示例#1
0
 def run_simulation():
     G = NeuronGroup(10, 'dv/dt = -v / (10*ms) : 1',
                     reset='v=0', threshold='v>1')
     G.v = np.linspace(0, 1, 10)
     run(1*ms)
     # We return potentially problematic references to a VariableView
     return G.v
示例#2
0
def test_plot_monitors():
    set_device('runtime')
    group = NeuronGroup(10, 'dv/dt = -v/(10*ms) : volt', threshold='False',
                        method='linear')
    group.v = np.linspace(0, 1, 10)*mV
    spike_mon = SpikeMonitor(group)
    rate_mon = PopulationRateMonitor(group)
    state_mon = StateMonitor(group, 'v', record=[3, 5])
    run(10*ms)

    # Just checking whether the plotting does not fail with an error and that
    # it retuns an Axis object as promised
    ax = brian_plot(spike_mon)
    assert isinstance(ax, matplotlib.axes.Axes)
    plt.close()
    ax = plot_raster(spike_mon.i, spike_mon.t)
    assert isinstance(ax, matplotlib.axes.Axes)
    plt.close()
    ax = brian_plot(rate_mon)
    assert isinstance(ax, matplotlib.axes.Axes)
    plt.close()
    ax = plot_rate(rate_mon.t, rate_mon.rate)
    assert isinstance(ax, matplotlib.axes.Axes)
    plt.close()
    ax = brian_plot(state_mon)
    assert isinstance(ax, matplotlib.axes.Axes)
    plt.close()
    ax = plot_state(state_mon.t, state_mon.v.T)
    assert isinstance(ax, matplotlib.axes.Axes)
def brian_poisson(rate, duration_ms, dt=1 * ms, n=1):
    """

    :param rate:
    :param duration_ms:
    :param dt:
    :param n:
    :return:
    """
    q = b2.units.fundamentalunits.Quantity
    if not isinstance(rate, q):
        if np.isscalar(rate):
            rate = rate * Hz
        else:
            rate = np.array(rate) * Hz
    if not isinstance(duration_ms, q):
        if np.isscalar(duration_ms):
            duration_ms = duration_ms * ms
        else:
            duration_ms = np.array(duration_ms) * ms

    neuron = b2.NeuronGroup(n, "rate : Hz", threshold='rand()<rate*dt', dt=dt)
    neuron.rate = rate
    spikes = b2.SpikeMonitor(neuron, record=True)
    b2.run(duration_ms)
    if n == 1:
        trains = spikes.spike_trains()[0] / dt
    else:
        trains = [train / dt for train in spikes.spike_trains().values()]
    return trains
示例#4
0
def main1():
    bs.start_scope()
    tau = 10 * bs.ms
    # equations must end with : unit
    # unit is the SI unit of that variable
    # the unit is 1 since the number "1" is unitless
    # v represents voltage, but we just keep it unitless for simplicity
    # 1/s not part of the unit since the unit represents the unit of the variable itself
    # rather than the unit of the equation
    eqs = '''
    dv/dt = (1-v)/tau: 1
    '''

    G = bs.NeuronGroup(1, model=eqs, method='exact')
    # record : bool, sequence of ints
    #     Which indices to record, nothing is recorded for ``False``,
    #     everything is recorded for ``True`` (warning: may use a great deal of
    #     memory), or a specified subset of indices.
    M = bs.StateMonitor(G, 'v', record=0)
    print('Before v = %s' % G.v[0])
    bs.run(100 * bs.ms)  # runs the simulation for 100ms
    print('After v = %s' % G.v[0])

    plt.plot(M.t / bs.ms, M.v[0])
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.show()
示例#5
0
def test_long_run_dt_change():
    # Check that the dt check is not too restrictive, see issue #730 for details
    group = NeuronGroup(1, '')  # does nothing...
    defaultclock.dt = 0.1*ms
    run(100*second)
    defaultclock.dt = 0.01*ms
    run(1*second)
def setup_spikes(request):
    def fin():
        reinit_devices()

    request.addfinalizer(fin)
    EL = -70 * mV
    VT = -50 * mV
    DeltaT = 2 * mV
    C = 1 * nF
    gL = 30 * nS
    I = TimedArray(input_current, dt=0.01 * ms)
    model = Equations('''
                      dv/dt = (gL*(EL-v)+gL*DeltaT*exp((v-VT)/DeltaT) + I(t))/C : volt
                      ''')
    group = NeuronGroup(1,
                        model,
                        threshold='v > -50*mV',
                        reset='v = -70*mV',
                        method='exponential_euler')
    group.v = -70 * mV
    spike_mon = SpikeMonitor(group)
    run(60 * ms)
    spikes = getattr(spike_mon, 't_')

    return spike_mon, spikes
示例#7
0
def simulate_WORM_neuron(input_current,
                         simulation_time=5 * b2.ms,
                         v_leak=V_LEAK,
                         g_leak=G_LEAK,
                         c_m=C_M,
                         rest_pot=R_POT,
                         tau=MEMBRANE_TIME_SCALE,
                         f_t=FIRING_THRESHOLD):

    # differential equation of neuron model
    eqs = """
    dv/dt =
    ( g_leak * (v_leak - v) + input_current(t,i)  ) / c_m : volt 
    """

    # LIF neuron using Brian2 library
    neuron = b2.NeuronGroup(2, model=eqs, threshold='v>f_t', method="linear")
    neuron.v = rest_pot  # set initial value

    # monitoring membrane potential of neuron and injecting current
    state_monitor = b2.StateMonitor(neuron, ["v"], record=True)
    S = b2.Synapses(neuron, neuron, model='w : volt', on_pre='v += w')
    S.connect(i=0, j=1)
    S.w = 0.01 * b2.mV
    # run the simulation
    b2.run(simulation_time)
    return state_monitor
示例#8
0
def main3():
    # Adding Spikes
    bs.start_scope()

    tau = 10 * bs.ms
    eqs = '''
    dv/dt = (1-v)/tau : 1
    '''

    # conditions for spiking models
    threshold = 'v>0.8'
    reset = 'v = -0.8'
    G = bs.NeuronGroup(1, eqs, threshold=threshold, reset=reset, method='exact')

    M = bs.StateMonitor(G, 'v', record=0)
    bs.run(50 * bs.ms)
    plt.plot(M.t / bs.ms, M.v[0])
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.show()

    # you can also add spike monitor
    spike_monitor = bs.SpikeMonitor(G)

    bs.run(50 * bs.ms)

    print(f"Spike Times: {spike_monitor.t[:]}")
示例#9
0
def main4():
    # Incorporation of refractory period
    bs.start_scope()

    tau = 10 * bs.ms
    # the (unless refractory) is necessary
    # refer to the documentation for more detail
    eqs = '''
    dv/dt = (1-v)/tau : 1 (unless refractory)
    '''
    equation = bs.Equations(eqs)
    # conditions for spiking models
    threshold = 'v>0.8'
    reset = 'v = -0.8'
    refractory = 5 * bs.ms
    G = bs.NeuronGroup(1, eqs, threshold=threshold, reset=reset, method='exact', refractory=refractory)

    state_monitor = bs.StateMonitor(G, 'v', record=0)
    spike_monitor = bs.SpikeMonitor(G)

    bs.run(50 * bs.ms)
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0])
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.show()
示例#10
0
def run_brian_sim(stim, dt, init_values, param_dict, method = 'exact'):
    # Model specification
    eqs = brian2.Equations("")
    eqs += brian2.Equations("dV/dt = 1 / C * (Ie(t) + I_0 + I_1 - G * (V - El)) : volt (unless refractory)")
    eqs += brian2.Equations("dTh_s/dt = -b_s * Th_s : volt (unless refractory)")
    eqs += brian2.Equations("dTh_v/dt = a_v * (V - El) - b_v * (Th_v - Th_inf) : volt (unless refractory)")
    eqs += brian2.Equations("dI_0/dt = -k_0 * I_0 : amp (unless refractory)")
    eqs += brian2.Equations("dI_1/dt = -k_1 * I_1 : amp (unless refractory)")
    reset = ""
    reset = "\n".join([reset, "V = a_r * V + b_r"])
    reset = "\n".join([reset, "Th_s = Th_s + a_s"])
    reset = "\n".join([reset, "Th_v = Th_v"])
    reset = "\n".join([reset, "I_0 = R_0 * I_0 * exp(-k_0 * (t_ref - dt)) + A_0"])
    reset = "\n".join([reset, "I_1 = R_1 * I_1 * exp(-k_1 * (t_ref - dt)) + A_1"])
    threshold = "V > Th_v + Th_s"
    refractory = param_dict['t_ref']

    Ie = brian2.TimedArray(stim, dt=dt)
    nrn = brian2.NeuronGroup(1, eqs, method=method, reset=reset, threshold=threshold, refractory=refractory, namespace=param_dict)
    nrn.V = init_values['V'] * brian2.units.volt
    nrn.Th_s = init_values['Th_s'] * brian2.units.volt
    nrn.Th_v = init_values['Th_v'] * brian2.units.volt
    nrn.I_0 = init_values['I_0'] * brian2.units.amp
    nrn.I_1 = init_values['I_1'] * brian2.units.amp

    monvars = ['V','Th_s','Th_v','I_0','I_1',]
    mon = brian2.StateMonitor(nrn, monvars, record=True)

    num_step = len(stim)
    brian2.defaultclock.dt = dt
    brian2.run(num_step * dt)

    return (mon.t / brian2.units.second, mon.V[0] / brian2.units.volt, mon.Th_s[0] / brian2.units.volt, mon.Th_v[0] / brian2.units.volt, mon.I_0[0] / brian2.units.amp, mon.I_1[0] / brian2.units.amp, )
示例#11
0
def test_zhang_synapse():
    sound = whitenoise(100*ms, samplerate=50*kHz)
    cf = erbspace(20*Hz, 20*kHz, 100)
    ihc = TanCarney(MiddleEar(sound), cf)
    syn = ZhangSynapse(ihc, cf)
    M = SpikeMonitor(syn)
    run(sound.duration)
示例#12
0
def simulation1(flag_device=False, path="", rec_idx=idx_to_record):
    if flag_device:
        set_device('neuroml2', filename=LEMS_OUTPUT_FILENAME)
    n = 100
    duration = 1 * second
    tau = 10 * ms

    eqs = '''
    dv/dt = (v0 - v) / tau : volt (unless refractory)
    v0 : volt
    '''
    group = NeuronGroup(n,
                        eqs,
                        threshold='v > 10*mV',
                        reset='v = 0*mV',
                        refractory=5 * ms,
                        method='linear')
    group.v = 0 * mV
    group.v0 = '20*mV * i / (N-1)'

    statemonitor = StateMonitor(group, 'v', record=rec_idx)
    spikemonitor = SpikeMonitor(group, record=rec_idx)
    run(duration)

    if not flag_device:
        recvec = []
        for ri in rec_idx:
            recvec.append(statemonitor[ri].v)
        recvec = np.asarray(recvec)
        return recvec
    else:
        return None
示例#13
0
def test_magic_network():
    # test that magic network functions correctly
    x = Counter()
    y = Counter()
    run(10*ms)
    assert_equal(x.count, 100)
    assert_equal(y.count, 100)
示例#14
0
def test_magic_network():
    # test that magic network functions correctly
    x = Counter()
    y = Counter()
    run(10 * ms)
    assert_equal(x.count, 100)
    assert_equal(y.count, 100)
示例#15
0
def test_ExportDevice_options():
    """
    Test the run and build options of ExportDevice
    """
    # test1
    set_device('exporter')
    grp = NeuronGroup(10, 'eqn = 1:1', method='exact')
    run(100 * ms)
    _ = StateMonitor(grp, 'eqn', record=False)
    with pytest.raises(RuntimeError):
        run(100 * ms)

    # test2
    device.reinit()
    with pytest.raises(RuntimeError):
        device.build()

    # test3
    start_scope()
    net = Network()
    set_device('exporter', build_on_run=False)
    grp = NeuronGroup(10, 'eqn = 1:1', method='exact')
    net.add(grp)
    net.run(10 * ms)
    pogrp = PoissonGroup(10, rates=10 * Hz)
    net.add(pogrp)
    net.run(10 * ms)
    mon = StateMonitor(grp, 'eqn', record=False)
    net.add(mon)
    net.run(10 * ms)
    device.build()
    device.reinit()
示例#16
0
def run_simulation(parameters):
    """Run the simulation.

    parameters -- dictionary with parameters
    """

    equations = []
    for gating_variable in ["m", "n", "h"]:
        equations.append(
            construct_gating_variable_inf_equation(gating_variable))
        equations.append(
            construct_gating_variable_tau_equation(gating_variable))
        equations.append(construct_gating_variable_ode(gating_variable))
    equations += construct_neuron_ode()

    eqs_HH = reduce(operator.add, equations)
    group = NeuronGroup(1, eqs_HH, method='euler', namespace=parameters)

    group.v = parameters["v_initial"]

    group.m = parameters["m_initial"]
    group.n = parameters["n_initial"]
    group.h = parameters["h_initial"]

    statemon = StateMonitor(group, [
        'v', 'I_ext', 'm', 'n', 'h', 'g_K', 'g_Na', 'I_K', 'I_Na', 'I_L',
        'tau_m', 'tau_n', 'tau_h'
    ],
                            record=True)

    defaultclock.dt = parameters["defaultclock_dt"]
    run(parameters["duration"])

    return statemon
示例#17
0
def test_long_run_dt_change():
    # Check that the dt check is not too restrictive, see issue #730 for details
    group = NeuronGroup(1, '')  # does nothing...
    defaultclock.dt = 0.1*ms
    run(100*second)
    defaultclock.dt = 0.01*ms
    run(1*second)
示例#18
0
def test_dependency_check():
    def create_net():
        G = NeuronGroup(10, 'v: 1', threshold='False')
        dependent_objects = [
                             StateMonitor(G, 'v', record=True),
                             SpikeMonitor(G),
                             PopulationRateMonitor(G),
                             Synapses(G, G, pre='v+=1', connect=True)
                             ]
        return dependent_objects

    dependent_objects = create_net()
    # Trying to simulate the monitors/synapses without the group should fail
    for obj in dependent_objects:
        assert_raises(ValueError, lambda: Network(obj).run(0*ms))

    # simulation with a magic network should work when we have an explicit
    # reference to one of the objects, but the object should be inactive and
    # we should get a warning
    assert all(obj.active for obj in dependent_objects)
    for obj in dependent_objects:  # obj is our explicit reference
        with catch_logs() as l:
            run(0*ms)
            dependency_warnings = [msg[2] for msg in l
                                   if msg[1] == 'brian2.core.magic.dependency_warning']
            assert len(dependency_warnings) == 1
        assert not obj.active
示例#19
0
def test_runtime_rounding():
    # Test that runtime and standalone round in the same way, see github issue
    # #695 for details
    defaultclock.dt = 20.000000000020002 * us
    G = NeuronGroup(1, 'v:1')
    mon = StateMonitor(G, 'v', record=True)
    run(defaultclock.dt * 250)
    assert len(mon.t) == 250
示例#20
0
def test_network_active_flag():
    # test that the BrianObject.active flag is recognised by Network.run
    x = Counter()
    y = Counter()
    y.active = False
    run(1*ms)
    assert_equal(x.count, 10)
    assert_equal(y.count, 0)
示例#21
0
def test_runtime_rounding():
    # Test that runtime and standalone round in the same way, see github issue
    # #695 for details
    defaultclock.dt = 20.000000000020002 * us
    G = NeuronGroup(1, 'v:1')
    mon = StateMonitor(G, 'v', record=True)
    run(defaultclock.dt * 250)
    assert len(mon.t) == 250
def simulate_passive_cable(current_injection_location=DEFAULT_INPUT_LOCATION, input_current=DEFAULT_INPUT_CURRENT,
                           length=CABLE_LENGTH, diameter=CABLE_DIAMETER,
                           r_longitudinal=R_LONGITUDINAL,
                           r_transversal=R_TRANSVERSAL, e_leak=E_LEAK, initial_voltage=E_LEAK,
                           capacitance=CAPACITANCE, nr_compartments=200, simulation_time=5 * b2.ms):
    """Builds a multicompartment cable and numerically approximates the cable equation.

    Args:
        t_spikes (int): list of spike times
        current_injection_location (list): List [] of input locations (Quantity, Length): [123.*b2.um]
        input_current (TimedArray): TimedArray of current amplitudes. One column per current_injection_location.
        length (Quantity): Length of the cable: 0.8*b2.mm
        diameter (Quantity): Diameter of the cable: 0.2*b2.um
        r_longitudinal (Quantity): The longitudinal (axial) resistance of the cable: 0.5*b2.kohm*b2.mm
        r_transversal (Quantity): The transversal resistance (=membrane resistance): 1.25*b2.Mohm*b2.mm**2
        e_leak (Quantity): The reversal potential of the leak current (=resting potential): -70.*b2.mV
        initial_voltage (Quantity): Value of the potential at t=0: -70.*b2.mV
        capacitance (Quantity): Membrane capacitance: 0.8*b2.uF/b2.cm**2
        nr_compartments (int): Number of compartments. Spatial discretization: 200
        simulation_time (Quantity): Time for which the dynamics are simulated: 5*b2.ms

    Returns:
        (StateMonitor, SpatialNeuron): The state monitor contains the membrane voltage in a
        Time x Location matrix. The SpatialNeuron object specifies the simulated neuron model
        and gives access to the morphology. You may want to use those objects for
        spatial indexing: myVoltageStateMonitor[mySpatialNeuron.morphology[0.123*b2.um]].v
    """
    assert isinstance(input_current, b2.TimedArray), "input_current is not of type TimedArray"
    assert input_current.values.shape[1] == len(current_injection_location),\
        "number of injection_locations does not match nr of input currents"

    cable_morphology = b2.Cylinder(diameter=diameter, length=length, n=nr_compartments)
    # Im is transmembrane current
    # Iext is  injected current at a specific position on dendrite
    EL = e_leak
    RT = r_transversal
    my_equs = """
    Iext = current(t, location_index): amp (point current)
    location_index : integer (constant)
    Im = (EL-v)/RT : amp/meter**2
    """
    cable_model = b2.SpatialNeuron(morphology=cable_morphology, model=my_equs, Cm=capacitance, Ri=r_longitudinal)
    monitor_v = b2.StateMonitor(cable_model, "v", record=True)

    # inject all input currents at the specified location:
    nr_input_locations = len(current_injection_location)
    input_current_0 = np.insert(input_current.values, 0, 0., axis=1) * b2.amp  # insert default current: 0. [amp]
    current = b2.TimedArray(input_current_0, dt=input_current.dt * b2.second)
    for current_index in range(nr_input_locations):
        insert_location = current_injection_location[current_index]
        compartment_index = int(np.floor(insert_location / (length / nr_compartments)))
        # next line: current_index+1 because 0 is the default current 0Amp
        cable_model.location_index[compartment_index] = current_index + 1

    # set initial values and run for 1 ms
    cable_model.v = initial_voltage
    b2.run(simulation_time)
    return (monitor_v, cable_model)
示例#23
0
def test_multiple_runs_constant_change():
    const_v = 1
    group = NeuronGroup(1, 'v = const_v : 1')
    mon = StateMonitor(group, 'v', record=0)
    run(defaultclock.dt)
    const_v = 2
    run(defaultclock.dt)
    device.build(direct_call=False, **device.build_options)
    assert_equal(mon.v[0], [1, 2])
示例#24
0
def test_multiple_runs_function_change():
    inp = TimedArray([1, 2], dt=defaultclock.dt)
    group = NeuronGroup(1, 'v = inp(t) : 1')
    mon = StateMonitor(group, 'v', record=0)
    run(2 * defaultclock.dt)
    inp = TimedArray([0, 0, 3, 4], dt=defaultclock.dt)
    run(2 * defaultclock.dt)
    device.build(direct_call=False, **device.build_options)
    assert_equal(mon.v[0], [1, 2, 3, 4])
示例#25
0
def run(TSTOP=250, group_size=100, g_time=150, neuron_n=1000, linear=True,
        ext_w=0.2, inh_w=0.2):
    """Run a simulation and return the resulting spiketrain"""
    # Basic equation of the model
    eq = """dv/dt = -gamma*v + I0 : volt
    Ie : volt
    Ii : volt
    """

    thetaU = 16 * mV
    tauM = 8 * ms
    gamma = 1 / tauM
    I0 = 17.6 * mV / tauM

    #Build the group of neuron to use
    G = br2.NeuronGroup(neuron_n, threshold="v>thetaU", reset="v=0*mV",
                        method='euler',
                        model=eq)

    #Record the spikes from this group
    spikes = br2.SpikeMonitor(G)

    #Build stimulation
    stim = br2.SpikeGeneratorGroup(1, [0], [g_time]*ms - br2.defaultclock.dt)
    stim_syn = br2.Synapses(stim, G, on_pre="v += 2*thetaU")
    stim_syn.connect(i=0, j=np.arange(group_size))
    br2.magic_network.schedule = ['start', 'groups', 'synapses', 'thresholds', 'resets', 'end']
    connections = np.random.rand(1000, 1000) < 0.3
    exc_or_inh  = np.random.rand(1000, 1000) < 0.5
    exc_i, exc_j = (connections & exc_or_inh).nonzero()
    inh_i, inh_j = (connections & ~exc_or_inh).nonzero()

    if linear:
        G.run_regularly('''
                        v += Ie + Ii
                        Ie = 0*mV
                        Ii = 0*mV
                        ''', when='after_synapses')
    else:
        G.run_regularly('''
                        v += clip(Ie, 0*mV, 2*mV) + clip(2*(Ie-2*mV), 0*mV, 4*mV) + Ii
                        Ie = 0*mV
                        Ii = 0*mV
                        ''', when='after_synapses')

    dt = br2.defaultclock.dt
    exc_syn = br2.Synapses(G, G, on_pre='Ie += %s*mV' % (ext_w), delay=5*ms-dt)
    inh_syn = br2.Synapses(G, G, on_pre='Ii -= %s*mV' % (inh_w), delay=5*ms-dt)
    exc_syn.connect(i=exc_i, j=exc_j)
    inh_syn.connect(i=inh_i, j=inh_j)

    #Set random initial conditions
    G.v = np.random.rand(neuron_n) * 16 * mV

    br2.run(TSTOP * ms)

    return spikes
示例#26
0
def echo_spike(p, tStim, tTot):
    start_scope()
    prefs.codegen.target = "numpy"

    ################################
    # Compute properties
    ################################
    dvInpSpike = p['nu_DV']   # Voltage increase per noise spike
    dvExcSpike = p['LIF_DV']  # Voltage increase per lateral spike
    # dvExcSpike = p['LIF_T_0'] / (1.0 * p['N'] * p['p_conn'])  # Voltage increase per lateral spike

    print("typical spike threshold", p['LIF_T_0'])
    print("typical potential change per noise spike", dvInpSpike)
    print("typical potential change per lateral spike", dvExcSpike)

    ################################
    # Create input population
    ################################
    nTStimPost = int(tTot / tStim) - 1  # After input switched off, 0-input will be repeated nTStimPost*tStim timesteps
    patternInp = (np.random.uniform(0, 1, p['N']) < p['nu_p']).astype(int)
    pattern0 = np.zeros(p['N'])
    rates_all = np.array([patternInp] + [pattern0]*nTStimPost) * p['nu_FREQ']
    rateTimedArray = TimedArray(rates_all, dt=tStim)
    gInp = PoissonGroup(p['N'], rates="rateTimedArray(t, i)")
    # gInp = PoissonGroup(p['N'], p['nu_FREQ'])

    ################################
    # Create reservoir population
    ################################
    gExc = brian2wrapper.NeuronGroupLIF(p['N'], p['LIF_V_0'], p['LIF_T_0'], p['LIF_V_TAU'])

    ################################
    # Create synapses
    ################################
    sInpExc = Synapses(gInp, gExc, on_pre='v_post += dvInpSpike', method='exact')
    sExcExc = Synapses(gExc, gExc, on_pre='v_post += dvExcSpike', method='exact')

    ################################
    # Connect synapses
    ################################
    # * Input and LIF one-to-one
    # * LIF neurons to each other sparsely
    sInpExc.connect(j='i')
    sExcExc.connect(p=p['p_conn'])

    ################################
    # Init Monitors
    ################################
    #spikemonInp = SpikeMonitor(gInp)
    spikemonExc = SpikeMonitor(gExc)

    ################################
    # Run simulation
    ################################
    run(tTot)

    return np.array(spikemonExc.i), np.array(spikemonExc.t)
示例#27
0
def test_magic_network():
    # test that magic network functions correctly
    x = Counter()
    y = Counter()
    run(10*ms)
    assert_equal(x.count, 100)
    assert_equal(y.count, 100)

    assert len(repr(magic_network))  # very basic test...
    assert len(str(magic_network))  # very basic test...
示例#28
0
def test_multiple_runs_report_standalone_3(with_output=False):
    set_device('cpp_standalone', build_on_run=False)
    group = NeuronGroup(1, 'dv/dt = 1*Hz : 1')
    run(1*ms, report='text')
    run(1*ms, report='text')
    tempdir = tempfile.mkdtemp()
    if with_output:
        print tempdir
    device.build(directory=tempdir, compile=True, run=True,
                 with_output=with_output)
def HH_Neuron(curr, simtime):

    """Simple Hodgkin-Huxley neuron implemented in Brian2.

    Args:
        curr (TimedArray): Input current injected into the HH neuron
        simtime (float): Simulation time [seconds]

    Returns:
        StateMonitor: Brian2 StateMonitor with recorded fields
        ['vm', 'I_e', 'm', 'n', 'h']
    """

    # neuron parameters
    El = 10.6 * b2.mV
    EK = -12 * b2.mV
    ENa = 115 * b2.mV
    gl = 0.3 * b2.msiemens
    gK = 36 * b2.msiemens
    gNa = 120 * b2.msiemens
    C = 1 * b2.ufarad

    # forming HH model with differential equations
    eqs = '''
    I_e = curr(t) : amp
    membrane_Im = I_e + gNa*m**3*h*(ENa-vm) + \
        gl*(El-vm) + gK*n**4*(EK-vm) : amp
    alphah = .07*exp(-.05*vm/mV)/ms    : Hz
    alpham = .1*(25*mV-vm)/(exp(2.5-.1*vm/mV)-1)/mV/ms : Hz
    alphan = .01*(10*mV-vm)/(exp(1-.1*vm/mV)-1)/mV/ms : Hz
    betah = 1./(1+exp(3.-.1*vm/mV))/ms : Hz
    betam = 4*exp(-.0556*vm/mV)/ms : Hz
    betan = .125*exp(-.0125*vm/mV)/ms : Hz
    dh/dt = alphah*(1-h)-betah*h : 1
    dm/dt = alpham*(1-m)-betam*m : 1
    dn/dt = alphan*(1-n)-betan*n : 1
    dvm/dt = membrane_Im/C : volt
    '''

    neuron = b2.NeuronGroup(1, eqs, method='exponential_euler')

    # parameter initialization
    neuron.vm = 0
    neuron.m = 0.0529324852572
    neuron.h = 0.596120753508
    neuron.n = 0.317676914061

    # tracking parameters
    rec = b2.StateMonitor(neuron, ['vm', 'I_e', 'm', 'n', 'h'], record=True)

    # running the simulation
    b2.run(simtime)

    return rec
def current_pulse_sim_with_opto(args, params=None):
    
    if params is None:
        params = get_neuron_params(args['NRN'])
    params['Vclamp'] = -80
        
    neurons, eqs = get_membrane_equation(params, [],\
                                         return_equations=True)
    if args['verbose']:
        print(eqs)

    fig, ax = brian2.subplots(figsize=(5,3))

    # V value initialization
    neurons.V = params['El']*brian2.mV
    trace = brian2.StateMonitor(neurons, 'V', record=0)
    spikes = brian2.SpikeMonitor(neurons)
    # rest run
    brian2.run(args['delay'] * brian2.ms)
    # first pulse
    neurons.I0 = args['amp']*brian2.pA
    brian2.run(args['duration']/3. * brian2.ms)
    neurons.Gclamp = 1e3*brian2.nS
    brian2.run(args['duration']/3. * brian2.ms)
    neurons.Gclamp = 0*brian2.nS
    brian2.run(args['duration']/3. * brian2.ms)
    # second pulse
    neurons.I0 = 0
    brian2.run(args['delay'] * brian2.ms)
    # We draw nicer spikes
    Vm = trace[0].V[:]
    for t in spikes.t:
        ax.plot(t/brian2.ms*np.ones(2),
                [Vm[int(t/brian2.defaultclock.dt)]/brian2.mV,-10],
                '--', color=args['color'])
    ax.plot(trace.t / brian2.ms, Vm / brian2.mV, color=args['color'])
    
    if 'NRN' in args.keys():
        ax.set_title(args['NRN'])

    ax.annotate(str(int(params['El']))+'mV', (-50,params['El']-5))
    ax.plot([-20], [params['El']], 'k>')
    ax.plot([0,50], [-50, -50], 'k-', lw=4)
    ax.plot([0,0], [-50, -40], 'k-', lw=4)
    ax.annotate('10mV', (-50,-38))
    ax.annotate('50ms', (0,-55))
    # set_plot(ax, [], xticks=[], yticks=[])
    # show()
    if 'save' in args.keys():
        fig.savefig(args['save'])
    return fig
示例#31
0
def main2():
    # setting synaptic weight
    bs.start_scope()
    n_neurons = 3
    eqs = '''
    dv/dt = (I-v)/tau : 1 (unless refractory)
    I : 1
    tau: second
    '''
    threshold = 'v>1'
    reset = 'v = 0'
    refractory = 10 * bs.ms
    G = bs.NeuronGroup(N=n_neurons,
                       model=eqs,
                       threshold=threshold,
                       reset=reset,
                       method='exact',
                       refractory=refractory)

    G.I = [2, 0, 0]  # represents the I in eqs
    # driving current should be bigger than the threshold, otherwise it wont spike at all

    # I = 0 means that the voltage wont change since there is no driving current
    G.tau = [10, 100, 100] * bs.ms  # represents the tau in eqs
    # unlike last time, the tau is defined with the neuron so we see the effects of different values

    #     model : `str`, `Equations`, optional
    #         The model equations for the synapses.
    # you need to set this as model= in Synapses in order to incorporate weight
    synapse_model = 'w : 1'

    # So in total, what this model says is that whenever two neurons in G are connected by a synapse,
    # when the source neuron fires a spike the target neuron will have its value of v increased by 0.2.
    S = bs.Synapses(source=G,
                    target=G,
                    model=synapse_model,
                    on_pre='v_post +=  w')
    S.connect(i=0, j=[1, 2])
    # So this will give a synaptic connection from 0 to 1 with weight 0.2=0.2*1 and from 0 to 2 with weight 0.4=0.2*2.
    S.w = 'j*0.2'

    state_monitor = bs.StateMonitor(G, 'v', record=True)
    bs.run(100 * bs.ms)

    plt.plot(state_monitor.t / bs.ms, state_monitor.v[0], label='Neuron 0')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[1], label='Neuron 1')
    plt.plot(state_monitor.t / bs.ms, state_monitor.v[2], label='Neuron 2')
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.legend()
    plt.show()
示例#32
0
def test_store_restore_magic():
    source = NeuronGroup(10, '''dv/dt = rates : 1
                                rates : Hz''', threshold='v>1', reset='v=0')
    source.rates = 'i*100*Hz'
    target = NeuronGroup(10, 'v:1')
    synapses = Synapses(source, target, model='w:1', pre='v+=w', connect='i==j')
    synapses.w = 'i*1.0'
    synapses.delay = 'i*ms'
    state_mon = StateMonitor(target, 'v', record=True)
    spike_mon = SpikeMonitor(source)
    store()  # default time slot
    run(10*ms)
    store('second')
    run(10*ms)
    v_values = state_mon.v[:, :]
    spike_indices, spike_times = spike_mon.it_

    restore() # Go back to beginning
    assert magic_network.t == 0*ms
    run(20*ms)
    assert defaultclock.t == 20*ms
    assert_equal(v_values, state_mon.v[:, :])
    assert_equal(spike_indices, spike_mon.i[:])
    assert_equal(spike_times, spike_mon.t_[:])

    # Go back to middle
    restore('second')
    assert magic_network.t == 10*ms
    run(10*ms)
    assert defaultclock.t == 20*ms
    assert_equal(v_values, state_mon.v[:, :])
    assert_equal(spike_indices, spike_mon.i[:])
    assert_equal(spike_times, spike_mon.t_[:])
示例#33
0
def main1():
    bs.start_scope()
    # Parameters
    area = 20000 * bs.umetre**2
    Cm = 1 * bs.ufarad * bs.cm**-2 * area
    gl = 5e-5 * bs.siemens * bs.cm**-2 * area
    El = -65 * bs.mV
    EK = -90 * bs.mV
    ENa = 50 * bs.mV
    g_na = 100 * bs.msiemens * bs.cm**-2 * area
    g_kd = 30 * bs.msiemens * bs.cm**-2 * area
    VT = -63 * bs.mV

    # HH stands for Hudgkin-Huxley
    eqs_HH = '''
    dv/dt = (gl*(El-v) - g_na*(m*m*m)*h*(v-ENa) - g_kd*(n*n*n*n)*(v-EK) + I)/Cm : volt
    
    dm/dt = 0.32*(mV**-1)*(13.*mV-v+VT)/
        (exp((13.*mV-v+VT)/(4.*mV))-1.)/ms*(1-m)-0.28*(mV**-1)*(v-VT-40.*mV)/
        (exp((v-VT-40.*mV)/(5.*mV))-1.)/ms*m : 1
        
    dn/dt = 0.032*(mV**-1)*(15.*mV-v+VT)/
        (exp((15.*mV-v+VT)/(5.*mV))-1.)/ms*(1.-n)-.5*exp((10.*mV-v+VT)/(40.*mV))/ms*n : 1
        
    dh/dt = 0.128*exp((17.*mV-v+VT)/(18.*mV))/ms*(1.-h)-4./(1+exp((40.*mV-v+VT)/(5.*mV)))/ms*h : 1
    
    I : amp
    '''

    group = bs.NeuronGroup(1,
                           eqs_HH,
                           threshold='v > -40*mV',
                           refractory='v > -40*mV',
                           method='exponential_euler')
    group.v = El
    state_monitor = bs.StateMonitor(group, 'v', record=True)
    spike_monitor = bs.SpikeMonitor(group, variables='v')
    plt.figure(figsize=(9, 4))
    for l in range(5):
        group.I = bs.rand() * 50 * bs.nA
        bs.run(10 * bs.ms)
        bs.axvline(l * 10, ls='--', c='k')
    bs.axhline(El / bs.mV, ls='-', c='lightgray', lw=3)
    state_time = state_monitor.t
    spike_time = spike_monitor.t
    plt.plot(state_time / bs.ms, spike_monitor.v[0] / bs.mV, '-b')
    plt.plot(spike_time / bs.ms, spike_monitor.v / bs.mV, 'ob')
    plt.xlabel('Time (ms)')
    plt.ylabel('v (mV)')
    plt.show()
示例#34
0
def test_network_operations():
    # test NetworkOperation and network_operation
    seq = []
    def f1():
        seq.append('a')
    op1 = NetworkOperation(f1, when=('start', 1))
    @network_operation
    def f2():
        seq.append('b')
    @network_operation(when=('end', 1))
    def f3():
        seq.append('c')
    run(1*ms)
    assert_equal(''.join(seq), 'bac'*10)
   def simulate(self,
                current=input_factory.get_zero_current(),
                time=10 * b2.ms,
                rheo_threshold=None,
                v_rest=None,
                v_reset=None,
                delta_t=None,
                time_scale=None,
                resistance=None,
                threshold=None,
                adapt_volt_c=None,
                adapt_tau=None,
                adapt_incr=None):
       if (v_rest == None):
           v_rest = self.rest_pot
       if (v_reset == None):
           v_reset = self.reset_pot
       if (rheo_threshold == None):
           rheo_threshold = self.rheo_threshold
       if (delta_t == None):
           delta_t = self.delta_t
       if (time_scale == None):
           time_scale = self.time_scale
       if (resistance == None):
           resistance = self.resistance
       if (threshold == None):
           threshold = self.threshold
       if (adapt_volt_c == None):
           adapt_volt_c = self.adapt_volt_c
       if (adapt_tau == None):
           adapt_tau = self.adapt_tau
       if (adapt_incr == None):
           adapt_incr = self.adapt_incr
       v_spike_str = "v>{:f}*mvolt".format(threshold / b2.mvolt)
       eqs = """
 			dv/dt = (-(v-v_rest) +delta_t*exp((v-rheo_threshold)/delta_t)+ resistance * current(t,i) - resistance * w)/(time_scale) : volt
       	dw/dt=(adapt_volt_c*(v-v_rest)-w)/adapt_tau : amp
       	"""
       neuron = b2.NeuronGroup(1,
                               model=eqs,
                               threshold=v_spike_str,
                               reset="v=v_reset;w+=adapt_incr",
                               method="euler")
       neuron.v = v_rest
       neuron.w = 0.0 * b2.pA
       state_monitor = b2.StateMonitor(neuron, ["v", "w"], record=True)
       spike_monitor = b2.SpikeMonitor(neuron)
       b2.run(time)
       return state_monitor, spike_monitor
示例#36
0
def test_ExportDevice_unsupported():
    """
    Test whether unsupported objects for standard format export
    are raising Error
    """
    start_scope()
    set_device('exporter')
    eqn = '''
    v = 1 :1
    g :1
    '''
    G = NeuronGroup(1, eqn)
    _ = PoissonInput(G, 'g', 1, 1 * Hz, 1)
    # with pytest.raises(NotImplementedError):
    run(10 * ms)
示例#37
0
def main2():
    tau = 10 * bs.ms
    eqs = '''
    dv/dt = (sin(2*pi*100*Hz*t)-v)/tau : 1
    '''
    G = bs.NeuronGroup(1, eqs, method="euler")
    G.v = 5  # we can set the initial value
    M = bs.StateMonitor(G, 'v', record=0)

    bs.run(60 * bs.ms)

    plt.plot(M.t / bs.ms, M.v[0])
    plt.xlabel('Time (ms)')
    plt.ylabel('v')
    plt.show()
示例#38
0
def test_multiple_networks_invalid():
    x = Counter()
    net = Network(x)
    net.run(1*ms)
    try:
        run(1*ms)
        raise AssertionError('Expected a RuntimeError')
    except RuntimeError:
        pass  # this is expected

    try:
        net2 = Network(x)
        raise AssertionError('Expected a RuntimeError')
    except RuntimeError:
        pass  # this is expected
示例#39
0
def test_magic_weak_reference():
    '''
    Test that holding a weak reference to an object does not make it get
    simulated.'''

    G1 = NeuronGroup(1, 'v:1')

    # this object should not be included
    G2 = weakref.ref(NeuronGroup(1, 'v:1'))

    with catch_logs(log_level=logging.DEBUG) as l:
        run(1*ms)
        # Check the debug messages for the number of included objects
        magic_objects = [msg[2] for msg in l
                         if msg[1] == 'brian2.core.magic.magic_objects'][0]
        assert '2 objects' in magic_objects, 'Unexpected log message: %s' % magic_objects
示例#40
0
def test_magic_unused_object():
    '''Test that creating unused objects does not affect the magic system.'''
    def create_group():
        # Produce two objects but return only one
        G1 = NeuronGroup(1, 'v:1')  # no Thresholder or Resetter
        G2 = NeuronGroup(1, 'v:1') # This object should be garbage collected
        return G1

    G = create_group()
    with catch_logs(log_level=logging.INFO) as l:
        run(1*ms)

        # Check the debug messages for the number of included objects
        magic_objects = [msg[2] for msg in l
                         if msg[1] == 'brian2.core.magic.magic_objects'][0]
        assert '2 objects' in magic_objects, 'Unexpected log message: %s' % magic_objects
def run_network():

    monitor_dict={}
    defaultclock.dt= 0.01*ms

    C=281*pF
    gL=30*nS
    EL=-70.6*mV
    VT=-50.4*mV
    DeltaT=2*mV
    tauw=40*ms
    a=4*nS
    b=0.08*nA
    I=8*nA
    Vcut="vm>2*mV"# practical threshold condition
    N=10

    reset = 'vm=Vr;w+=b'

    eqs="""
    dvm/dt=(gL*(EL-vm)+gL*DeltaT*exp((vm-VT)/DeltaT)+I-w)/C : volt
    dw/dt=(a*(vm-EL)-w)/tauw : amp
    Vr:volt
    """

    neuron=NeuronGroup(N,model=eqs,threshold=Vcut,reset=reset)
    neuron.vm=EL
    neuron.w=a*(neuron.vm-EL)
    neuron.Vr=linspace(-48.3*mV,-47.7*mV,N) # bifurcation parameter

    #run(25*msecond,report='text') # we discard the first spikes

    MSpike=SpikeMonitor(neuron, variables=['vm']) # record Vr and w at spike times
    MPopRate = PopulationRateMonitor(neuron)

    MMultiState = StateMonitor(neuron, ['w','vm'], record=[6,7,8,9])


    run(10*msecond,report='text')


    monitor_dict['SpikeMonitor']=MSpike
    monitor_dict['MultiState']=MMultiState
    monitor_dict['PopulationRateMonitor']=MPopRate

    return monitor_dict
示例#42
0
def test_filterbankgroup():
    sound1 = tone(1 * kHz, .1 * second)
    sound2 = whitenoise(.1 * second)
    sound = sound1 + sound2
    sound = sound.ramp()
    cf = erbspace(20 * Hz, 20 * kHz, 3000)
    cochlea = Gammatone(sound, cf)
    # Half-wave rectification and compression [x]^(1/3)
    ihc = FunctionFilterbank(cochlea, lambda x: 3 * np.clip(x, 0, np.inf) ** (1.0 / 3.0))
    # Leaky integrate-and-fire model with noise and refractoriness
    eqs = '''
    dv/dt = (I-v)/(1*ms)+0.2*xi*(2/(1*ms))**.5 : 1 (unless refractory)
    I : 1
    '''
    anf = FilterbankGroup(ihc, 'I', eqs, reset='v=0', threshold='v>1', refractory=5*ms, method='euler')
    M = SpikeMonitor(anf)
    run(sound.duration)
def simulate_exponential_IF_neuron(
    tau=MEMBRANE_TIME_SCALE_tau,
    R=MEMBRANE_RESISTANCE_R,
    v_rest=V_REST,
    v_reset=V_RESET,
    v_rheobase=RHEOBASE_THRESHOLD_v_rh,
    v_spike=FIRING_THRESHOLD_v_spike,
    delta_T=SHARPNESS_delta_T,
    I_stim=input_factory.get_zero_current(),
    simulation_time=200 * b2.ms,
):
    """
    Implements the dynamics of the exponential Integrate-and-fire model

    Args:
        tau (Quantity): Membrane time constant
        R (Quantity): Membrane resistance
        v_rest (Quantity): Resting potential
        v_reset (Quantity): Reset value (vm after spike)
        v_rheobase (Quantity): Rheobase threshold
        v_spike (Quantity) : voltage threshold for the spike condition
        delta_T (Quantity): Sharpness of the exponential term
        I_stim (TimedArray): Input current
        simulation_time (Quantity): Duration for which the model is simulated

    Returns:
        (voltage_monitor, spike_monitor):
        A b2.StateMonitor for the variable "v" and a b2.SpikeMonitor
    """

    eqs = """
    dv/dt = (-(v-v_rest) +delta_T*exp((v-v_rheobase)/delta_T)+ R * I_stim(t,i))/(tau) : volt
    """
    neuron = b2.NeuronGroup(1, model=eqs, reset="v=v_reset", threshold="v>v_spike", method="euler")
    neuron.v = v_rest
    # monitoring membrane potential of neuron and injecting current
    voltage_monitor = b2.StateMonitor(neuron, ["v"], record=True)
    spike_monitor = b2.SpikeMonitor(neuron)

    # run the simulation
    b2.run(simulation_time)
    return voltage_monitor, spike_monitor
示例#44
0
def simulate_LIF_neuron(input_current,
                        simulation_time=5 * b2.ms,
                        v_rest=V_REST,
                        v_reset=V_RESET,
                        firing_threshold=FIRING_THRESHOLD,
                        membrane_resistance=MEMBRANE_RESISTANCE,
                        membrane_time_scale=MEMBRANE_TIME_SCALE,
                        abs_refractory_period=ABSOLUTE_REFRACTORY_PERIOD):
    """Basic leaky integrate and fire neuron implementation.

    Args:
        input_current (TimedArray): TimedArray of current amplitudes. One column per current_injection_location.
        simulation_time (Quantity): Time for which the dynamics are simulated: 5ms
        v_rest (Quantity): Resting potential: -70mV
        v_reset (Quantity): Reset voltage after spike - 65mV
        firing_threshold (Quantity) Voltage threshold for spiking -50mV
        membrane_resistance (Quantity): 10Mohm
        membrane_time_scale (Quantity): 8ms
        abs_refractory_period (Quantity): 2ms

    Returns:
        StateMonitor: Brian2 StateMonitor for the membrane voltage "v"
        SpikeMonitor: Biran2 SpikeMonitor
    """

    # differential equation of Leaky Integrate-and-Fire model
    eqs = """
    dv/dt =
    ( -(v-v_rest) + membrane_resistance * input_current(t,i) ) / membrane_time_scale : volt (unless refractory)"""

    # LIF neuron using Brian2 library
    neuron = b2.NeuronGroup(
        1, model=eqs, reset="v=v_reset", threshold="v>firing_threshold",
        refractory=abs_refractory_period, method="linear")
    neuron.v = v_rest  # set initial value

    # monitoring membrane potential of neuron and injecting current
    state_monitor = b2.StateMonitor(neuron, ["v"], record=True)
    spike_monitor = b2.SpikeMonitor(neuron)
    # run the simulation
    b2.run(simulation_time)
    return state_monitor, spike_monitor
def get_trajectory(v0=0., w0=0., I=0., eps=0.1, a=2.0, tend=500.):
    """Solves the following system of FitzHugh Nagumo equations
    for given initial conditions:

    dv/dt = 1/1ms * v * (1-v**2) - w + I
    dw/dt = eps * (v + 0.5 * (a - w))

    Args:
        v0: Intial condition for v [mV]
        w0: Intial condition for w [mV]
        I: Constant input [mV]
        eps: Inverse time constant of the recovery variable w [1/ms]
        a: Offset of the w-nullcline [mV]
        tend: Simulation time [ms]

    Returns:
        tuple: (t, v, w) tuple for solutions
    """

    eqs = """
    I_e : amp
    dv/dt = 1/ms * ( v * (1 - (v**2) / (mV**2) ) - w + I_e * Mohm ) : volt
    dw/dt = eps/ms * (v + 0.5 * (a * mV - w)) : volt
    """

    neuron = b2.NeuronGroup(1, eqs, method="euler")

    # state initialization
    neuron.v = v0 * b2.mV
    neuron.w = w0 * b2.mV

    # set input current
    neuron.I_e = I * b2.nA

    # record states
    rec = b2.StateMonitor(neuron, ["v", "w"], record=True)

    # run the simulation
    b2.run(tend * b2.ms)

    return (rec.t / b2.ms, rec.v[0] / b2.mV, rec.w[0] / b2.mV)
def LIF_Neuron(curr, simtime):
    """Simple LIF neuron implemented in Brian2.

    Args:
        curr (TimedArray): Input current injected into the neuron
        simtime (float): Simulation time [seconds]

    Returns:
        StateMonitor: Brian2 StateMonitor with input current (I) and
        voltage (V) recorded
    """

    # constants
    v_reset = 0.*b2.mV
    v_threshold = 1.*b2.mV
    R = 1*b2.Mohm
    v_rest = 0*b2.mV
    tau = 1*b2.ms

    v_reset_ = "v=%f*volt" % v_reset
    v_threshold_ = "v>%f*volt" % v_threshold

    # differential equation of Leaky Integrate-and-Fire model
    eqs = '''
        dv/dt = ( -(v-v_rest) + R * I ) / tau : volt
        I = curr(t) : amp
    '''

    # LIF neuron using Brian2 library
    IF = b2.NeuronGroup(1, model=eqs, reset=v_reset_, threshold=v_threshold_)
    IF.v = v_rest

    # monitoring membrane potential of neuron and injecting current
    rec = b2.StateMonitor(IF, ['v', 'I'], record=True)

    # run the simulation
    b2.run(simtime)

    return rec
示例#47
0
def test_network_t():
    # test that Network.t works as expected
    c1 = Clock(dt=1*ms)
    c2 = Clock(dt=2*ms)
    x = Counter(when=c1)
    y = Counter(when=c2)
    net = Network(x, y)
    net.run(4*ms)
    assert_equal(c1.t, 4*ms)
    assert_equal(c2.t, 4*ms)
    assert_equal(net.t, 4*ms)
    net.run(1*ms)
    assert_equal(c1.t, 5*ms)
    assert_equal(c2.t, 6*ms)
    assert_equal(net.t, 5*ms)
    assert_equal(x.count, 5)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # should only update x
    assert_equal(c1.t, 6*ms)
    assert_equal(c2.t, 6*ms)
    assert_equal(net.t, 5.5*ms)
    assert_equal(x.count, 6)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # shouldn't do anything
    assert_equal(c1.t, 6*ms)
    assert_equal(c2.t, 6*ms)
    assert_equal(net.t, 6*ms)
    assert_equal(x.count, 6)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # should update x and y
    assert_equal(c1.t, 7*ms)
    assert_equal(c2.t, 8*ms)
    assert_equal(net.t, 6.5*ms)
    assert_equal(x.count, 7)
    assert_equal(y.count, 4)
    
    del c1, c2, x, y, net

    # now test with magic run    
    c1 = Clock(dt=1*ms)
    c2 = Clock(dt=2*ms)
    x = Counter(when=c1)
    y = Counter(when=c2)
    run(4*ms)
    assert_equal(c1.t, 4*ms)
    assert_equal(c2.t, 4*ms)
    assert_equal(x.count, 4)
    assert_equal(y.count, 2)
    run(4*ms)
    assert_equal(c1.t, 8*ms)
    assert_equal(c2.t, 8*ms)
    assert_equal(x.count, 8)
    assert_equal(y.count, 4)
    run(1*ms)
    assert_equal(c1.t, 9*ms)
    assert_equal(c2.t, 10*ms)
    assert_equal(x.count, 9)
    assert_equal(y.count, 5)
示例#48
0
def example_run(debug=False, **build_options):
    '''
    Run a simple example simulation that test whether the Brian2/Brian2GeNN/GeNN
    pipeline is working correctly.

    Parameters
    ----------
    debug : bool
        Whether to display debug information (e.g. compilation output) during
        the run. Defaults to ``False``.
    build_options : dict
        Additional options that will be forwarded to the ``set_device`` call,
        e.g. ``use_GPU=False``.
    '''
    from brian2.devices.device import set_device, reset_device
    from brian2 import ms, NeuronGroup, run
    from brian2.utils.logger import std_silent
    import numpy as np
    from numpy.testing import assert_allclose
    from tempfile import mkdtemp
    import shutil
    with std_silent(debug):
        test_dir = mkdtemp(prefix='brian2genn_test')
        set_device('genn', directory=test_dir, debug=debug, **build_options)
        N = 100
        tau = 10*ms
        eqs = '''
        dV/dt = -V/tau: 1
        '''
        G = NeuronGroup(N, eqs, threshold='V>1', reset='V=0', refractory=5 * ms,
                        method='linear')
        G.V = 'i/100.'
        run(1*ms)
        assert_allclose(G.V, np.arange(100)/100.*np.exp(-1*ms/tau))
        shutil.rmtree(test_dir, ignore_errors=True)
        reset_device()
    print('Example run was successful.')
示例#49
0
 def timed_run(self, duration):
     '''
     Do a timed run. This means that for RuntimeDevice it will run for defaultclock.dt before running for the
     rest of the duration. This means total run duration will be duration+defaultclock.dt.
     For standalone devices, this feature may or may not be implemented.
     '''
     if isinstance(brian2.get_device(), brian2.devices.RuntimeDevice):
         brian2.run(brian2.defaultclock.dt, level=1)
         brian2.run(duration, level=1)
     else:
         brian2.run(duration, level=1)
示例#50
0
def test_dt_changes_between_runs():
    defaultclock.dt = 0.1*ms
    G = NeuronGroup(1, 'v:1')
    mon = StateMonitor(G, 'v', record=True)
    run(.5*ms)
    defaultclock.dt = .5*ms
    run(.5*ms)
    defaultclock.dt = 0.1*ms
    run(.5*ms)
    assert len(mon.t[:]) == 5 + 1 + 5
    assert_allclose(mon.t[:],
                    [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 1., 1.1, 1.2, 1.3, 1.4]*ms)
示例#51
0
def test_store_restore_magic_to_file():
    filename = tempfile.mktemp(suffix='state', prefix='brian_test')
    source = NeuronGroup(10, '''dv/dt = rates : 1
                                rates : Hz''', threshold='v>1', reset='v=0')
    source.rates = 'i*100*Hz'
    target = NeuronGroup(10, 'v:1')
    synapses = Synapses(source, target, model='w:1', on_pre='v+=w')
    synapses.connect(j='i')
    synapses.w = 'i*1.0'
    synapses.delay = 'i*ms'
    state_mon = StateMonitor(target, 'v', record=True)
    spike_mon = SpikeMonitor(source)
    store(filename=filename)  # default time slot
    run(10*ms)
    store('second', filename=filename)
    run(10*ms)
    v_values = state_mon.v[:, :]
    spike_indices, spike_times = spike_mon.it_

    restore(filename=filename) # Go back to beginning
    assert magic_network.t == 0*ms
    run(20*ms)
    assert defaultclock.t == 20*ms
    assert_equal(v_values, state_mon.v[:, :])
    assert_equal(spike_indices, spike_mon.i[:])
    assert_equal(spike_times, spike_mon.t_[:])

    # Go back to middle
    restore('second', filename=filename)
    assert magic_network.t == 10*ms
    run(10*ms)
    assert defaultclock.t == 20*ms
    assert_equal(v_values, state_mon.v[:, :])
    assert_equal(spike_indices, spike_mon.i[:])
    assert_equal(spike_times, spike_mon.t_[:])
    try:
        os.remove(filename)
    except OSError:
        pass
示例#52
0
def test_network_t():
    # test that Network.t works as expected
    x = Counter(dt=1*ms)
    y = Counter(dt=2*ms)
    net = Network(x, y)
    net.run(4*ms)
    assert_equal(net.t, 4*ms)
    net.run(1*ms)
    assert_equal(net.t, 5*ms)
    assert_equal(x.count, 5)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # should only update x
    assert_equal(net.t, 5.5*ms)
    assert_equal(x.count, 6)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # shouldn't do anything
    assert_equal(net.t, 6*ms)
    assert_equal(x.count, 6)
    assert_equal(y.count, 3)
    net.run(0.5*ms) # should update x and y
    assert_equal(net.t, 6.5*ms)
    assert_equal(x.count, 7)
    assert_equal(y.count, 4)
    
    del x, y, net

    # now test with magic run
    x = Counter(dt=1*ms)
    y = Counter(dt=2*ms)
    run(4*ms)
    assert_equal(magic_network.t, 4*ms)
    assert_equal(x.count, 4)
    assert_equal(y.count, 2)
    run(4*ms)
    assert_equal(magic_network.t, 8*ms)
    assert_equal(x.count, 8)
    assert_equal(y.count, 4)
    run(1*ms)
    assert_equal(magic_network.t, 9*ms)
    assert_equal(x.count, 9)
    assert_equal(y.count, 5)
示例#53
0
文件: if.py 项目: syntapy/brian_mnist
#Ni = br.NeuronGroup(3, '''dv/dt = (vt - vr)/period : volt (unless refractory)
#                                period: second
#                                fire_once: boolean''', \
#                                threshold='v>vt', reset='v=vr',
#                                refractory='fire_once')
#Ni.period = [1, 1, 7] * br.ms
#Ni.fire_once[:] = [True] * 3

indices = np.asarray([0])
times = np.asarray([6]) * br.ms

Ni = br.SpikeGeneratorGroup(3, indices=indices, times=times)
#Nh = br.NeuronGroup(1, model="""dv/dt=(gtot-v)/(10*ms) : 1
#                                  gtot : 1""")
Nh = br.NeuronGroup(1, model="""v = I :1
                                I : 1""")
S = br.Synapses(Ni, Nh,
           model='''tl : second
                    alpha=exp((tl - t)/tau1) - exp((tl - t)/tau2) : 1
                    w : 1
                    I_post = w*alpha : 1 (summed)
                 ''',
           pre='tl+=t - tl')
S.connect('True')
S.w[:, :] = '(80+rand())'
S.tl[:, :] = '0*second'
M = br.StateMonitor(Nh, 'v', record=True)
br.run(20*br.ms)
br.plot(M[0].t, M[0].v)
br.show()
def simulate_brunel_network(
        N_Excit=5000,
        N_Inhib=None,
        N_extern=N_POISSON_INPUT,
        connection_probability=CONNECTION_PROBABILITY_EPSILON,
        w0=SYNAPTIC_WEIGHT_W0,
        g=RELATIVE_INHIBITORY_STRENGTH_G,
        synaptic_delay=SYNAPTIC_DELAY,
        poisson_input_rate=POISSON_INPUT_RATE,
        w_external=None,
        v_rest=V_REST,
        v_reset=V_RESET,
        firing_threshold=FIRING_THRESHOLD,
        membrane_time_scale=MEMBRANE_TIME_SCALE,
        abs_refractory_period=ABSOLUTE_REFRACTORY_PERIOD,
        monitored_subset_size=100,
        random_vm_init=False,
        sim_time=100.*b2.ms):
    """
    Fully parametrized implementation of a sparsely connected network of LIF neurons (Brunel 2000)

    Args:
        N_Excit (int): Size of the excitatory popluation
        N_Inhib (int): optional. Size of the inhibitory population.
            If not set (=None), N_Inhib is set to N_excit/4.
        N_extern (int): optional. Number of presynaptic excitatory poisson neurons. Note: if set to a value,
            this number does NOT depend on N_Excit and NOT depend on connection_probability (this is different
            from the book and paper. Only if N_extern is set to 'None', then N_extern is computed as
            N_Excit*connection_probability.
        connection_probability (float): probability to connect to any of the (N_Excit+N_Inhib) neurons
            CE = connection_probability*N_Excit
            CI = connection_probability*N_Inhib
            Cexternal = N_extern
        w0 (float): Synaptic strength J
        g (float): relative importance of inhibition. J_exc = w0. J_inhib = -g*w0
        synaptic_delay (Quantity): Delay between presynaptic spike and postsynaptic increase of v_m
        poisson_input_rate (Quantity): Poisson rate of the external population
        w_external (float): optional. Synaptic weight of the excitatory external poisson neurons onto all
            neurons in the network. Default is None, in that case w_external is set to w0, which is the
            standard value in the book and in the paper Brunel2000.
            The purpose of this parameter is to see the effect of external input in the
            absence of network feedback(setting w0 to 0mV and w_external>0).
        v_rest (Quantity): Resting potential
        v_reset (Quantity): Reset potential
        firing_threshold (Quantity): Spike threshold
        membrane_time_scale (Quantity): tau_m
        abs_refractory_period (Quantity): absolute refractory period, tau_ref
        monitored_subset_size (int): nr of neurons for which a VoltageMonitor is recording Vm
        random_vm_init (bool): if true, the membrane voltage of each neuron is initialized with a
            random value drawn from Uniform(v_rest, firing_threshold)
        sim_time (Quantity): Simulation time

    Returns:
        (rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons)
        PopulationRateMonitor: Rate Monitor
        SpikeMonitor: SpikeMonitor for ALL (N_Excit+N_Inhib) neurons
        StateMonitor: membrane voltage for a selected subset of neurons
        list: index of monitored neurons. length = monitored_subset_size
    """
    if N_Inhib is None:
        N_Inhib = int(N_Excit/4)
    if N_extern is None:
        N_extern = int(N_Excit*connection_probability)
    if w_external is None:
        w_external = w0

    J_excit = w0
    J_inhib = -g*w0

    lif_dynamics = """
    dv/dt = -(v-v_rest) / membrane_time_scale : volt (unless refractory)"""

    network = NeuronGroup(
        N_Excit+N_Inhib, model=lif_dynamics,
        threshold="v>firing_threshold", reset="v=v_reset", refractory=abs_refractory_period,
        method="linear")
    if random_vm_init:
        network.v = random.uniform(v_rest/b2.mV, high=firing_threshold/b2.mV, size=(N_Excit+N_Inhib))*b2.mV
    else:
        network.v = v_rest
    excitatory_population = network[:N_Excit]
    inhibitory_population = network[N_Excit:]

    exc_synapses = Synapses(excitatory_population, target=network, on_pre="v += J_excit", delay=synaptic_delay)
    exc_synapses.connect(p=connection_probability)

    inhib_synapses = Synapses(inhibitory_population, target=network, on_pre="v += J_inhib", delay=synaptic_delay)
    inhib_synapses.connect(p=connection_probability)

    external_poisson_input = PoissonInput(target=network, target_var="v", N=N_extern,
                                          rate=poisson_input_rate, weight=w_external)

    # collect data of a subset of neurons:
    monitored_subset_size = min(monitored_subset_size, (N_Excit+N_Inhib))
    idx_monitored_neurons = sample(range(N_Excit+N_Inhib), monitored_subset_size)
    rate_monitor = PopulationRateMonitor(network)
    # record= some_list is not supported? :-(
    spike_monitor = SpikeMonitor(network, record=idx_monitored_neurons)
    voltage_monitor = StateMonitor(network, "v", record=idx_monitored_neurons)

    b2.run(sim_time)
    return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons