示例#1
0
def run(TSTOP=250, group_size=100, g_time=150, neuron_n=1000, linear=True,
        ext_w=0.2, inh_w=0.2):
    """Run a simulation and return the resulting spiketrain"""
    # Basic equation of the model
    eq = """dv/dt = -gamma*v + I0 : volt
    Ie : volt
    Ii : volt
    """

    thetaU = 16 * mV
    tauM = 8 * ms
    gamma = 1 / tauM
    I0 = 17.6 * mV / tauM

    #Build the group of neuron to use
    G = br2.NeuronGroup(neuron_n, threshold="v>thetaU", reset="v=0*mV",
                        method='euler',
                        model=eq)

    #Record the spikes from this group
    spikes = br2.SpikeMonitor(G)

    #Build stimulation
    stim = br2.SpikeGeneratorGroup(1, [0], [g_time]*ms - br2.defaultclock.dt)
    stim_syn = br2.Synapses(stim, G, on_pre="v += 2*thetaU")
    stim_syn.connect(i=0, j=np.arange(group_size))
    br2.magic_network.schedule = ['start', 'groups', 'synapses', 'thresholds', 'resets', 'end']
    connections = np.random.rand(1000, 1000) < 0.3
    exc_or_inh  = np.random.rand(1000, 1000) < 0.5
    exc_i, exc_j = (connections & exc_or_inh).nonzero()
    inh_i, inh_j = (connections & ~exc_or_inh).nonzero()

    if linear:
        G.run_regularly('''
                        v += Ie + Ii
                        Ie = 0*mV
                        Ii = 0*mV
                        ''', when='after_synapses')
    else:
        G.run_regularly('''
                        v += clip(Ie, 0*mV, 2*mV) + clip(2*(Ie-2*mV), 0*mV, 4*mV) + Ii
                        Ie = 0*mV
                        Ii = 0*mV
                        ''', when='after_synapses')

    dt = br2.defaultclock.dt
    exc_syn = br2.Synapses(G, G, on_pre='Ie += %s*mV' % (ext_w), delay=5*ms-dt)
    inh_syn = br2.Synapses(G, G, on_pre='Ii -= %s*mV' % (inh_w), delay=5*ms-dt)
    exc_syn.connect(i=exc_i, j=exc_j)
    inh_syn.connect(i=inh_i, j=inh_j)

    #Set random initial conditions
    G.v = np.random.rand(neuron_n) * 16 * mV

    br2.run(TSTOP * ms)

    return spikes
示例#2
0
    def make_classification_network(self, number_of_stimuli, network_name):
        if network_name not in self.networks:
            network_size = number_of_stimuli * self.number_of_neurons
            count_mat = np.zeros((int(self.stimulus_duration / ms * 10), network_size), int)
            target = b2.NeuronGroup(N=number_of_stimuli, model=self.eqs, threshold='v>threshold', reset='v=0',
                                    namespace={'tau': self.tau, 'threshold': self.threshold})
            driving = b2.SpikeGeneratorGroup(N=network_size,
                                             indices=[0], times=[0 * ms])
            # counts = b2.TimedArray(values=_count_mat, dt=b2.defaultclock.dt)
            synapses = b2.Synapses(source=driving, target=target,
                                   model='w: 1', on_pre='v+=w*counts(t, i)')
            i = np.arange(network_size)
            j = np.repeat(range(number_of_stimuli), self.number_of_neurons)
            synapses.connect(j=j, i=i)
            synapses.w = np.tile(self.weights, reps=number_of_stimuli)

            spikes = b2.SpikeMonitor(target, record=True)
            voltage = b2.StateMonitor(target, 'v', record=True)

            net = b2.Network([target, driving, synapses, spikes, voltage])
            net.store()
            self.networks[network_name] = dict(net=net,
                                               count_mat=count_mat,
                                               synapses=synapses,
                                               v_mon=voltage,
                                               spike_mon=spikes,
                                               number_of_stimuli=number_of_stimuli,
                                               driving=driving)
        else:
            self.networks[network_name]['synapses'].w = np.tile(self.weights, reps=number_of_stimuli)
    def set_in_poisson(self, target):
        """
            Set poissonian input to a group of neurons
            target: list of targert groups
            N_p: # of poissons inputs
            f_p: frequency of P
            sp: sparseness of connections
            coef_ep: factor of ep conductance to g_exc

        """
        ## somehow PoissonInput is way slower! also leads to diff behaviour
        #for gr in target:
        #inp_poisson = bb.PoissonInput(gr,N=100,rate=f_p,
        #weight=2.*self.g_ee,state='ge')
        #self.network.add(inp_poisson)
        N_p = self.ext_input['N_p']
        f_p = self.ext_input['f_p']
        sp = self.ext_input['sp']
        coef_ep = self.ext_input['coef_ep']
        self.P_poisson = bb.PoissonGroup(N_p, f_p, clock=self.network.clock)
        self.network.add(self.P_poisson)
        for gr in target:
            #Cep = bb.Connection(self.P_poisson, gr,'ge',
            #                        weight=coef_ep*self.g_ee, sparseness=sp)
            Cep = bb.Synapses(self.P_poisson,
                              gr,
                              model='w:siemens',
                              pre='ge+=w')
            Cep.connect(p=sp)
            Cep.w = coef_ep * self.g_ee
            self.network.add(Cep)
示例#4
0
def simulate(tau):
    b2.start_scope()

    if standalone_mode:
        b2.get_device().reinit()
        b2.get_device().activate(build_on_run=False, directory=directory_name)

    net = b2.Network()
    P = b2.PoissonGroup(num_inputs, rates=input_rate)
    G = b2.NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='euler')
    S = b2.Synapses(P, G, on_pre='v += weight')
    S.connect()
    M = b2.SpikeMonitor(G)
    net.add(P)
    net.add(G)
    net.add(S)
    net.add(M)

    net.run(1000 * b2.ms)

    if standalone_mode:
        b2.get_device().build(directory=directory_name,
                              compile=True,
                              run=True,
                              debug=False)

    return M
def random_connections(NTWK):

    CONN = np.empty((len(NTWK['POPS']), len(NTWK['POPS'])), dtype=object)
    CONN2 = []

    for ii, jj in itertools.product(range(len(NTWK['POPS'])),
                                    range(len(NTWK['POPS']))):
        if (NTWK['M'][ii, jj]['pconn'] > 0) and (NTWK['M'][ii, jj]['Q'] != 0):
            CONN[ii,jj] = brian2.Synapses(NTWK['POPS'][ii], NTWK['POPS'][jj], model='w:siemens',\
                               on_pre='G'+NTWK['M'][ii,jj]['name']+'_post+=w')
            # CONN[ii,jj].connect(p=NTWK['M'][ii,jj]['pconn'], condition='i!=j')
            # N.B. the brian2 settings does weird things (e.g. it creates synchrony)
            # so we draw manually the connection to fix synaptic numbers
            N_per_cell = int(NTWK['M'][ii, jj]['pconn'] * NTWK['POPS'][ii].N)
            if ii == jj:  # need to take care of no autapse
                i_rdms = np.concatenate([\
                                np.random.choice(
                                    np.delete(np.arange(NTWK['POPS'][ii].N), [iii]), N_per_cell)\
                                          for iii in range(NTWK['POPS'][jj].N)])
            else:
                i_rdms = np.concatenate([\
                                np.random.choice(np.arange(NTWK['POPS'][ii].N), N_per_cell)\
                                          for jjj in range(NTWK['POPS'][jj].N)])
            j_fixed = np.concatenate([
                np.ones(N_per_cell, dtype=int) * jjj
                for jjj in range(NTWK['POPS'][jj].N)
            ])
            CONN[ii, jj].connect(i=i_rdms, j=j_fixed)
            CONN[ii, jj].w = NTWK['M'][ii, jj]['Q'] * brian2.nS
            CONN2.append(CONN[ii, jj])

    return CONN2
 def set_syn_input(self, target, time):
     '''adding sync inputs at some time points'''
     ext_in = bb.SpikeGeneratorGroup(1, [(0, time)], self.network.clock)
     C_syne = bb.Synapses(ext_in, target, model='w:siemens', pre='ge+=w')
     C_syne.connect_random(ext_in, target, sparseness=1.)
     C_syne.w = 30. * self.g_ee
     self.network.add(ext_in, C_syne)
示例#7
0
def inhibition(snn):
    xmax = int(numpy.max(snn.x) + 1)
    ymax = int(numpy.max(snn.y) + 1)
    S = brian2.Synapses(snn, snn, on_pre='v *= 0')
    #S.connect(condition='if (j%64)!=0:i=j-65 or if (j%4096)-64>0:i=j-64 or if (j%64)!=63:i=j-63 \
    #          or if (j%64)!=0:i=j-1 or if (j%64)!=63:i=j+1 or if (j%64)!=0: i=j+63 or if (j%4096)+64<4096:i=j+64 or \
    #          if (j%64)!=63: i=j+65')
    S.connect(condition='i==j-ymax-1 and j%ymax!=0 and floor(j/ymax)%xmax!=0'
              )  #neuron (x-1,y-1)
    S.connect(condition='i==j-ymax and floor(j/ymax)%xmax!=0')  #neuron (x-1,y)
    S.connect(
        condition='i==j-ymax+1 and j%ymax!=ymax-1 and floor(j/ymax)%xmax!=0'
    )  #neuron (x-1,y+1)
    S.connect(condition='i==j-1 and j%ymax!=0')  #neuron (x,y-1)
    S.connect(condition='i==j+1 and j%ymax!=ymax-1')  #neuron (x,y+1)
    S.connect(
        condition='i==j+ymax-1 and j%ymax!=0 and floor(j/ymax)%xmax!=xmax-1'
    )  #neuron (x+1,y-1)
    S.connect(
        condition='i==j+ymax and floor(j/ymax)%xmax!=xmax-1')  #neuron (x+1,y)
    S.connect(
        condition='i==j+ymax+1 and j%ymax!=ymax-1 and floor(j/ymax)%xmax!=xmax-1'
    )  #neuron (x+1,y+1)

    return S
示例#8
0
def main8():
    # using generator syntax to create connections
    bs.start_scope()

    n_neurons = 10
    G = bs.NeuronGroup(n_neurons, 'v:1')

    S = bs.Synapses(G, G)
    """
            i : int, ndarray of int, optional
            The presynaptic neuron indices (in the form of an index or an array
            of indices). Must be combined with ``j`` argument.
        j : int, ndarray of int, str, optional
            The postsynaptic neuron indices. It can be an index or array of
            indices if combined with the ``i`` argument, or it can be a string
            generator expression.
    """
    # the above is the reason why j="i" works but not i = "j"
    # only j can take in string. i has to take in int, or ndarray of int
    S.connect(j='i', skip_if_invalid=True)

    # You can also do it the following way
    # S.connect(condition = 'i==j', skip_if_invalid=True)

    visualise_connectivity(S)
示例#9
0
def link_event_to_snn(events, snn):
    rmax = int(numpy.max(snn.r))
    xmax = int(numpy.max(snn.x) + 1)
    ymax = int(numpy.max(snn.y) + 1)
    v_update = 0.2 * brian2.mvolt

    indices = events.indices[:]
    xc = indices % xmax
    yc = indices // xmax

    synapses = brian2.Synapses(events,
                               snn,
                               model='v_update : volt',
                               on_pre='v += v_update')

    for index in range(0, len(indices), 1):
        for r in range(4, rmax, 4):
            x0 = xc[index]
            y0 = yc[index]
            if (x0 + r < xmax and x0 - r >= 0 and y0 + r < ymax
                    and y0 - r >= 0):
                x, y = solve_centers(x0, y0, r, xmax, ymax)
                #print(rmax*x+xmax*rmax*y+r-1)
                synapses.connect(i=index,
                                 j=(r // 4 - 1) * xmax * ymax + x * ymax + y)
                #print(x, y, xc[index], yc[index], r)
    N = len(synapses)
    synapses.v_update = v_update * numpy.ones((1, N))

    return synapses
示例#10
0
def main1():
    # adding different weights per synapse
    # ex0 distance-dependent connectivity function=
    # important for a lot neurons that have weaker inhibitory/excitatory connections as the distances get wider
    bs.start_scope()
    n_neurons = 30
    neuron_spacing = 50 * bs.umetre
    width = n_neurons / 4.0 * neuron_spacing

    G = bs.NeuronGroup(n_neurons, 'x:metre')
    G.x = 'i*neuron_spacing'

    # All synapses are connected (excluding self-connections)
    S = bs.Synapses(G, G, 'w:1')
    S.connect(condition='i!=j')

    # basically, any variable you use in the definition of equations is usable as an actual variable in code and vice versa
    # therefore, even if the variable width is labelled as not being used, it actually is lol
    S.w = 'exp(-(x_pre-x_post)**2/(2*width**2))'

    # visualise_connectivity(S)
    plt.clf()

    plt.scatter(S.x_pre / bs.um, S.x_post / bs.um, S.w * 20)
    plt.xlabel('source neuron position (um)')
    plt.ylabel('Target neuron position (um)')
    plt.show()
示例#11
0
def simulate_WORM_neuron(input_current,
                         simulation_time=5 * b2.ms,
                         v_leak=V_LEAK,
                         g_leak=G_LEAK,
                         c_m=C_M,
                         rest_pot=R_POT,
                         tau=MEMBRANE_TIME_SCALE,
                         f_t=FIRING_THRESHOLD):

    # differential equation of neuron model
    eqs = """
    dv/dt =
    ( g_leak * (v_leak - v) + input_current(t,i)  ) / c_m : volt 
    """

    # LIF neuron using Brian2 library
    neuron = b2.NeuronGroup(2, model=eqs, threshold='v>f_t', method="linear")
    neuron.v = rest_pot  # set initial value

    # monitoring membrane potential of neuron and injecting current
    state_monitor = b2.StateMonitor(neuron, ["v"], record=True)
    S = b2.Synapses(neuron, neuron, model='w : volt', on_pre='v += w')
    S.connect(i=0, j=1)
    S.w = 0.01 * b2.mV
    # run the simulation
    b2.run(simulation_time)
    return state_monitor
示例#12
0
def visualisation_synapses(source, target, connectivity):
    pre = 'v_post += 1*mV'

    synapses = b2.Synapses(source=source, target=target, on_pre=pre)

    synapses.connect(connectivity)

    return synapses
示例#13
0
def main6():
    # connecting only the neighbouring neurons
    bs.start_scope()

    n_neurons = 10
    G = bs.NeuronGroup(n_neurons, 'v:1')

    S = bs.Synapses(G, G)
    # connect only if the neuron is less than 4 spaces and the neuron index isnt the same
    S.connect(condition='abs(i-j)<4 and i!=j')
    visualise_connectivity(S)
示例#14
0
def main7():
    # using generator syntax to create connections
    bs.start_scope()

    n_neurons = 10
    G = bs.NeuronGroup(n_neurons, 'v:1')

    S = bs.Synapses(G, G)
    # connect only if the neuron is less than 4 spaces and the neuron index isnt the same
    # skip in invalid is needed here since on the edge connections, the i+4 goes over bound and causes error
    S.connect(j='k for k in range(i-3, i+4) if i != k', skip_if_invalid=True)
    visualise_connectivity(S)
示例#15
0
def main4(plot=True):
    # what if we want to keep the input spike exactly the same throughout different taus?
    # Solution: We run PoissonGroup once, store all the spikes, and use the stored spikes across the multiple runs
    bs.start_scope()
    num_inputs = 100
    input_rate = 10 * bs.Hz
    w = 0.1
    tau_range = bs.linspace(1, 10, 30) * bs.ms
    output_rates = []

    P = bs.PoissonGroup(num_inputs, rates=input_rate)
    p_monitor = bs.SpikeMonitor(P)

    one_second = 1 * bs.second
    """
    Note that in the code above, we created Network objects. 
    The reason is that in the loop, if we just called run it would try to simulate all the objects, 
    including the Poisson neurons P, and we only want to run that once. 
    We use Network to specify explicitly which objects we want to include.
    """
    net = bs.Network(P, p_monitor)
    net.run(one_second)

    # keeps a copy of the spikes that are generated by the PoissonGroup during that explicit run earlier
    spikes_i = p_monitor.i
    spikes_t = p_monitor.t

    # Construct network that we run each time
    sgg = bs.SpikeGeneratorGroup(num_inputs, spikes_i, spikes_t)
    eqs = '''
    dv/dt = -v/tau : 1
    '''
    G = bs.NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='exact')
    S = bs.Synapses(sgg, G, on_pre='v += w')
    S.connect()  # fully connected network
    g_monitor = bs.SpikeMonitor(G)

    # store the current state of the network
    net = bs.Network(sgg, G, S, g_monitor)
    net.store()

    for tau in tau_range:
        net.restore()
        net.run(one_second)
        output_rates.append(g_monitor.num_spikes / bs.second)
    if plot:
        plt.clf()
        plt.plot(tau_range / bs.ms, output_rates)
        plt.xlabel(r'$\tau$ (ms)')
        plt.ylabel('Firing Rate (spikes/s)')
        # there is much less noise compared to before where we used different PoissonGroup everytime
        plt.show()
示例#16
0
def main5():
    # the effect of probability in connections
    bs.start_scope()

    n_neurons = 10
    G = bs.NeuronGroup(n_neurons, model='v:1')

    for p in [0.1, 0.5, 1.0]:
        S = bs.Synapses(G, G)
        # connect neurons that do not have the same index with probability p
        S.connect(condition='i!=j', p=p)
        visualise_connectivity(S)
        plt.suptitle('p = ' + str(p))
示例#17
0
def main2():
    # setting synaptic weight
    bs.start_scope()
    n_neurons = 3
    eqs = '''
    dv/dt = (I-v)/tau : 1 (unless refractory)
    I : 1
    tau: second
    '''
    threshold = 'v>1'
    reset = 'v = 0'
    refractory = 10 * bs.ms
    G = bs.NeuronGroup(N=n_neurons,
                       model=eqs,
                       threshold=threshold,
                       reset=reset,
                       method='exact',
                       refractory=refractory)

    G.I = [2, 0, 0]  # represents the I in eqs
    # driving current should be bigger than the threshold, otherwise it wont spike at all

    # I = 0 means that the voltage wont change since there is no driving current
    G.tau = [10, 100, 100] * bs.ms  # represents the tau in eqs
    # unlike last time, the tau is defined with the neuron so we see the effects of different values

    #     model : `str`, `Equations`, optional
    #         The model equations for the synapses.
    # you need to set this as model= in Synapses in order to incorporate weight
    synapse_model = 'w : 1'

    # So in total, what this model says is that whenever two neurons in G are connected by a synapse,
    # when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.
    S = bs.Synapses(source=G,
                    target=G,
                    model=synapse_model,
                    on_pre='v_post +=  w')
    S.connect(i=0, j=[1, 2])
    # So this will give a synaptic connection from 0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight 0.4=0.2*2.
    S.w = 'j*0.2'

    state_monitor = bs.StateMonitor(G, 'v', record=True)
    bs.run(100 * bs.ms)

    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0], label='Neuron 0')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[1], label='Neuron 1')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[2], label='Neuron 2')
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.legend()
    plt.show()
示例#18
0
def SetSynapses(neuron_groups, synapse_names):

    #pudb.set_trace()
    #synapse_names = ['Si', 'Sl', [], 'Sb']
    s = 1.0
    N_hidden_layers = len(neuron_groups[1])
    #pudb.set_trace()
    Si = br.Synapses(neuron_groups[0], neuron_groups[1][0], model='w:1', pre='ge+=w*mV', \
            name=synapse_names[0])
    Sl = br.Synapses(neuron_groups[1][-1], neuron_groups[2], model='w:1', pre='ge+=w*mV', \
            name=synapse_names[1])

    #Sa = []
    #Sa.append(br.Synapses(neuron_groups[1][2], neuron_groups[2][0], model='w:1', pre='ge+=w*mV', \
    #        name=synapse_names[2][0]))
    #for i in range(N_hidden_layers - 1):
    #    Sa.append(br.Synapses(neuron_groups[1][i], neuron_groups[1][i+1], model='w:1', \
    #            pre='ge+=w*mV'), name=synapse_names[2][i+1])
    #Sb = br.Synapses(neuron_groups[2][-1], neuron_groups[3], model='w:1', pre='ge+=w*mV', \
    #        name=synapse_names[3])

    synapse_groups = [Si, Sl]

    return synapse_groups
示例#19
0
def main3():
    # introducing delay
    bs.start_scope()
    n_neurons = 3
    eqs = '''
    dv/dt = (I-v)/tau : 1 (unless refractory)
    I : 1
    tau: second
    '''
    threshold = 'v>1'
    reset = 'v = 0'
    refractory = 10 * bs.ms
    G = bs.NeuronGroup(N=n_neurons,
                       model=eqs,
                       threshold=threshold,
                       reset=reset,
                       method='exact',
                       refractory=refractory)

    G.I = [2, 0, 0]  # represents the I in eqs
    # driving current should be bigger than the threshold, otherwise it wont spike at all

    # I = 0 means that the voltage wont change since there is no driving current
    G.tau = [10, 100, 100] * bs.ms  # represents the tau in eqs
    # unlike last time, the tau is defined with the neuron so we see the effects of different values

    synapse_model = 'w : 1'

    # So in total, what this model says is that whenever two neurons in G are connected by a synapse,
    # when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.
    S = bs.Synapses(source=G,
                    target=G,
                    model=synapse_model,
                    on_pre='v_post +=  w')
    S.connect(i=0, j=[1, 2])
    S.w = 'j*0.2'
    S.delay = 'j*2*ms'

    state_monitor = bs.StateMonitor(G, 'v', record=True)
    bs.run(100 * bs.ms)

    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0], label='Neuron 0')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[1], label='Neuron 1')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[2], label='Neuron 2')
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.legend()
    plt.show()
示例#20
0
def main4():
    # more complex connectivity
    bs.start_scope()
    n_neurons = 3
    tau = 100 * bs.ms
    eqs = '''
    dv/dt = (I-v)/tau : 1 (unless refractory)
    I : 1
    '''
    threshold = 'v>1'
    reset = 'v = 0'
    refractory = 10 * bs.ms

    G = bs.NeuronGroup(N=n_neurons,
                       model=eqs,
                       threshold=threshold,
                       reset=reset,
                       method='exact',
                       refractory=refractory)

    G.I = [2, 0, 0]
    synapse_model = 'w : 1'

    #         p : float, str, optional
    #             The probability to create ``n`` synapses wherever the ``condition``
    #             evaluates to true. Cannot be used with generator syntax for ``j``.
    S = bs.Synapses(source=G,
                    target=G,
                    model=synapse_model,
                    on_pre='v_post +=  w')
    S.connect(condition='i!=j', p=0.5)
    S.w = 'j*0.2'

    state_monitor = bs.StateMonitor(G, 'v', record=True)
    bs.run(100 * bs.ms)

    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0], label='Neuron 0')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[1], label='Neuron 1')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[2], label='Neuron 2')
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.legend()
    plt.show()

    visualise_connectivity(S=S)
示例#21
0
def nonplastic_synapses(source, target, connectivity, synapse_type):
    if synapse_type == 'excitatory':
        pre = 'ge_post += w * siemens'
    elif synapse_type == 'inhibitory':
        pre = 'gi_post += w * siemens'
    else:
        raise Exception("Invalid synapse type: %s" % synapse_type)

    model = 'w : 1'

    synapses = b2.Synapses(source=source,
                           target=target,
                           model=model,
                           on_pre=pre)

    synapses.connect(connectivity)

    return synapses
示例#22
0
def construct_feedforward_input(NTWK,
                                target_pop, afferent_pop,\
                                t, rate_array,\
                                verbose=False,
                                SEED=1):
    """
    This generates an input asynchronous from post synaptic neurons to post-synaptic neurons

    POPS and AFFERENCE_ARRAY should be 1D arrrays as their is only one 
    source population

    'pop_for_conductance' is the string identifying the source conductance
    that will be incremented by the afferent input !!
    """

    Model = NTWK['Model']

    # extract parameters of the afferent input
    Nsyn = Model['p_' + afferent_pop + '_' + target_pop] * Model['N_' +
                                                                 afferent_pop]
    Qsyn = Model['Q_' + afferent_pop + '_' + target_pop]

    #finding the target pop in the brian2 objects
    ipop = np.argwhere(NTWK['POPULATIONS'] == target_pop).flatten()[0]

    if Nsyn > 0:
        if verbose:
            print('drawing Poisson process for afferent input [...]')
        indices, times = set_spikes_from_time_varying_rate(\
                            t, rate_array,\
                            NTWK['POPS'][ipop].N, Nsyn, SEED=(SEED+2)**2%100)
        spikes = brian2.SpikeGeneratorGroup(NTWK['POPS'][ipop].N, indices,
                                            times)
        pre_increment = 'G' + afferent_pop + target_pop + ' += w'
        synapse = brian2.Synapses(spikes, NTWK['POPS'][ipop], on_pre=pre_increment,\
                                        model='w:siemens')
        synapse.connect('i==j')
        synapse.w = Qsyn * brian2.nS

        NTWK['PRE_SPIKES'].append(spikes)
        NTWK['PRE_SYNAPSES'].append(synapse)

    else:
        print('Nsyn = 0 for', afferent_pop + '_' + target_pop)
示例#23
0
    def __init__(self, src: NeuronGroup, tar: NeuronGroup, name: str = '', delay: int = 1,
                 i: List[int] = None, j: List[int] = None, w: List[int] = None):
        """
        :param src:
                Neuron group before the synapse.
        :param tar:
                Neuron group after the synapse.
        :param name:
                Name of this synapse.
        :param delay:
                Number of time steps needed that spike can transfer from pre-synapse neuron to post-synapse neuron.
                It can be 0, 1 or 2.
        :param i:
                A list of indexes of pre-synapse neurons.
                The length of this must be equal to the length of j and w.
        :param j:
                A list of indexes of post-synapse neurons.
                The length of this must be equal to the length of i and w.
        :param w:
                A list of weight of each synapse connection.
                The length of this must be equal to the length of i and j.
        """

        # save parameters
        self.src = src
        self.tar = tar
        self.name = name
        self.delay = delay
        self.i = i
        self.j = j
        self.w = w

        # check delay
        if self.delay < 0 or self.delay > 2:
            raise Exception("invalid delay value")

        # check length of i, j, w
        if len(self.i) != len(self.j) or len(self.i) != len(self.w):
            raise Exception("mismatch of length of i, j and w")

        # construct brain synapse
        self.brian = b.Synapses(self.src.brian, self.tar.brian, 'w : 1', 'v+=w', dt=self.delay * b.ms)
        self.brian.connect(i=self.i, j=self.j)
        self.brian.w = self.w
示例#24
0
def main1():
    #  checking effect of synaptic connectipn
    bs.start_scope()
    n_neurons = 2
    eqs = '''
    dv/dt = (I-v)/tau : 1 (unless refractory)
    I : 1
    tau: second
    '''
    threshold = 'v>1'
    reset = 'v = 0'
    refractory = 10 * bs.ms
    G = bs.NeuronGroup(N=n_neurons,
                       model=eqs,
                       threshold=threshold,
                       reset=reset,
                       method='exact',
                       refractory=refractory)

    G.I = [2, 0]  # represents the I in eqs
    # driving current should be bigger than the threshold, otherwise it wont spike at all

    # I = 0 means that the voltage wont change since there is no driving current
    G.tau = [10, 100] * bs.ms  # represents the tau in eqs
    # unlike last time, the tau is defined with the neuron so we see the effects of different values

    # So in total, what this model says is that whenever two neurons in G are connected by a synapse,
    # when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.
    S = bs.Synapses(source=G, target=G, on_pre='v_post +=  0.2')
    # calling just S.connect() without any parameters just connects every source neuron with every target neuron
    # fully connected
    S.connect(i=0, j=1)
    visualise_connectivity(S)
    state_monitor = bs.StateMonitor(G, 'v', record=True)
    bs.run(100 * bs.ms)

    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0], label='Neuron 0')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[1], label='Neuron 1')
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.legend()
    plt.show()
def simulate(tau):
    # These two lines are needed to start a new standalone simulation:
    b2.device.reinit()
    b2.device.activate()

    eqs = '''
    dv/dt = -v/tau : 1
    '''

    net = b2.Network()
    P = b2.PoissonGroup(num_inputs, rates=input_rate)
    G = b2.NeuronGroup(1, eqs, threshold='v>1', reset='v=0', method='euler')
    S = b2.Synapses(P, G, on_pre='v += weight')
    S.connect()
    M = b2.SpikeMonitor(G)
    net.add([P, G, S, M])

    net.run(1000 * b2.ms)

    return M
示例#26
0
 def make_plot_network(self):
     count_mat = np.zeros((int(self.stimulus_duration / ms * 10), self.number_of_neurons), int)
     target = b2.NeuronGroup(N=1, model=self.eqs, threshold='v>threshold', reset='v=0',
                             namespace={'tau': self.tau, 'threshold': self.threshold})
     driving = b2.SpikeGeneratorGroup(N=self.number_of_neurons,
                                      indices=[0], times=[0 * ms])
     synapses = b2.Synapses(source=driving, target=target,
                            model='w: 1', on_pre='v+=w*counts(t, i)')
     synapses.connect(i=range(number_of_neurons), j=[0] * number_of_neurons)
     synapses.w = self.weights
     spikes = b2.SpikeMonitor(target, record=True)
     voltage = b2.StateMonitor(target, 'v', record=True)
     net = b2.Network([target, driving, synapses, spikes, voltage])
     net.store()
     self.networks['plot'] = dict(net=net,
                                  synapses=synapses,
                                  count_mat=count_mat,
                                  v_mon=voltage,
                                  spike_mon=spikes,
                                  driving=driving)
示例#27
0
def build_up_recurrent_connections(NTWK, SEED=1, verbose=False):
    """
    Construct the synapses from the connectivity matrix 
    """
    CONN = np.empty((len(NTWK['POPS']), len(NTWK['POPS'])), dtype=object)
    CONN2 = []

    np.random.seed(SEED)

    if verbose:
        print('------------------------------------------------------')
        print('drawing random connections [...]')
        print('------------------------------------------------------')

    for ii, jj in itertools.product(range(len(NTWK['POPS'])),
                                    range(len(NTWK['POPS']))):
        if (NTWK['M'][ii, jj]['pconn'] > 0) and (NTWK['M'][ii, jj]['Q'] != 0):
            CONN[ii,jj] = brian2.Synapses(NTWK['POPS'][ii], NTWK['POPS'][jj], model='w:siemens',\
                               on_pre='G'+NTWK['M'][ii,jj]['name']+'_post+=w')
            # N.B. the following brian2 settings:
            # CONN[ii,jj].connect(p=NTWK['M'][ii,jj]['pconn'], condition='i!=j')
            # does not fix synaptic numbers, so we draw manually the connections
            N_per_cell = int(NTWK['M'][ii, jj]['pconn'] * NTWK['POPS'][ii].N)
            if ii == jj:  # need to take care of no autapse
                i_rdms = np.concatenate([\
                                np.random.choice(
                                    np.delete(np.arange(NTWK['POPS'][ii].N), [iii]), N_per_cell)\
                                          for iii in range(NTWK['POPS'][jj].N)])
            else:
                i_rdms = np.concatenate([\
                                np.random.choice(np.arange(NTWK['POPS'][ii].N), N_per_cell)\
                                          for jjj in range(NTWK['POPS'][jj].N)])
            j_fixed = np.concatenate([
                np.ones(N_per_cell, dtype=int) * jjj
                for jjj in range(NTWK['POPS'][jj].N)
            ])
            CONN[ii, jj].connect(i=i_rdms, j=j_fixed)
            CONN[ii, jj].w = NTWK['M'][ii, jj]['Q'] * brian2.nS
            CONN2.append(CONN[ii, jj])

    NTWK['REC_SYNAPSES'] = CONN2
    def attach_dummy_group(self, pf=.06):
        self.dummy_group = bb.NeuronGroup(500,
                                          eqs_exc,
                                          threshold='v>-50*mV',
                                          reset='v=-60*mV',
                                          refractory=2. * ms)
        self.C_ed = bb.Synapses(self.dummy_group,
                                self.Pe,
                                model='w:siemens',
                                pre='ge+=w')
        for p1 in self.dummy_group:
            for p2 in p_index[n_gr + 1]:
                if np.random.random() < nn.pf_ee:
                    self.C_ed[p1, p2] = True
                    #self.C_ee[p1,p2].w=self.g_ee

        print('hui')
        #nn.C_ed.connect_random(nn.dummy_group,nn.p_ass_index[0][0],sparseness=pf)
        self.C_ed.w = self.g_ee
        self.C_ed.delay = self.D
        self.network.add(self.dummy_group, self.C_ed)
def random_distance_dependent_connections(NTWK):

    CONN = np.empty((len(NTWK['POPS']), len(NTWK['POPS'])), dtype=object)
    CONN2 = []

    for ii, jj in itertools.product(range(len(NTWK['POPS'])),
                                    range(len(NTWK['POPS']))):
        if (NTWK['M'][ii, jj]['pconn'] > 0) and (NTWK['M'][ii, jj]['Q'] != 0):
            CONN[ii,jj] = brian2.Synapses(NTWK['POPS'][ii], NTWK['POPS'][jj], model='w:siemens',\
                               on_pre='G'+NTWK['M'][ii,jj]['name']+'_post+=w')
            # CONN[ii,jj].connect(p=NTWK['M'][ii,jj]['pconn'], condition='i!=j')
            # N.B. the brian2 settings does weird things (e.g. it creates synchrony)
            # so we draw manually the connection to fix synaptic numbers
            N_per_cell = int(NTWK['M'][ii, jj]['pconn'] * NTWK['POPS'][ii].N)
            if ii == jj:  # need to take care of no autapse
                exclude_self = True
            else:
                exclude_self = False
            I_rdms, Delays = np.empty(0, dtype=int), np.empty(0)
            for index_target_cell in range(NTWK['POPS'][jj].N):
                i_rdms, delays = draw_spatially_dependent_connectivity_profile(
                    index_target_cell,
                    np.arange(NTWK['POPS'][ii].N),
                    N_per_cell,
                    NTWK['M'][ii, jj]['SpatialDecay'],
                    NTWK['M'][ii, jj]['Delay'],
                    exclude_self=exclude_self)
                I_rdms = np.concatenate([I_rdms, i_rdms])
                Delays = np.concatenate([Delays, delays])

            j_fixed = np.concatenate([
                np.ones(N_per_cell, dtype=int) * jjj
                for jjj in range(NTWK['POPS'][jj].N)
            ])
            CONN[ii, jj].connect(i=np.array(I_rdms, dtype=int), j=j_fixed)
            CONN[ii, jj].w = NTWK['M'][ii, jj]['Q'] * brian2.nS
            CONN[ii, jj].delay = Delays * brian2.ms
            CONN2.append(CONN[ii, jj])

    return CONN2
示例#30
0
def main3(plot=True):
    # even faster
    # will not always work
    # Since there is only single output neuron in the model above,
    # we can make multiple output neurons and make each time constants a parameter of the grop
    bs.start_scope()
    num_inputs = 100
    input_rate = 10 * bs.Hz
    w = 0.1
    tau_range = bs.linspace(1, 10, 30) * bs.ms
    num_tau = len(tau_range)

    P = bs.PoissonGroup(num_inputs, rates=input_rate)

    eqs = """
    dv/dt = -v/tau : 1
    tau : second
    """

    # set output neurons with the same number of taus that you want to try with
    G = bs.NeuronGroup(num_tau,
                       eqs,
                       threshold='v>1',
                       reset='v=0',
                       method='exact')
    # set the taus for each individual neurons separately
    # (didn't know that this was possible)
    G.tau = tau_range
    S = bs.Synapses(P, G, on_pre='v += w')
    S.connect()
    spike_monitor = bs.SpikeMonitor(G)
    # Now we can just run once with no loop
    bs.run(1 * bs.second)
    # and each counts correspond to neuron with different taus
    output_rates = spike_monitor.count / bs.second  # firing rate is count/duration
    if plot:
        plt.plot(tau_range / bs.ms, output_rates)
        plt.xlabel(r'$\tau$ (ms)')
        plt.ylabel('Firing rate (sp/s)')
        plt.show()