    # Repeat baseline:
    baseline = np.tile(xFm[:, np.newaxis, :], [1, x.shape[1], 1])

    # Get shape of x:
    nf, npts, nt = x.shape
    pvalues = np.ones((nf, npts))

    # Switch between methods:
    #   -> Permutations
    # Loops on time and matrix for frequency (avoid RAM usage but increase speed)
    if statmeth == 'permutation':
        # Get metric:
        fcn = perm_metric(self._metric)
        # Apply metric to x and baseline:
        xN = fcn(x, baseline).mean(axis=2)
        # For each time points:
        for pts in range(npts):
            # Randomly swap x // baseline :
            perm = perm_swap(x[:, pts, :],
                             baseline[:, pts, :],
                             n_perm=n_perm,
                             axis=1,
                             rndstate=0 + pts)[0]
            # Normalize permutations by baline:
            perm = fcn(perm, baseline[:, pts, :]).mean(2)
            # Maximum stat (correct through frequencies):
            if maxst:
                perm = maxstat(perm, axis=1)
            # Get pvalues :
            pvalues[:, pts] = perm_2pvalue(xN[:, pts], perm, n_perm, tail=tail)

    #   -> Wilcoxon // Kruskal-Wallis:
    else:
        # Get the method:
        if statmeth == 'wilcoxon':

            def fcn(a, b):
                return wilcoxon(a, b)[1]
        elif statmeth == 'kruskal':

            def fcn(a, b):
                return kruskal(a, b)[1]

        # Apply:
        ite = product(range(nf), range(npts))
        for k, i in ite:
            pvalues[k, i] = fcn(x[k, i, :], xFm[k, :])

    return pvalues
示例#13
0
def _evalstat(self, x, bsl):
    """Statistical evaluation of features

    [x] = [xn] = (nFce, npts, nTrials)
    """
    # Unpack variables:
    statmeth = self._statmeth
    n_perm = self._n_perm
    tail = self._2t
    maxst = self._mxst

    # Mean Frequencies :
    x, _ = binArray(x, self._fSplitIndex, axis=0)

    # Get the baseline and set to same shape of x:
    xFm = np.mean(x[:, bsl[0]:bsl[1], :], 1)

    # Mean time :
    if self._window is not None:
        x, _ = binArray(x, self._window, axis=1)

    # Repeat baseline:
    baseline = np.tile(xFm[:, np.newaxis, :], [1, x.shape[1], 1])

    # Get shape of x:
    nf, npts, nt = x.shape
    pvalues = np.ones((nf, npts))

    # Switch between methods:
    #   -> Permutations
    # Loops on time and matrix for frequency (avoid RAM usage but increase speed)
    if statmeth == 'permutation':
        # Get metric:
        fcn = perm_metric(self._metric)
        # Apply metric to x and baseline:
        xN = fcn(x, baseline).mean(axis=2)
        # For each time points:
        for pts in range(npts):
            # Randomly swap x // baseline :
            perm = perm_swap(x[:, pts, :], baseline[:, pts, :],
                             n_perm=n_perm, axis=1, rndstate=0+pts)[0]
            # Normalize permutations by baline:
            perm = fcn(perm, baseline[:, pts, :]).mean(2)
            # Maximum stat (correct through frequencies):
            if maxst:
                perm = maxstat(perm, axis=1)
            # Get pvalues :
            pvalues[:, pts] = perm_2pvalue(xN[:, pts], perm, n_perm, tail=tail)

    #   -> Wilcoxon // Kruskal-Wallis:
    else:
        # Get the method:
        if statmeth == 'wilcoxon':
            def fcn(a, b): return wilcoxon(a, b)[1]
        elif statmeth == 'kruskal':
            def fcn(a, b): return kruskal(a, b)[1]

        # Apply:
        ite = product(range(nf), range(npts))
        for k, i in ite:
            pvalues[k, i] = fcn(x[k, i, :], xFm[k, :])

    return pvalues