def dummy_test(infile, expfile): # load input test data ifile = open(infile, "br") idic = pickle.load(ifile) ifile.close() slm = SLM(FixedEffect(1), FixedEffect(1)) for key in idic.keys(): setattr(slm, key, idic[key]) resels_py, reselspvert_py, edg_py = compute_resels(slm) out = {} out["resels"] = resels_py out["reselspvert"] = reselspvert_py out["edg"] = edg_py # load expected outout data efile = open(expfile, "br") expdic = pickle.load(efile) efile.close() testout = [] for key in out.keys(): if out[key] is not None and expdic[key] is not None: comp = np.allclose(out[key], expdic[key], rtol=1e-05, equal_nan=True) testout.append(comp) assert all(flag == True for (flag) in testout)
def generate_random_slm(rand_dict): """Generates a valid SLM for a surface. Parameters ---------- surf : BSPolyData or a dictionary with key 'tri' Brain surface. Returns ------- brainstat.stats.SLM SLM object. """ # this is going to be the input slm I = {} rand_slm = SLM(FixedEffect(1), FixedEffect(1)) for key in rand_dict.keys(): setattr(rand_slm, key, rand_dict[key]) I[key] = rand_dict[key] # this is going to be the output dict O = {} O["resels"], O["reselspvert"], O["edg"] = compute_resels(rand_slm) return I, O