def get_monitors(pop, monitored_subset_size): monitored_subset_size = min(monitored_subset_size, pop.N) idx_monitored_neurons = sample(range(pop.N), monitored_subset_size) rate_monitor = PopulationRateMonitor(pop) spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons) voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons) return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons
def get_monitors(pop, nr_monitored, N): nr_monitored = min(nr_monitored, (N)) idx_monitored_neurons = [int(math.ceil(k)) for k in np.linspace(0, N - 1, nr_monitored + 2)][1:-1] # sample(range(N), nr_monitored) spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons) synapse_monitor = StateMonitor(syn_excit2excit, "stp", record=syn_excit2excit[stim1_center_idx, stim1_center_idx-10:stim1_center_idx+10], dt=1*ms) return spike_monitor, synapse_monitor, idx_monitored_neurons
def get_monitors(pop, nr_monitored, N): nr_monitored = min(nr_monitored, (N)) idx_monitored_neurons = \ [int(math.ceil(k)) for k in numpy.linspace(0, N - 1, nr_monitored + 2)][1:-1] # sample(range(N), nr_monitored) rate_monitor = PopulationRateMonitor(pop) # record= some_list is not supported? :-( spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons) voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons) return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons
def get_monitors(pop, nr_monitored, N): nr_monitored = min(nr_monitored, (N)) idx_monitored_neurons = [ int(math.ceil(k)) for k in np.linspace(0, N - 1, nr_monitored + 2) ][1:-1] # sample(range(N), nr_monitored) rate_monitor = PopulationRateMonitor(pop) spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons) voltage_monitor = StateMonitor(pop, "v", dt=1 * ms, record=0) #idx_monitored_neurons) # synapse_monitor = StateMonitor(pop, "stp", dt=10*ms, record=pop[int(np.ceil(N/2)),:]) #N_excitatory/2,:]) synapse_monitor = StateMonitor( syn_excit2excit, "stp", dt=10 * ms, record=syn_excit2excit[stim1_center_idx, :]) #N_excitatory/2,:]) return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons, synapse_monitor
def get_monitors(pop, monitored_subset_size): """ Internal helper. Args: pop: monitored_subset_size: Returns: """ monitored_subset_size = min(monitored_subset_size, pop.N) idx_monitored_neurons = sample(range(pop.N), monitored_subset_size) rate_monitor = PopulationRateMonitor(pop) # record parameter: record=idx_monitored_neurons is not supported??? spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons) voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons) return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons
def simulate_wm( N_excitatory=4096, N_inhibitory=1024, N_extern_poisson=1000, poisson_firing_rate=1 * b2.Hz, features=[120, 240], stimulus_width=2, strength=0.4 * b2.namp, t_stimulus_start=200 * b2.ms, t_stimulus_duration=100 * b2.ms, sim_time=1500. * b2.ms, Jpos_excit2excit=4.02, sigma_weight=5., G_inhib2excit=0.6681 * b2.nS, # 1.336 G_inhib2inhib=0.512 * b2.nS, # 1.024 G_excit2excit=0.1905 * b2.nS, # 0.381 G_excit2inhib=0.146 * b2.nS, # 1.2 * 0.292 G_extern2excit=2.48 * b2.nS, # 3.1 G_extern2inhib=1.9 * b2.nS, # 2.38 scaling_inhib=1, scaling_excit=1): """ Args: N_excitatory (int): Size of the excitatory population N_inhibitory (int): Size of the inhibitory population weight_scaling_factor (float): weight prefactor. When increasing the size of the populations, the synaptic weights have to be decreased. Using the default values, we have N_excitatory*weight_scaling_factor = 2048 and N_inhibitory*weight_scaling_factor=512 N_extern_poisson (int): Size of the external input population (Poisson input) poisson_firing_rate (Quantity): Firing rate of the external population sigma_weight_profile (float): standard deviation of the gaussian input profile in the excitatory population. Jpos_excit2excit (float): Strength of the recurrent input within the excitatory population. Jneg_excit2excit is computed from sigma_weight_profile, Jpos_excit2excit and the normalization condition. features (list): Center of gaussian input in degree([0, 360]) stimulus_width (float): Sigma of gaussian input strength (Quantity): Input current to the neurons at stimulus_center_deg +\- (stimulus_width_deg/2) t_stimulus_start (Quantity): time when the input stimulus is turned on t_stimulus_duration (Quantity): duration of the stimulus. distractor_center_deg (float): Center of the distractor in [0, 360] distractor_width_deg (float): width of the distractor. All neurons in distractor_center_deg +\- (distractor_width_deg/2) receive the same input current distractor_strength (Quantity): Input current to the neurons at distractor_center_deg +\- (distractor_width_deg/2) t_distractor_start (Quantity): time when the distractor is turned on t_distractor_duration (Quantity): duration of the distractor. G_inhib2inhib (Quantity): projections from inhibitory to inhibitory population (later rescaled by weight_scaling_factor) G_inhib2excit (Quantity): projections from inhibitory to excitatory population (later rescaled by weight_scaling_factor) G_excit2excit (Quantity): projections from excitatory to excitatory population (later rescaled by weight_scaling_factor) G_excit2inhib (Quantity): projections from excitatory to inhibitory population (later rescaled by weight_scaling_factor) monitored_subset_size (int): nr of neurons for which a Spike- and Voltage monitor is registered. sim_time (Quantity): simulation time Returns: results (tuple): rate_monitor_excit (Brian2 PopulationRateMonitor for the excitatory population), spike_monitor_excit, voltage_monitor_excit, idx_monitored_neurons_excit,\ rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib,\ weight_profile_45 (The weights profile for the neuron with preferred direction = 45deg). """ # ============================================================================= # 参数设定 # ============================================================================= # specify the excitatory pyramidal cells: Cm_excit = 0.5 * b2.nF # membrane capacitance of excitatory neurons G_leak_excit = 25.0 * b2.nS # leak conductance E_leak_excit = -70.0 * b2.mV # reversal potential v_firing_threshold_excit = -50.0 * b2.mV # spike condition v_reset_excit = -60.0 * b2.mV # reset voltage after spike t_abs_refract_excit = 2.0 * b2.ms # absolute refractory period # specify the inhibitory interneurons: Cm_inhib = 0.2 * b2.nF G_leak_inhib = 20.0 * b2.nS E_leak_inhib = -70.0 * b2.mV v_firing_threshold_inhib = -50.0 * b2.mV v_reset_inhib = -60.0 * b2.mV t_abs_refract_inhib = 1.0 * b2.ms # specify the AMPA synapses E_AMPA = 0.0 * b2.mV tau_AMPA = 2.0 * b2.ms # specify the GABA synapses E_GABA = -70.0 * b2.mV tau_GABA = 10.0 * b2.ms # specify the NMDA synapses E_NMDA = 0.0 * b2.mV tau_NMDA_s = 100.0 * b2.ms tau_NMDA_x = 2.0 * b2.ms alpha_NMDA = 0.5 * b2.kHz # projectsions from the inhibitory populations G_inhib2excit *= scaling_inhib G_inhib2inhib *= scaling_inhib # projections from the excitatory population G_excit2excit *= scaling_excit G_excit2inhib *= scaling_excit # ============================================================================= # 感觉1d网络 # ============================================================================= # define the inhibitory population inhib_lif_dynamics = """ s_NMDA_total : 1 # the post synaptic sum of s. compare with s_NMDA_presyn dv/dt = ( - G_leak_inhib * (v-E_leak_inhib) - G_extern2inhib * s_AMPA * (v-E_AMPA) - G_inhib2inhib * s_GABA * (v-E_GABA) - G_excit2inhib * s_NMDA_total * (v-E_NMDA) / (1.0+1.0*exp(-0.062*v/volt)/3.57) )/Cm_inhib : volt (unless refractory) ds_AMPA/dt = -s_AMPA / tau_AMPA : 1 ds_GABA/dt = -s_GABA / tau_GABA : 1 """ # specify the excitatory population: excit_lif_dynamics = """ I_stim : amp s_NMDA_total : 1 # the post synaptic sum of s. compare with s_NMDA_presyn dv/dt = ( - G_leak_excit * (v-E_leak_excit) - G_extern2excit * s_AMPA * (v-E_AMPA) - G_inhib2excit * s_GABA * (v-E_GABA) - G_excit2excit * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57) + I_stim )/Cm_excit : volt (unless refractory) ds_AMPA/dt = -s_AMPA / tau_AMPA : 1 ds_GABA/dt = -s_GABA / tau_GABA : 1 ds_NMDA/dt = -s_NMDA / tau_NMDA_s + alpha_NMDA * x * (1-s_NMDA) : 1 dx/dt = -x / tau_NMDA_x : 1 """ # 抑制神经元群 inhib_pop = NeuronGroup(N_inhibitory, model=inhib_lif_dynamics, threshold="v>v_firing_threshold_inhib", reset="v=v_reset_inhib", refractory=t_abs_refract_inhib, method="rk2") # initialize with random voltages: inhib_pop.v = np.random.uniform(v_reset_inhib / b2.mV, high=v_firing_threshold_inhib / b2.mV, size=N_inhibitory) * b2.mV # set the connections: inhib2inhib syn_inhib2inhib = Synapses(inhib_pop, target=inhib_pop, on_pre="s_GABA += 1.0", delay=0.0 * b2.ms) syn_inhib2inhib.connect(condition="i!=j", p=1.0) # set the connections: extern2inhib input_ext2inhib = PoissonInput(target=inhib_pop, target_var="s_AMPA", N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0) #兴奋神经元群 excit_pop = NeuronGroup(N_excitatory, model=excit_lif_dynamics, threshold="v>v_firing_threshold_excit", reset="v=v_reset_excit; x+=1.0", refractory=t_abs_refract_excit, method="rk2") # initialize with random voltages: excit_pop.v = np.randomz.uniform(v_reset_excit / b2.mV, high=v_firing_threshold_excit / b2.mV, size=N_excitatory) * b2.mV excit_pop.I_stim = 0. * b2.namp # set the connections: extern2excit input_ext2excit = PoissonInput(target=excit_pop, target_var="s_AMPA", N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0) # set the connections: inhibitory to excitatory syn_inhib2excit = Synapses(inhib_pop, target=excit_pop, on_pre="s_GABA += 1.0") syn_inhib2excit.connect(p=1.0) # set the connections: excitatory to inhibitory NMDA connections syn_excit2inhib = Synapses( excit_pop, inhib_pop, model="s_NMDA_total_post = s_NMDA_pre : 1 (summed)", method="rk2") syn_excit2inhib.connect(p=1.0) # ============================================================================= # 开始模拟! # ============================================================================= # precompute the weight profile for the recurrent population presyn_weight = structured_connectivity(N_excitatory, Jpos_excit2excit, sigma_weight) fft_presyn_weight = rfft(presyn_weight) # set the STRUCTURED recurrent input. use a network_operation @network_operation() def update_nmda_sum(): fft_s_NMDA = rfft(excit_pop.s_NMDA) fft_s_NMDA_total = np.multiply(fft_presyn_weight, fft_s_NMDA) excit_pop.s_NMDA_total_ = irfft(fft_s_NMDA_total) stimulus = gaussian_input(N_excitatory, features, stimulus_width) t_stimulus_end = t_stimulus_start + t_stimulus_duration @network_operation(dt=1 * b2.ms) def stimulate_network(t): if t >= t_stimulus_start and t < t_stimulus_end: excit_pop.I_stim = stimulus * strength else: excit_pop.I_stim = 0. * b2.namp # collect data of a subset of neurons: spike_monitor_sensory = SpikeMonitor(excit_pop) # spike_monitor_high = SpikeMonitor(high_excit_pop) b2.run(sim_time) return spike_monitor_sensory #, spike_monitor_high
def simulate_brunel_network( N_Excit=5000, N_Inhib=None, N_extern=N_POISSON_INPUT, connection_probability=CONNECTION_PROBABILITY_EPSILON, w0=SYNAPTIC_WEIGHT_W0, g=RELATIVE_INHIBITORY_STRENGTH_G, synaptic_delay=SYNAPTIC_DELAY, poisson_input_rate=POISSON_INPUT_RATE, w_external=None, v_rest=V_REST, v_reset=V_RESET, firing_threshold=FIRING_THRESHOLD, membrane_time_scale=MEMBRANE_TIME_SCALE, abs_refractory_period=ABSOLUTE_REFRACTORY_PERIOD, monitored_subset_size=100, random_vm_init=False, sim_time=100.*b2.ms): """ Fully parametrized implementation of a sparsely connected network of LIF neurons (Brunel 2000) Args: N_Excit (int): Size of the excitatory popluation N_Inhib (int): optional. Size of the inhibitory population. If not set (=None), N_Inhib is set to N_excit/4. N_extern (int): optional. Number of presynaptic excitatory poisson neurons. Note: if set to a value, this number does NOT depend on N_Excit and NOT depend on connection_probability (this is different from the book and paper. Only if N_extern is set to 'None', then N_extern is computed as N_Excit*connection_probability. connection_probability (float): probability to connect to any of the (N_Excit+N_Inhib) neurons CE = connection_probability*N_Excit CI = connection_probability*N_Inhib Cexternal = N_extern w0 (float): Synaptic strength J g (float): relative importance of inhibition. J_exc = w0. J_inhib = -g*w0 synaptic_delay (Quantity): Delay between presynaptic spike and postsynaptic increase of v_m poisson_input_rate (Quantity): Poisson rate of the external population w_external (float): optional. Synaptic weight of the excitatory external poisson neurons onto all neurons in the network. Default is None, in that case w_external is set to w0, which is the standard value in the book and in the paper Brunel2000. The purpose of this parameter is to see the effect of external input in the absence of network feedback(setting w0 to 0mV and w_external>0). v_rest (Quantity): Resting potential v_reset (Quantity): Reset potential firing_threshold (Quantity): Spike threshold membrane_time_scale (Quantity): tau_m abs_refractory_period (Quantity): absolute refractory period, tau_ref monitored_subset_size (int): nr of neurons for which a VoltageMonitor is recording Vm random_vm_init (bool): if true, the membrane voltage of each neuron is initialized with a random value drawn from Uniform(v_rest, firing_threshold) sim_time (Quantity): Simulation time Returns: (rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons) PopulationRateMonitor: Rate Monitor SpikeMonitor: SpikeMonitor for ALL (N_Excit+N_Inhib) neurons StateMonitor: membrane voltage for a selected subset of neurons list: index of monitored neurons. length = monitored_subset_size """ if N_Inhib is None: N_Inhib = int(N_Excit/4) if N_extern is None: N_extern = int(N_Excit*connection_probability) if w_external is None: w_external = w0 J_excit = w0 J_inhib = -g*w0 lif_dynamics = """ dv/dt = -(v-v_rest) / membrane_time_scale : volt (unless refractory)""" network = NeuronGroup( N_Excit+N_Inhib, model=lif_dynamics, threshold="v>firing_threshold", reset="v=v_reset", refractory=abs_refractory_period, method="linear") if random_vm_init: network.v = random.uniform(v_rest/b2.mV, high=firing_threshold/b2.mV, size=(N_Excit+N_Inhib))*b2.mV else: network.v = v_rest excitatory_population = network[:N_Excit] inhibitory_population = network[N_Excit:] exc_synapses = Synapses(excitatory_population, target=network, on_pre="v += J_excit", delay=synaptic_delay) exc_synapses.connect(p=connection_probability) inhib_synapses = Synapses(inhibitory_population, target=network, on_pre="v += J_inhib", delay=synaptic_delay) inhib_synapses.connect(p=connection_probability) external_poisson_input = PoissonInput(target=network, target_var="v", N=N_extern, rate=poisson_input_rate, weight=w_external) # collect data of a subset of neurons: monitored_subset_size = min(monitored_subset_size, (N_Excit+N_Inhib)) idx_monitored_neurons = sample(range(N_Excit+N_Inhib), monitored_subset_size) rate_monitor = PopulationRateMonitor(network) # record= some_list is not supported? :-( spike_monitor = SpikeMonitor(network, record=idx_monitored_neurons) voltage_monitor = StateMonitor(network, "v", record=idx_monitored_neurons) b2.run(sim_time) return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons
def run_task_hierarchical(task_info, taskdir, tempdir): # imports from brian2 import defaultclock, set_device, seed, TimedArray, Network, profiling_summary from brian2.monitors import SpikeMonitor, PopulationRateMonitor, StateMonitor from brian2.synapses import Synapses from brian2.core.magic import start_scope from brian2.units import second, ms, amp from integration_circuit import mk_intcircuit from sensory_circuit import mk_sencircuit, mk_sencircuit_2c, mk_sencircuit_2cplastic from burstQuant import spks2neurometric from scipy import interpolate # if you want to put something in the taskdir, you must create it first os.mkdir(taskdir) print(taskdir) # parallel code and flag to start set_device('cpp_standalone', directory=tempdir) #prefs.devices.cpp_standalone.openmp_threads = max_tasks start_scope() # simulation parameters seedcon = task_info['simulation']['seedcon'] runtime = task_info['simulation']['runtime'] runtime_ = runtime / second settletime = task_info['simulation']['settletime'] settletime_ = settletime / second stimon = task_info['simulation']['stimon'] stimoff = task_info['simulation']['stimoff'] stimoff_ = stimoff / second stimdur = stimoff - stimon smoothwin = task_info['simulation']['smoothwin'] nummethod = task_info['simulation']['nummethod'] # ------------------------------------- # Construct hierarchical network # ------------------------------------- # set connection seed seed( seedcon ) # set specific seed to test the same network, this way we also have the same synapses! # decision circuit Dgroups, Dsynapses, Dsubgroups = mk_intcircuit(task_info) decE = Dgroups['DE'] decI = Dgroups['DI'] decE1 = Dsubgroups['DE1'] decE2 = Dsubgroups['DE2'] # sensory circuit, ff and fb connections eps = 0.2 # connection probability d = 1 * ms # transmission delays of E synapses if task_info['simulation']['2cmodel']: if task_info['simulation']['plasticdend']: # plasticity rule in dendrites --> FB synapses will be removed from the network! Sgroups, Ssynapses, Ssubgroups = mk_sencircuit_2cplastic(task_info) else: # 2c model (Naud) Sgroups, Ssynapses, Ssubgroups = mk_sencircuit_2c(task_info) senE = Sgroups['soma'] dend = Sgroups['dend'] senI = Sgroups['SI'] senE1 = Ssubgroups['soma1'] senE2 = Ssubgroups['soma2'] dend1 = Ssubgroups['dend1'] dend2 = Ssubgroups['dend2'] # FB wDS = 0.003 # synaptic weight of FB synapses, 0.0668 nS when scaled by gleakE of sencircuit_2c synDE1SE1 = Synapses(decE1, dend1, model='w : 1', method=nummethod, on_pre='x_ea += w', delay=d) synDE2SE2 = Synapses(decE2, dend2, model='w : 1', method=nummethod, on_pre='x_ea += w', delay=d) else: # normal sensory circuit (Wimmer) Sgroups, Ssynapses, Ssubgroups = mk_sencircuit(task_info) senE = Sgroups['SE'] senI = Sgroups['SI'] senE1 = Ssubgroups['SE1'] senE2 = Ssubgroups['SE2'] # FB wDS = 0.004 # synaptic weight of FB synapses, 0.0668 nS when scaled by gleakE of sencircuit synDE1SE1 = Synapses(decE1, senE1, model='w : 1', method=nummethod, on_pre='x_ea += w', delay=d) synDE2SE2 = Synapses(decE2, senE2, model='w : 1', method=nummethod, on_pre='x_ea += w', delay=d) # feedforward synapses from sensory to integration wSD = 0.0036 # synaptic weight of FF synapses, 0.09 nS when scaled by gleakE of intcircuit synSE1DE1 = Synapses(senE1, decE1, model='w : 1', method=nummethod, on_pre='g_ea += w', delay=d) synSE1DE1.connect(p='eps') synSE1DE1.w = 'wSD' synSE2DE2 = Synapses(senE2, decE2, model='w : 1', method=nummethod, on_pre='g_ea += w', delay=d) synSE2DE2.connect(p='eps') synSE2DE2.w = 'wSD' # feedback synapses from integration to sensory b_fb = task_info['bfb'] # feedback strength, between 0 and 6 wDS *= b_fb # synaptic weight of FB synapses, 0.0668 nS when scaled by gleakE of sencircuit synDE1SE1.connect(p='eps') synDE1SE1.w = 'wDS' synDE2SE2.connect(p='eps') synDE2SE2.w = 'wDS' # ------------------------------------- # Create stimuli # ------------------------------------- if task_info['stimulus']['replicate']: # replicated stimuli across iters() np.random.seed(task_info['seed']) # numpy seed for OU process else: # every trials has different stimuli np.random.seed() # Note that in standalone we need to specify np seed because it's not taken care with Brian's seed() function! if task_info['simulation']['2cmodel']: I0 = task_info['stimulus']['I0s'] last_muOUd = np.loadtxt("last_muOUd.csv") # save the mean else: I0 = task_info['stimulus'][ 'I0'] # mean input current for zero-coherence stim c = task_info['c'] # stim coherence (between 0 and 1) mu1 = task_info['stimulus'][ 'mu1'] # av. additional input current to senE1 at highest coherence (c=1) mu2 = task_info['stimulus'][ 'mu2'] # av. additional input current to senE2 at highest coherence (c=1) sigma = task_info['stimulus'][ 'sigma'] # amplitude of temporal modulations of stim sigmastim = 0.212 * sigma # std of modulation of stim inputs sigmaind = 0.212 * sigma # std of modulations in individual inputs taustim = task_info['stimulus'][ 'taustim'] # correlation time constant of Ornstein-Uhlenbeck process # generate stim from OU process N_stim = int(senE1.__len__()) z1, z2, zk1, zk2 = generate_stim(N_stim, stimdur, taustim) # stim2exc i1 = I0 * (1 + c * mu1 + sigmastim * z1 + sigmaind * zk1) i2 = I0 * (1 + c * mu2 + sigmastim * z2 + sigmaind * zk2) stim_dt = 1 * ms i1t = np.concatenate((np.zeros((int(stimon / ms), N_stim)), i1.T, np.zeros((int( (runtime - stimoff) / stim_dt), N_stim))), axis=0) i2t = np.concatenate((np.zeros((int(stimon / ms), N_stim)), i2.T, np.zeros((int( (runtime - stimoff) / stim_dt), N_stim))), axis=0) Irec = TimedArray(np.concatenate((i1t, i2t), axis=1) * amp, dt=stim_dt) # ------------------------------------- # Simulation # ------------------------------------- # set initial conditions (different for evert trial) seed() decE.g_ea = '0.2 * rand()' decI.g_ea = '0.2 * rand()' decE.V = '-52*mV + 2*mV * rand()' decI.V = '-52*mV + 2*mV * rand()' # random initialization near 0, prevent an early decision! senE.g_ea = '0.05 * (1 + 0.2*rand())' senI.g_ea = '0.05 * (1 + 0.2*rand())' senE.V = '-52*mV + 2*mV*rand()' # random initialization near Vt, avoid initial bump! senI.V = '-52*mV + 2*mV*rand()' if task_info['simulation']['2cmodel']: dend.g_ea = '0.05 * (1 + 0.2*rand())' dend.V_d = '-72*mV + 2*mV*rand()' dend.muOUd = np.tile(last_muOUd, 2) * amp # create monitors rateDE1 = PopulationRateMonitor(decE1) rateDE2 = PopulationRateMonitor(decE2) rateSE1 = PopulationRateMonitor(senE1) rateSE2 = PopulationRateMonitor(senE2) subSE = int(senE1.__len__()) spksSE = SpikeMonitor(senE[subSE - 100:subSE + 100]) # last 100 of SE1 and first 100 of SE2 # construct network net = Network(Dgroups.values(), Dsynapses.values(), Sgroups.values(), Ssynapses.values(), synSE1DE1, synSE2DE2, synDE1SE1, synDE2SE2, rateDE1, rateDE2, rateSE1, rateSE2, spksSE, name='hierarchicalnet') # create more monitors for plot if task_info['simulation']['pltfig1']: # inh rateDI = PopulationRateMonitor(decI) rateSI = PopulationRateMonitor(senI) # spk monitors subDE = int(decE1.__len__() * 2) spksDE = SpikeMonitor(decE[:subDE]) spksSE = SpikeMonitor(senE) # state mons no more, just the arrays stim1 = i1t.T stim2 = i2t.T stimtime = np.linspace(0, runtime_, stim1.shape[1]) # construct network net = Network(Dgroups.values(), Dsynapses.values(), Sgroups.values(), Ssynapses.values(), synSE1DE1, synSE2DE2, synDE1SE1, synDE2SE2, spksDE, rateDE1, rateDE2, rateDI, spksSE, rateSE1, rateSE2, rateSI, name='hierarchicalnet') if task_info['simulation']['plasticdend']: # create state monitor to follow muOUd and add it to the networks dend_mon = StateMonitor(dend1, variables=['muOUd', 'Ibg', 'g_ea', 'B'], record=True, dt=1 * ms) net.add(dend_mon) # remove FB synapses! net.remove([synDE1SE1, synDE2SE2, Dsynapses.values()]) print( " FB synapses and synapses of decision circuit are ignored in this simulation!" ) # run hierarchical net net.run(runtime, report='stdout', profile=True) print(profiling_summary(net=net, show=10)) # nice plots on cluster if task_info['simulation']['pltfig1']: plot_fig1b([ rateDE1, rateDE2, rateDI, spksDE, rateSE1, rateSE2, rateSI, spksSE, stim1, stim2, stimtime ], smoothwin, taskdir) # ------------------------------------- # Burst quantification # ------------------------------------- events = np.zeros(1) bursts = np.zeros(1) singles = np.zeros(1) spikes = np.zeros(1) last_muOUd = np.zeros(1) # neurometric params dt = spksSE.clock.dt validburst = task_info['sen']['2c']['validburst'] smoothwin_ = smoothwin / second if task_info['simulation']['burstanalysis']: if task_info['simulation']['2cmodel']: last_muOUd = np.array(dend_mon.muOUd[:, -int(1e3):].mean(axis=1)) if task_info['simulation']['plasticdend']: # calculate neurometric info per population events, bursts, singles, spikes, isis = spks2neurometric( spksSE, runtime, settletime, validburst, smoothwin=smoothwin_, raster=False) # plot & save weigths after convergence eta0 = task_info['sen']['2c']['eta0'] tauB = task_info['sen']['2c']['tauB'] targetB = task_info['targetB'] B0 = tauB * targetB tau_update = task_info['sen']['2c']['tau_update'] eta = eta0 * tau_update / tauB plot_weights(dend_mon, events, bursts, spikes, [targetB, B0, eta, tauB, tau_update, smoothwin_], taskdir) plot_rasters(spksSE, bursts, targetB, isis, runtime_, taskdir) else: # calculate neurometric per neuron events, bursts, singles, spikes, isis = spks2neurometric( spksSE, runtime, settletime, validburst, smoothwin=smoothwin_, raster=True) plot_neurometric(events, bursts, spikes, stim1, stim2, stimtime, (settletime_, runtime_), taskdir, smoothwin_) plot_isis(isis, bursts, events, (settletime_, runtime_), taskdir) # ------------------------------------- # Choice selection # ------------------------------------- # population rates and downsample originaltime = rateDE1.t / second interptime = np.linspace(0, originaltime[-1], originaltime[-1] * 100) # every 10 ms fDE1 = interpolate.interp1d( originaltime, rateDE1.smooth_rate(window='flat', width=smoothwin)) fDE2 = interpolate.interp1d( originaltime, rateDE2.smooth_rate(window='flat', width=smoothwin)) fSE1 = interpolate.interp1d( originaltime, rateSE1.smooth_rate(window='flat', width=smoothwin)) fSE2 = interpolate.interp1d( originaltime, rateSE2.smooth_rate(window='flat', width=smoothwin)) rateDE = np.array([f(interptime) for f in [fDE1, fDE2]]) rateSE = np.array([f(interptime) for f in [fSE1, fSE2]]) # select the last half second of the stimulus newdt = runtime_ / rateDE.shape[1] settletimeidx = int(settletime_ / newdt) dec_ival = np.array([(stimoff_ - 0.5) / newdt, stimoff_ / newdt], dtype=int) who_wins = rateDE[:, dec_ival[0]:dec_ival[1]].mean(axis=1) # divide trls into preferred and non-preferred pref_msk = np.argmax(who_wins) poprates_dec = np.array([rateDE[pref_msk], rateDE[~pref_msk]]) # 0: pref, 1: npref poprates_sen = np.array([rateSE[pref_msk], rateSE[~pref_msk]]) results = { 'raw_data': { 'poprates_dec': poprates_dec[:, settletimeidx:], 'poprates_sen': poprates_sen[:, settletimeidx:], 'pref_msk': np.array([pref_msk]), 'last_muOUd': last_muOUd }, 'sim_state': np.zeros(1), 'computed': { 'events': events, 'bursts': bursts, 'singles': singles, 'spikes': spikes, 'isis': np.array(isis) } } return results