def test_layer_backward_pass_insensitive_to_internal_state_init(layer_specs): layer, specs = layer_specs layer_buffers = set_up_layer(layer, specs) time_steps = specs.get('time_steps', 3) eps = specs.get('eps', 1e-8) layer.forward_pass(layer_buffers) layer.backward_pass(layer_buffers) # get deltas after normal backward pass deltas = {} for key, value in layer_buffers.input_deltas.items(): deltas[key] = HANDLER.get_numpy_copy(value) # randomize internal state for internal, shape_template in layer.internal_shapes.items(): value = layer_buffers.internals[internal] if shape_template.scales_with_time: # exclude context slice HANDLER.set_from_numpy( value[:time_steps], np.random.randn(time_steps, *value.shape[1:])) else: HANDLER.set_from_numpy(value, np.random.randn(*value.shape)) # clear deltas for k, v in layer_buffers.input_deltas.items(): HANDLER.fill(v, 0.0) # compare new deltas layer.forward_pass(layer_buffers) layer.backward_pass(layer_buffers) for key, value in layer_buffers.input_deltas.items(): assert np.allclose(deltas[key], HANDLER.get_numpy_copy(value), rtol=eps, atol=eps), \ "Failed for internal.{} when inspecting {}".format(internal, key)
def test_layer_add_to_deltas(layer_specs): layer, specs = layer_specs layer_buffers = set_up_layer(layer, specs) eps = specs.get('eps', 1e-8) for key in layer_buffers.output_deltas.keys(): HANDLER.fill(layer_buffers.output_deltas[key], 1.0) layer.forward_pass(layer_buffers) layer.backward_pass(layer_buffers) # get deltas deltas = {} for key, value in layer_buffers.input_deltas.items(): deltas[key] = HANDLER.get_numpy_copy(value) # clear all bwd buffers except inputs and outputs for key, value in layer_buffers.internals.items(): HANDLER.fill(value, 0) for key, value in layer_buffers.gradients.items(): HANDLER.fill(value, 0) # set all bwd_buffer inputs to 1.0 for key, value in layer_buffers.input_deltas.items(): HANDLER.fill(value, 1.0) # output_deltas buffer may have changed due to inplace activation. Reset. for key in layer_buffers.output_deltas.keys(): HANDLER.fill(layer_buffers.output_deltas[key], 1.0) # do a second forward/backward pass layer.forward_pass(layer_buffers) layer.backward_pass(layer_buffers) # assert all input deltas are 1.0 bigger for key, value in layer_buffers.input_deltas.items(): obtained = HANDLER.get_numpy_copy(value) passed = np.allclose(deltas[key] + 1.0, obtained, rtol=eps, atol=eps) if not passed: print("Adding deltas test failed for {}!".format(key)) print("Calculated Deltas:\n", obtained) print("Expected Deltas:\n", deltas[key] + 1.0) print("Difference:\n", deltas[key] + 1.0 - obtained) assert passed, key
def f(x): flat_inputs = inputs.reshape((size,)) HANDLER.set_from_numpy(flat_inputs, x) HANDLER.fill(outputs, 0.) fwd(inputs, outputs) return HANDLER.get_numpy_copy(outputs).sum()
def f(x): flat_inputs = inputs.reshape((size, )) HANDLER.set_from_numpy(flat_inputs, x) HANDLER.fill(outputs, 0.) fwd(inputs, outputs) return HANDLER.get_numpy_copy(outputs).sum()