示例#1
0
def make_available_sensors_plot(c: Config, pier_radius: float,
                                track_radius: float, edge_radius: float):
    """Scatter plot of sensors used for classification."""
    top_view_bridge(c.bridge, abutments=True, piers=True, compass=False)
    plot_deck_sensors(
        c=c,
        without=without.points(
            c=c,
            pier_radius=pier_radius,
            track_radius=track_radius,
            edge_radius=edge_radius,
        ),
        label=True,
    )
    for l_i, load in enumerate([Point(x=21, z=-8.4), Point(x=33, z=-4)]):
        plt.scatter(
            [load.x],
            [load.z],
            color="red",
            marker="o",
            s=50,
            label="Sensor of interest" if l_i == 0 else None,
        )
    legend_marker_size(plt.legend(), 50)
    plt.title(f"Sensors available for classification on Bridge 705")
    plt.tight_layout()
    plt.savefig(c.get_image_path("sensors", "unavailable-sensors.pdf"))
    plt.close()
示例#2
0
def plot_deck_sensors(c: Config,
                      without: Callable[[Point], bool],
                      label: bool = False):
    """Scatter plot of deck sensors."""
    deck_nodes, _ = get_bridge_nodes(c.bridge)
    deck_nodes = det_nodes(deck_nodes)
    unavail_nodes = []
    avail_nodes = []
    for node in deck_nodes:
        if without(Point(x=node.x, y=node.y, z=node.z)):
            unavail_nodes.append(node)
        else:
            avail_nodes.append(node)
    X, Z, H = [], [], []  # 2D arrays, x and z coordinates, and height.
    for node in deck_nodes:
        X.append(node.x)
        Z.append(node.z)
        if without(Point(x=node.x, y=node.y, z=node.z)):
            H.append(1)
        else:
            H.append(0)
    plt.scatter(
        [node.x for node in avail_nodes],
        [node.z for node in avail_nodes],
        s=5,
        color="#1f77b4",
    )
    plt.scatter(
        [node.x for node in unavail_nodes],
        [node.z for node in unavail_nodes],
        color="#ff7f0e",
        s=5,
    )
    if label:
        plt.scatter(
            [avail_nodes[0].x],
            [avail_nodes[0].z],
            color="#1f77b4",
            label="Available",
            s=5,
        )
        plt.scatter(
            [unavail_nodes[0].x],
            [unavail_nodes[0].z],
            color="#ff7f0e",
            label="Unavailable",
            s=5,
        )
        legend = plt.legend()
        legend_marker_size(legend, 50)
示例#3
0
def convert_sim_translation_responses(
    nodes: List[Node],
    sim_ind: int,
    response_type: ResponseType,
    parsed_sim_responses: Dict[ResponseType, List[List[float]]],
    converted_expt_responses: Dict[int, Dict[ResponseType, List["Response"]]],
):
    """Convert parsed simulation translation fem to List[Response].

    The converted fem will be entered into the given dictionary.

    """
    # If the requested response type is not available do nothing.
    # TODO: Should we not raise an Error?
    if response_type not in parsed_sim_responses:
        return
    parsed_sim_trans_responses = parsed_sim_responses[response_type]
    result = []  # The List[Response] that we are converting to.
    node_index = 0  # Index of node corresponding to current response.
    # For each time step in the simulation.
    for time in range(len(parsed_sim_trans_responses)):
        # For each collected response at that time.
        for i in range(len(parsed_sim_trans_responses[time])):
            node = nodes[node_index]
            result.append(
                (
                    parsed_sim_trans_responses[time][i],
                    Point(x=node.x, y=node.y, z=node.z),
                )
            )
            node_index += 1
    converted_expt_responses[sim_ind][response_type] = result
示例#4
0
def cracked_concrete_plots(c: Config):
    """Contour plots of cracked concrete scenarios."""
    response_type = ResponseType.YTranslation
    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]

    # Create empty traffic array and collect fem.
    response_array = responses_to_traffic_array(
        c=c,
        traffic_array=load_normal_traffic_array(c)[0],
        response_type=response_type,
        bridge_scenario=cracked_scenario,
        points=points,
        sim_runner=OSRunner,
    )

    for t in range(len(response_array)):
        top_view_bridge(c.bridge, abutments=True, piers=True)
        responses = Responses.from_responses(
            response_type=response_type,
            responses=[(response_array[t][p], point)
                       for p, point in enumerate(points)],
        )
        plot_contour_deck(c=c, responses=responses, center_norm=True)
        plt.title("Cracked Concrete")
        plt.savefig(c.get_image_path("cracked-scenario", f"cracked-time-{t}"))
        plt.close()
示例#5
0
def make_node_plots(original_c: Config):
    """Make all variations of 3d scatter plots of nodes."""
    for damage_scenario in healthy_and_cracked_scenarios:
        c, sim_params = damage_scenario.use(original_c, SimParams([]))
        for ctx, ctx_name in [
            (BuildContext(add_loads=[Point(x=85, y=0, z=0)]), "refined"),
            (None, "unrefined"),
        ]:
            bridge_nodes = get_bridge_nodes(bridge=c.bridge, ctx=ctx)
            deck_nodes = set(flatten(bridge_nodes[0], Node))
            pier_nodes = set(flatten(bridge_nodes[1], Node))
            all_nodes = set(flatten(bridge_nodes, Node))
            # For each combination of parameters plot the nodes.
            for nodes_name, nodes in [
                ("all", all_nodes),
                ("deck", deck_nodes),
                ("pier", pier_nodes),
            ]:
                node_scatter_3d(nodes=nodes)
                plt.title(f"Nodes of {c.bridge.name}")
                plt.savefig(
                    c.get_image_path(
                        f"geometry/nodes-{ctx_name}",
                        safe_str(f"{nodes_name}") + ".pdf",
                    ))
                plt.close()
示例#6
0
def temperature_effect_date(c: Config, month: str, vert: bool):
    temp = __init__.load(name=month)
    point = Point(x=51, y=0, z=-8.4)
    plt.landscape()

    def plot_hours():
        if not vert:
            return
        label_set = False
        for dt in temp["datetime"]:
            if np.isclose(float(dt.hour + dt.minute), 0):
                label = None
                if not label_set:
                    label = "Time at vertical line = 00:00"
                    label_set = True
                plt.axvline(x=dt, linewidth=1, color="black", label=label)

    # Plot the temperature.
    plt.subplot(2, 1, 1)
    plot_hours()
    plt.scatter(
        temp["datetime"],
        temp["temp"],
        c=temp["missing"],
        cmap=mpl.cm.get_cmap("bwr"),
        s=1,
    )
    plt.ylabel("Temperature (°C)")
    plt.xlabel("Date")
    plt.gcf().autofmt_xdate()
    plt.title(f"Temperature in {str(month[0]).upper()}{month[1:]}")
    plt.legend()
    # Plot the effect at a point.
    response_type = ResponseType.YTranslation
    plt.subplot(2, 1, 2)
    plot_hours()
    effect = __init__.effect(
        c=c, response_type=response_type, points=[point], temps=temp["temp"]
    )[0]
    plt.scatter(
        temp["datetime"],
        effect * 1000,
        c=temp["missing"],
        cmap=mpl.cm.get_cmap("bwr"),
        s=1,
    )
    plt.ylabel(f"{response_type.name()} (mm)")
    plt.xlabel("Date")
    plt.gcf().autofmt_xdate()
    plt.title(f"{response_type.name()} to unit thermal loading in {month}")
    # Save.
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/temperature", f"{month}.png"))
    plt.savefig(c.get_image_path("classify/temperature", f"{month}.pdf"))
    plt.close()
示例#7
0
def pairwise_cluster(c: Config, load: bool):
    """Cluster pairwise maps from healthy and damaged scenarios."""
    features_path = c.get_data_path("features", "pairwise-cluster", bridge=False)
    if not load:
        normal_traffic_array, _ = load_normal_traffic_array(c=c, mins=24)
        normal_traffic_array = normal_traffic_array[
            int(len(normal_traffic_array) / 24) :
        ]
        response_type = ResponseType.YTranslation
        grid_points = [
            Point(x=x, y=0, z=-9.65)
            for x, _ in itertools.product(
                np.linspace(c.bridge.x_min, c.bridge.x_max, 50),
                # np.linspace(c.bridge.x_min, c.bridge.x_max, 4),
                [1],
            )
        ]

        # Collect a list of features per scenarios scenario.
        features = []
        for damage_scenario in healthy_and_cracked_scenarios[1:]:
            damage_c = damage_scenario.use(c)
            responses = responses_to_traffic_array(
                c=damage_c,
                traffic_array=normal_traffic_array,
                response_type=response_type,
                bridge_scenario=damage_scenario,
                points=grid_points,
                sim_runner=OSRunner,
            ).T
            ks_values = []
            for p0_i, point0 in enumerate(grid_points):
                print_i(f"Point {p0_i + 1} / {len(grid_points)}", end="\r")
                ks_values.append([])
                for p1_i, point1 in enumerate(grid_points):
                    ks = ks_no_outliers(responses[p0_i], responses[p1_i])
                    ks_values[-1].append(ks)
            features.append((ks_values, damage_scenario.name))

        # Save features to disk.
        features = np.array(features)
        np.save(features_path, features)

    features = np.load(features_path)
    # Reduce each pairwise map to a sum per sensor.
    for f_i, (feature, feature_name) in enumerate(features):
        features[f_i] = ([sum(sensor) for sensor in feature], feature_name)
        features[f_i] = ([sum(sensor) for sensor in features[f_i]], feature_name)

    # Cluster each pairwise map.
    from sklearn.cluster import KMeans

    kmeans = KMeans(n_clusters=2)
    kmeans.fit(features)
示例#8
0
 def without(self, remove: Callable[[Point], bool]) -> "Responses":
     responses = []
     for x, y_dict in self.responses[self.times[0]].items():
         for y, z_dict in y_dict.items():
             for z, response in z_dict.items():
                 p = Point(x=x, y=y, z=z)
                 if not remove(p):
                     responses.append((response, p))
                 # if abs(p.distance(of)) > radius:
     return Responses(response_type=self.response_type,
                      responses=responses,
                      units=self.units)
示例#9
0
 def center(self) -> Point:
     """Point at the center of the element."""
     if not hasattr(self, "_center"):
         node_0 = self.nodes_by_id[self.ni_id]
         node_1 = self.nodes_by_id[self.nk_id]
         delta_x = abs(node_0.x - node_1.x)
         delta_y = abs(node_0.y - node_1.y)
         delta_z = abs(node_0.z - node_1.z)
         min_x = min(node_0.x, node_1.x)
         min_y = min(node_0.y, node_1.y)
         min_z = min(node_0.z, node_1.z)
         self._center = Point(x=min_x + delta_x / 2,
                              y=min_y + delta_y / 2,
                              z=min_z + delta_z / 2)
     return self._center
示例#10
0
def make_shell_properties_3d(original_c: Config):
    """Make plots of the shells in 3D, coloured by material property."""
    # For each scenarios scenario build the model and extract the shells.
    for damage_scenario in healthy_and_cracked_scenarios:
        c, sim_params = damage_scenario.use(original_c, SimParams([]))
        for ctx, ctx_name in [
            (BuildContext(add_loads=[Point(x=85, y=0, z=0)]), "refined"),
            (None, "unrefined"),
        ]:
            bridge_shells = get_bridge_shells(bridge=c.bridge, ctx=ctx)
            deck_shells = flatten(bridge_shells[0], Shell)
            pier_shells = flatten(bridge_shells[1], Shell)
            all_shells = flatten(bridge_shells, Shell)
            # For each combination of parameters plot the shells.
            for shells_name, shells in [
                ("pier", pier_shells),
                ("all", all_shells),
                ("deck", deck_shells),
            ]:
                for outline, label in itertools.product([True, False],
                                                        [True, False]):
                    for prop_name, prop_units, prop_f in [
                        ("Thickness", "m", lambda s: s.thickness),
                        ("Density", "kg/m", lambda s: s.density),
                        ("Poisson's ratio", "m/m", lambda s: s.poissons),
                        ("Young's modulus", "MPa", lambda s: s.youngs),
                    ]:
                        for cmap in [default_cmap, get_cmap("tab10")]:
                            shell_properties_3d(
                                shells=shells,
                                prop_units=prop_units,
                                prop_f=prop_f,
                                cmap=cmap,
                                outline=outline,
                                label=label,
                                colorbar=not label,
                            )
                            plt.title(f"{prop_name} of {c.bridge.name}")
                            plt.savefig(
                                c.get_image_path(
                                    f"geometry/shells-{ctx_name}-3d",
                                    safe_str(
                                        f"{shells_name}-{prop_name}-outline-{outline}-{cmap.name}"
                                    ) + ".pdf",
                                ))
                            plt.close()
示例#11
0
def traffic_response_plots(c: Config, times: int = 3):
    """Response to normal traffic per scenarios scenario at multiple time steps."""
    response_type = ResponseType.YTranslation
    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]
    # for damage_scenario in all_scenarios(c):
    for damage_scenario in [unit_temp_scenario]:
        response_array = responses_to_traffic_array(
            c=c,
            traffic_array=load_normal_traffic_array(c, mins=1)[0],
            response_type=response_type,
            bridge_scenario=damage_scenario,
            points=points,
            sim_runner=OSRunner,
        )
        print(response_array.shape)
        mean_response_array = np.mean(response_array, axis=0).T
        print(mean_response_array.shape)
        print(mean_response_array.shape)

        for t in range(times):
            time_index = -1 + abs(t)
            top_view_bridge(c.bridge, abutments=True, piers=True)
            responses = Responses.from_responses(
                response_type=response_type,
                responses=[(response_array[time_index][p], point)
                           for p, point in enumerate(points)],
            )
            plot_contour_deck(c=c,
                              responses=responses,
                              center_norm=True,
                              levels=100)
            plt.title(damage_scenario.name)
            plt.savefig(
                c.get_image_path(
                    "contour-traffic-response",
                    f"{damage_scenario.name}-time={time_index}",
                ))
            plt.close()
示例#12
0
def oneclass(c: Config):
    normal_traffic_array, traffic_scenario = load_normal_traffic_array(c)
    bridge_scenarios = [HealthyScenario()] + each_pier_scenarios(c)
    response_type = ResponseType.YTranslation
    points = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max / 2, 20),
            np.linspace(c.bridge.z_min, c.bridge.z_max / 2, 3),
        )
    ]
    results = []

    for b, bridge_scenario in enumerate(bridge_scenarios):
        print_i(f"One class: bridge scenario {bridge_scenario.name}")
        responses = responses_to_traffic_array(
            c=c,
            traffic_array=normal_traffic_array,
            response_type=response_type,
            bridge_scenario=bridge_scenario,
            points=points,
            fem_runner=OSRunner(c),
        ).T
        print(len(normal_traffic_array))
        print(responses.shape)

        # Fit on the healthy scenario.
        if b == 0:
            assert len(responses) == len(points)
            clfs = []
            for r, rs in enumerate(responses):
                print_i(f"Training classifier {r} / {len(responses)}")
                clfs.append(OneClassSVM().fit(rs.reshape(-1, 1)))

        scenario_results = []
        for p, _ in enumerate(points):
            print_i(f"Predicting points {p} / {len(points)}")
            prediction = clfs[p].predict(responses[p].reshape(-1, 1))
            print(prediction)
            print(len(prediction[prediction < 0]))
            print(len(prediction[prediction > 0]))
示例#13
0
def gradient_pier_displacement_plot(
    c: Config,
    pier_disp: PierSettlementScenario,
    response_type: ResponseType,
    title: str,
):
    """Contour plot of piers displaced in an increasing gradient."""

    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]

    # Create empty traffic array and collect fem.
    response_array = responses_to_traffic_array(
        c=c,
        traffic_array=np.zeros(
            (1, len(c.bridge.wheel_tracks(c)) * c.il_num_loads)),
        response_type=response_type,
        bridge_scenario=pier_disp,
        points=points,
        fem_runner=OSRunner(c),
    )

    top_view_bridge(c.bridge, abutments=True, piers=True)
    responses = Responses.from_responses(
        response_type=response_type,
        responses=[(response_array[0][p], point)
                   for p, point in enumerate(points)],
    )
    plot_contour_deck(c=c, responses=responses, center_norm=True)
    plt.title(title)
    plt.savefig(
        c.get_image_path("pier-scenarios",
                         f"pier-displacement-{safe_str(title)}"))
    plt.close()
示例#14
0
def animate_mv_vehicle(
    c: Config,
    mv_vehicle: Vehicle,
    response_type: ResponseType,
    fem_runner: FEMRunner,
    num_x_fracs: int = 100,
    per_axle: bool = False,
    save: str = None,
    show: bool = False,
):
    """Animate the bridge's response to a moving vehicles."""
    times = list(times_on_bridge(c=c, mv_vehicles=[mv_vehicles]))
    at = [
        Point(x=c.bridge.x(x_frac))
        for x_frac in np.linspace(0, 1, num_x_fracs)
    ]
    responses = responses_to_mv_vehicles(
        c=c,
        mv_vehicles=[mv_vehicles],
        response_types=[response_type],
        fem_runner=fem_runner,
        times=times,
        at=at,
        per_axle=per_axle,
    )
    # Reshape to have only a single response type and moving vehicles.
    new_shape = [d for d in responses.shape if d != 1]
    responses = responses.reshape(new_shape)
    animate_bridge_response(
        c=c,
        responses=[responses],
        response_type=response_type,
        mv_vehicles=[mv_vehicles],
        save=save,
        show=show,
    )
示例#15
0
def run_ulm(c: Config, healthy: bool, cracked: bool, x_i: float, z_i: float):
    """Run all unit load simulations."""
    response_type = ResponseType.YTranslation
    wheel_xs = c.bridge.wheel_track_xs(c)
    wheel_x = wheel_xs[x_i]
    wheel_zs = c.bridge.wheel_track_zs(c)
    wheel_z = wheel_zs[z_i]
    print_i(f"Wheel (x, z) = ({wheel_x}, {wheel_z})")
    point = Point(x=wheel_x, y=0, z=wheel_z)
    if healthy:
        ULResponses.load_ulm(
            c=c,
            response_type=response_type,
            points=[point],
            sim_runner=OSRunner(c),
        )
    if cracked:
        c = transverse_crack().use(c)[0]
        ULResponses.load_ulm(
            c=c,
            response_type=response_type,
            points=[point],
            sim_runner=OSRunner(c),
        )
示例#16
0
def convert_strain_responses(
    elements: List[Shell],
    sim_ind: int,
    parsed_sim_responses: Dict[ResponseType, List[List[float]]],
    converted_expt_responses: Dict[int, Dict[ResponseType, List["Response"]]],
):
    if not any(rt.is_strain() or rt.is_stress() for rt in parsed_sim_responses):
        return
    parsed_sim_strain = parsed_sim_responses[ResponseType.StrainXXB]
    result_bottom, result_bottom_z, result_top = [], [], []
    print_w("Elements belonging to piers will not have strain recorded")
    print_w("Strain fem are specified to be at y=0, but recorded lower")

    # For each integration point..
    assert len(parsed_sim_strain) == 4
    for i_point in range(4):

        # ..consider the fem for each element.
        assert len(elements) == len(parsed_sim_strain[i_point])
        for element, el_responses in zip(elements, parsed_sim_strain[i_point]):

            # Skip any elements belonging to the pier.
            if element.pier:
                continue

            # First calculate the center offset of the integration points..
            if not hasattr(element, "i_point_offset"):
                element.i_point_offset = (
                    element.length() / 2 * (1 / np.sqrt(3)),
                    element.width() / 2 * (1 / np.sqrt(3)),
                )
            i_point_x_offset, i_point_z_offset = element.i_point_offset

            # ..then determine the position of each integration point.
            response_point = deepcopy(element.center())
            if i_point + 1 == 1:
                response_point.x -= i_point_x_offset
                response_point.z -= i_point_z_offset
            elif i_point + 1 == 2:
                response_point.x += i_point_x_offset
                response_point.z -= i_point_z_offset
            elif i_point + 1 == 3:
                response_point.x += i_point_x_offset
                response_point.z += i_point_z_offset
            elif i_point + 1 == 4:
                response_point.x -= i_point_x_offset
                response_point.z += i_point_z_offset
            else:
                raise ValueError("Unknown integration point {i_point + 1}")

            # if (
            #     np.isclose(element.center().x, 2.170312) and
            #     np.isclose(element.center().z, 12.8495)
            # ):
            #     print()
            #     print(element.center())
            #     print(element.length(), element.width())
            #     print(element.i_point_offset)
            #     print(response_point)

            # Calculate and record the response.
            eps11, eps22, _g12, theta11, theta22, theta33, _g13, _g23 = list(
                el_responses
            )
            half_height = element.section.thickness / 2
            # print(response_point.x, response_point.y, response_point.z)
            # print(eps11)
            result_bottom.append(
                (
                    (eps11 - (theta11 * half_height)) * -1e6,
                    Point(x=response_point.x, y=response_point.y, z=response_point.z,),
                )
            )
            result_bottom_z.append(
                (
                    (eps22 - (theta22 * half_height)) * -1e6,
                    Point(x=response_point.x, y=response_point.y, z=response_point.z,),
                )
            )
            result_top.append(
                (
                    (eps11 + (theta11 * half_height)) * -1e6,
                    Point(x=response_point.x, y=response_point.y, z=response_point.z,),
                )
            )

    converted_expt_responses[sim_ind][ResponseType.StrainXXB] = result_bottom
    converted_expt_responses[sim_ind][ResponseType.StrainXXT] = result_top
    converted_expt_responses[sim_ind][ResponseType.StrainZZB] = result_bottom_z
    print(len(result_bottom))
示例#17
0
 def deck_points(self) -> List[Point]:
     """All the points on the deck where fem are collected."""
     return [
         Point(x=x, y=0, z=z) for _, (x, y, z) in self.values(point=True)
         if np.isclose(y, 0)
     ]
示例#18
0
def plot_nesw_convergence(
    c: Config,
    df: pd.DataFrame,
    responses: Dict[float, Responses],
    point: Point,
    max_distance: float,
    from_: str,
):
    """Plot convergence of strain at different points around a load."""
    delta_distance = 0.05
    skip = 3
    # Create color mappable for distances.
    norm = matplotlib.colors.Normalize(vmin=0, vmax=max_distance)
    cmap = matplotlib.cm.get_cmap("jet")
    mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
    color = lambda d: mappable.to_rgba(d)
    # For each compass point.
    compass_dir = {
        "N": (0, 1),
        "E": (1, 0),
        "S": (0, -1),
        "W": (-1, 0),
    }
    plt.square()
    fig, axes = plt.subplots(nrows=2, ncols=2)
    for ax, compass, compass_name, in zip(
        axes.flat, ["N", "S", "E", "W"], ["North", "South", "East", "West"]
    ):
        # Collect data into fem.
        x_mul, z_mul = compass_dir[compass]
        for distance in np.arange(0, max_distance, step=delta_distance)[::skip]:
            dist_point = Point(
                x=point.x + (distance * x_mul),
                y=point.y,
                z=point.z + (distance * z_mul),
            )
            print(dist_point)
            if (
                dist_point.x < c.bridge.x_min
                or dist_point.x > c.bridge.x_max
                or dist_point.z < c.bridge.z_min
                or dist_point.z > c.bridge.z_max
            ):
                break
            line_responses = []
            for max_shell_len, sim_responses in responses.items():
                deck_nodes = float(df.at[max_shell_len, "deck-nodes"])
                pier_nodes = float(df.at[max_shell_len, "pier-nodes"])
                line_responses.append(
                    (
                        deck_nodes + pier_nodes,
                        # max_shell_len,
                        scalar(sim_responses.at_deck(dist_point, interp=True)),
                    )
                )
            line_responses = np.array(sorted(line_responses, key=lambda t: t[0])).T
            ax.plot(line_responses[0], line_responses[1], color=color(distance))
            if distance > max_distance:
                break
        ax.grid(axis="y")
        ax.set_title(
            f"Strain at increasing distance\nin direction {compass_name} from\n{from_}"
        )
        ax.set_xlabel("Nodes in FEM")
        ax.set_ylabel("Strain")
        # ax.set_xlim(ax.get_xlim()[1], ax.get_xlim()[0])
    plt.tight_layout()
    clb = plt.colorbar(mappable, ax=axes.ravel())
    clb.ax.set_title("Distance (m)")
示例#19
0
def events(c: Config, x: float, z: float):
    """Plot events due to normal traffic."""
    point = Point(x=x, y=0, z=z)
    # 10 seconds of 'normal' traffic.
    max_time = 10
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    # Create the 'TrafficSequence' and 'TrafficArray'.
    traffic_sequence = traffic_scenario.traffic_sequence(
        bridge=c.bridge, max_time=max_time
    )
    traffic_array = to_traffic_array(
        c=c, traffic_sequence=traffic_sequence, max_time=max_time
    )
    # Find when the simulation has warmed up, and when 'TrafficArray' begins.
    warmed_up_at = traffic_sequence[0][0].time_left_bridge(c.bridge)
    traffic_array_starts = (int(warmed_up_at / c.sensor_hz) + 1) * c.sensor_hz
    print(f"warmed up at = {warmed_up_at}")
    print(f"traffic_array_starts = {traffic_array_starts}")
    traffic_array_ends = traffic_array_starts + (len(traffic_array) * c.sensor_hz)
    print(f"traffic_array_ends = {traffic_array_ends}")
    point_lane_ind = c.bridge.closest_lane(z)
    vehicles = list(set(ts[0] for ts in traffic_sequence))
    print(len(vehicles))
    print(vehicles[0])
    vehicles = sorted(
        set(ts[0] for ts in traffic_sequence if ts[0].lane == point_lane_ind),
        key=lambda v: -v.init_x_frac,
    )
    print(len(vehicles))
    print(vehicles[0])
    event_indices = []
    vehicle_times = [v.time_at(x=x - 2, bridge=c.bridge) for v in vehicles]
    for v, t in zip(vehicles, vehicle_times):
        print(f"Vehicle {v.init_x_frac} {v.mps} at time {t}")
        start_time = int(t / c.sensor_hz) * c.sensor_hz
        print(f"start_time = {start_time}")
        ta_start_time = np.around(start_time - traffic_array_starts, 8)
        print(f"ta start time = {ta_start_time}")
        ta_start_index = int(ta_start_time / c.sensor_hz)
        print(f"ta start index = {ta_start_index}")
        ta_end_index = ta_start_index + int(c.event_time_s / c.sensor_hz)
        print(f"ta end index = {ta_end_index}")
        if ta_start_index >= 0 and ta_end_index < len(traffic_array):
            event_indices.append((ta_start_index, ta_end_index))
    print(event_indices)
    responses = (
        responses_to_traffic_array(
            c=c,
            traffic_array=traffic_array,
            response_type=ResponseType.YTranslation,
            damage_scenario=healthy_scenario,
            points=[point],
            sim_runner=OSRunner(c),
        )
        * 1000
    )
    # fem = add_displa_noise(fem)
    print(responses.shape)
    plt.portrait()
    for event_ind, (event_start, event_end) in enumerate(event_indices):
        plt.subplot(len(event_indices), 1, event_ind + 1)
        plt.plot(responses[event_start : event_end + 1])
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/events", "events.pdf"))
    plt.close()
示例#20
0
def point_load_response_plots(c: Config,
                              x: float,
                              z: float,
                              kn: int = 1000,
                              run: bool = False):
    """Response to a point load per scenarios scenario."""
    response_types = [ResponseType.YTranslation, ResponseType.Strain]
    # scenarios = all_scenarios(c)
    damage_scenarios = [HealthyScenario(), transverse_crack()]

    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 30),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 100),
        )
    ]

    for response_type in response_types:
        all_responses = []
        for damage_scenario in damage_scenarios:
            sim_params = SimParams(
                response_types=[response_type],
                ploads=[
                    PointLoad(x_frac=c.bridge.x_frac(x),
                              z_frac=c.bridge.z_frac(z),
                              kn=kn)
                ],
            )
            use_c, sim_params = damage_scenario.use(c=c, sim_params=sim_params)
            all_responses.append(
                load_fem_responses(
                    c=use_c,
                    sim_params=sim_params,
                    response_type=response_type,
                    sim_runner=OSRunner(use_c),
                    run=run,
                ).resize())
        amin, amax = np.inf, -np.inf
        for sim_responses in all_responses:
            responses = np.array(list(sim_responses.values()))
            amin = min(amin, min(responses))
            amax = max(amax, max(responses))
        for d, damage_scenario in enumerate(damage_scenarios):
            top_view_bridge(c.bridge, abutments=True, piers=True)
            plot_contour_deck(
                c=c,
                responses=all_responses[d],
                levels=100,
                norm=colors.Normalize(vmin=amin, vmax=amax),
                decimals=10,
            )
            plt.title(damage_scenario.name)
            plt.tight_layout()
            plt.savefig(
                c.get_image_path(
                    "contour/point-load",
                    safe_str(
                        f"x-{x:.2f}-z-{z:.2f}-kn-{kn}-{response_type.name()}-{damage_scenario.name}"
                    ) + ".pdf",
                ))
            plt.close()
示例#21
0
def make_shell_properties_top_view(
    c: Config,
    shells_name_: str,
    prop_name_: str,
    refined_: bool,
    outline: bool,
    lanes: bool,
):
    """Make plots of the shells in top view, coloured by material property."""
    original_c = c
    # For each scenarios scenario build the model and extract the shells.
    for damage_scenario, damage_name in zip(healthy_and_cracked_scenarios,
                                            [None, "cracked"]):
        c, sim_params = damage_scenario.use(original_c)
        for ctx, ctx_name, refined, in [
            (
                BuildContext(
                    add_loads=[Point(x=85, y=0, z=0)],
                    refinement_radii=[2, 1, 0.5],
                ),
                "refined",
                True,
            ),
            (None, "unrefined", False),
        ]:
            if refined != refined_:
                continue
            bridge_shells = get_bridge_shells(bridge=c.bridge, ctx=ctx)
            deck_shells = flatten(bridge_shells[0], Shell)
            pier_shells = flatten(bridge_shells[1], Shell)
            all_shells = pier_shells + deck_shells
            for shells_name, shells in [
                ("piers", pier_shells),
                ("deck", deck_shells),
            ]:
                if shells_name != shells_name_:
                    continue
                for prop_name, prop_units, prop_f in [
                    ("Mesh", "", None),
                    ("Thickness", "m", lambda s: np.around(s.thickness, 3)),
                    ("Density", "kg/m", lambda s: np.around(s.density, 3)),
                    ("Poisson's ratio", "m/m", lambda s: s.poissons),
                    ("Young's modulus", "MPa",
                     lambda s: np.around(s.youngs, 1)),
                ]:
                    if prop_name_ not in prop_name.lower():
                        continue
                    for cmap in [parula_cmap, default_cmap]:

                        def top_view():
                            top_view_bridge(
                                bridge=c.bridge,
                                abutments=True,
                                piers=True,
                                lanes=lanes,
                                compass=prop_f is not None,
                            )

                        top_view()
                        shell_properties_top_view(
                            shells=shells,
                            prop_f=prop_f,
                            prop_units=prop_units,
                            cmap=cmap,
                            colorbar=prop_f is not None,
                            # label=prop_f is not None,
                            outline=outline,
                        )
                        top_view()
                        damage_str = "" if damage_name is None else f" ({damage_name})"
                        plt.title(
                            f"{prop_name} of bridge 705's {shells_name}{damage_str}"
                        )
                        plt.savefig(
                            c.get_image_path(
                                f"geometry/{shells_name}-shells-{ctx_name}-top-view",
                                safe_str(
                                    f"{prop_name}-{cmap.name}-outline-{outline}-lanes-{lanes}"
                                ) + ".pdf",
                            ))
                        plt.close()
                        if prop_f is None:
                            break
示例#22
0
def experiment_noise(c: Config):
    """Plot displacement and strain noise from dynamic test 1"""
    ################
    # Displacement #
    ################
    plt.portrait()
    # Find points of each sensor.
    displa_labels = ["U13", "U26", "U29"]
    displa_points = []
    for displa_label in displa_labels:
        sensor_x, sensor_z = _displa_sensor_xz(displa_label)
        displa_points.append(Point(x=sensor_x, y=0, z=sensor_z))
    # For each sensor plot and estimate noise.
    side = 700
    for s_i, displa_label in enumerate(displa_labels):
        # First plot the signal, and smoothed signal.
        plt.subplot(len(displa_points), 2, (s_i * 2) + 1)
        with open(f"validation/experiment/D1a-{displa_label}.txt") as f:
            data = list(map(float, f.readlines()))
        # Find the center of the plot, minimum point in first 15000 points.
        data_center = 0
        for i in range(15000):
            if data[i] < data[data_center]:
                data_center = i
        data = data[data_center - side:data_center + side]
        smooth = savgol_filter(data, 31, 3)
        plt.plot(data, linewidth=1)
        plt.plot(smooth, linewidth=1)
        plt.ylim(-0.8, 0.3)
        plt.title(f"{displa_label} in dynamic test")
        # Then plot subtraction of smoothed from noisey.
        plt.subplot(len(displa_points), 2, (s_i * 2) + 2)
        noise = data - smooth
        plt.plot(noise, label=f"σ = {np.around(np.std(noise), 4)}")
        plt.legend()
        plt.title(f"Noise from {displa_label}")
    plt.tight_layout()
    plt.savefig(c.get_image_path("params", "noise-displa.pdf"))
    plt.close()

    ##########
    # Strain #
    ##########

    plt.portrait()
    # Find points of each sensor.
    strain_labels = ["T1", "T10", "T11"]
    strain_points = []
    for strain_label in strain_labels:
        sensor_x, sensor_z = _strain_sensor_xz(strain_label)
        strain_points.append(Point(x=sensor_x, y=0, z=sensor_z))
    # For each sensor plot and estimate noise.
    side = 700
    xmin, xmax = np.inf, -np.inf
    for s_i, strain_label in enumerate(strain_labels):
        # First plot the signal, and smoothed signal.
        plt.subplot(len(strain_points), 2, (s_i * 2) + 1)
        with open(f"validation/experiment/D1a-{strain_label}.txt") as f:
            data = list(map(float, f.readlines()))
        # Find the center of the plot, minimum point in first 15000 points.
        data_center = 0
        for i in range(15000):
            if data[i] < data[data_center]:
                data_center = i
        data = data[data_center - side:data_center + side]
        smooth = savgol_filter(data, 31, 3)
        plt.plot(data, linewidth=1)
        plt.plot(smooth, linewidth=1)
        plt.title(f"{strain_label} in dynamic test")
        # Then plot subtraction of smoothed from noisey.
        plt.subplot(len(strain_points), 2, (s_i * 2) + 2)
        noise = data - smooth
        plt.plot(noise, label=f"σ = {np.around(np.std(noise), 4)}")
        plt.legend()
        plt.title(f"Noise from {strain_label}")
    plt.tight_layout()
    plt.savefig(c.get_image_path("params", "noise-strain.pdf"))
    plt.close()
示例#23
0
def number_of_uls_plot(c: Config):
    """Plot error as a function of number of unit load simulations."""
    if not c.shorten_paths:
        raise ValueError("This plot requires --shorten-paths true")
    response_type = ResponseType.YTranslation
    num_ulss = np.arange(100, 2000, 10)
    chosen_uls = 600
    point = Point(x=c.bridge.x_max - (c.bridge.length / 2), y=0, z=-8.4)
    wagen1_time = truck1.time_at(x=point.x, bridge=c.bridge)
    print_i(f"Wagen 1 time at x = {point.x:.3f} is t = {wagen1_time:.3f}")

    # Determine the reference value.
    truck_loads = flatten(
        truck1.to_point_load_pw(time=wagen1_time, bridge=c.bridge), PointLoad)
    print_i(f"Truck loads = {truck_loads}")
    sim_responses = load_fem_responses(
        c=c,
        response_type=response_type,
        sim_runner=OSRunner(c),
        sim_params=SimParams(ploads=truck_loads,
                             response_types=[response_type]),
    )
    ref_value = sim_responses.at_deck(point, interp=True) * 1000
    print_i(f"Reference value = {ref_value}")

    # Collect the data.
    total_load = []
    num_loads = []
    responses = []
    for num_uls in num_ulss:
        c.il_num_loads = num_uls
        # Nested in here because it depends on the setting of 'il_num_loads'.
        truck_loads = flatten(
            truck1.to_wheel_track_loads(c=c, time=wagen1_time), PointLoad)
        num_loads.append(len(truck_loads))
        total_load.append(sum(map(lambda l: l.kn, truck_loads)))
        sim_responses = load_fem_responses(
            c=c,
            response_type=response_type,
            sim_runner=OSRunner(c),
            sim_params=SimParams(ploads=truck_loads,
                                 response_types=[response_type]),
        )
        responses.append(sim_responses.at_deck(point, interp=True) * 1000)

    # Plot the raw fem, then error on the second axis.
    plt.landscape()
    # plt.plot(num_ulss, fem)
    # plt.ylabel(f"{response_type.name().lower()} (mm)")
    plt.xlabel("ULS")
    error = np.abs(np.array(responses) - ref_value).flatten() * 100
    # ax2 = plt.twinx()
    plt.plot(num_ulss, error)
    plt.ylabel("Error (%)")
    plt.title(
        f"Error in {response_type.name()} to Truck 1 as a function of ULS")
    # Plot the chosen number of ULS.
    chosen_error = np.interp([chosen_uls], num_ulss, error)[0]
    plt.axhline(
        chosen_error,
        label=f"At {chosen_uls} ULS, error = {np.around(chosen_error, 2)} %",
        color="black",
    )
    plt.axhline(0,
                color="red",
                label="Response from direct simulation (no wheel tracks)")
    plt.legend()
    plt.tight_layout()
    plt.savefig(c.get_image_path("paramselection", "uls.pdf"))
    plt.close()
    # Additional verification plots.
    plt.plot(num_ulss, total_load)
    plt.savefig(c.get_image_path("paramselection",
                                 "uls-verify-total-load.pdf"))
    plt.close()
    plt.plot(num_ulss, num_loads)
    plt.savefig(c.get_image_path("paramselection", "uls-verify-num-loads.pdf"))
    plt.close()
示例#24
0
def pairwise_sensors(c: Config, dist_measure=ks_no_outliers):
    """Compare distribution of pairs of sensors under HealthyScenario."""
    normal_traffic_array, traffic_scenario = load_normal_traffic_array(c)
    response_type = ResponseType.YTranslation
    points = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 50),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 4),
        )
    ]

    bridge_scenario = HealthyScenario()
    responses = responses_to_traffic_array(
        c=c,
        traffic_array=normal_traffic_array,
        response_type=response_type,
        bridge_scenario=bridge_scenario,
        points=points,
        sim_runner=OSRunner,
    ).T
    assert len(responses) == len(points)

    ks_values_healthy = []
    for p0, point0 in enumerate(points):
        print_i(f"Point {p0 + 1} / {len(points)}")
        ks_values_healthy.append([])
        for p1, point1 in enumerate(points):
            ks = dist_measure(responses[p0], responses[p1])
            ks_values_healthy[-1].append(ks)

    plt.landscape()
    plt.imshow(ks_values_healthy)
    plt.savefig(c.get_image_path("joint-clustering", "healthy-bridge"))
    plt.close()

    bridge_scenario = each_pier_scenarios(c)[0]
    responses = responses_to_traffic_array(
        c=c,
        traffic_array=normal_traffic_array,
        response_type=response_type,
        bridge_scenario=bridge_scenario,
        points=points,
        sim_runner=OSRunner,
    ).T
    assert len(responses) == len(points)

    ks_values_damage = []
    for p0, point0 in enumerate(points):
        print_i(f"Point {p0 + 1} / {len(points)}")
        ks_values_damage.append([])
        for p1, point1 in enumerate(points):
            ks = dist_measure(responses[p0], responses[p1])
            ks_values_damage[-1].append(ks)

    plt.imshow(ks_values_damage)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge"))
    plt.close()

    ks_values_comp = []
    for p0, point0 in enumerate(points):
        ks_values_comp.append([])
        for p1, point1 in enumerate(points):
            comp = abs(ks_values_healthy[p0][p1] - ks_values_damage[p0][p1])
            ks_values_comp[-1].append(comp)

    plt.landscape()
    plt.imshow(ks_values_comp)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge-comp"))
    plt.close()

    responses = Responses.from_responses(
        response_type=response_type,
        responses=[(sum(ks_values_comp[p]), point) for p, point in enumerate(points)],
    )
    top_view_bridge(c.bridge, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge-comp-contour"))
    plt.close()
示例#25
0
def time_series_plot(c: Config, n: float):
    """Plot 24min time series of cracking, for multiple cracked bridges.

    For each bridge (hard-coded), a time series of strain fem is plotted.
    For each bridge it is initially in healthy condition, and the crack occurs
    halfway through.

    Args:
        n: float, meters in front of the crack zone where to place sensor.

    """

    # First construct one day (24 minutes) of traffic.
    total_mins = 24
    total_seconds = total_mins * 60
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    traffic_sequence, traffic, traffic_array = load_traffic(
        c=c,
        traffic_scenario=traffic_scenario,
        max_time=total_seconds,
    )
    traffic_array.shape

    # Temperatures for one day.
    temps_day = temperature.from_to_mins(
        temperature.load("holly-springs"),
        datetime.fromisoformat(f"2019-07-03T00:00"),
        datetime.fromisoformat(f"2019-07-03T23:59"),
    )
    print(f"len temps = {len(temps_day['solar'])}")
    print(f"len temps = {len(temps_day['temp'])}")

    # Then generate some cracking time series.
    damages = [
        HealthyDamage(),
        transverse_crack(),
        transverse_crack(length=14.0, at_x=48.0),
    ]
    sensors = [
        Point(x=52, z=-8.4),  # Sensor in middle of lane.
        Point(x=damages[1].crack_area(c.bridge)[0] - n,
              z=-8.4),  # Sensor in front of crack zone.
        Point(x=damages[2].crack_area(c.bridge)[0] - n,
              z=-8.4),  # Sensor in front of crack zone.
    ]
    [print(f"Sensor {i} = {sensors[i]}") for i in range(len(sensors))]
    time_series = [
        crack_time_series(
            c=c,
            traffic_array=traffic_array,
            traffic_array_mins=total_mins,
            sensor=sensor,
            crack_frac=0.5,
            damage=damage,
            temps=temps_day["temp"],
            solar=temps_day["solar"],
        ) for damage, sensor in zip(damages, sensors)
    ]
    plt.portrait()
    for i, (y_trans, strain) in enumerate(time_series):
        x = np.arange(len(strain)) * c.sensor_hz / 60
        x_m = sensors[i].x
        damage_str = "Healthy Bridge"
        if i == 1:
            damage_str = "0.5 m crack zone"
        if i == 2:
            damage_str = "14 m crack zone"
        plt.subplot(len(time_series), 2, i * 2 + 1)
        plt.plot(x, y_trans * 1000, color="tab:blue")
        if i < len(time_series) - 1:
            plt.tick_params(axis="x", bottom=False, labelbottom=False)
        else:
            plt.xlabel("Hours")
        plt.title(f"At x = {x_m} m\n{damage_str}")
        plt.ylabel("Y trans. (mm)")

        plt.subplot(len(time_series), 2, i * 2 + 2)
        plt.plot(x, strain * 1e6, color="tab:orange")
        if i < len(time_series) - 1:
            plt.tick_params(axis="x", bottom=False, labelbottom=False)
        else:
            plt.xlabel("Hours")
        plt.title(f"At x = {x_m} m,\n{damage_str}")
        plt.ylabel("Microstrain XXB")
    plt.tight_layout()
    plt.savefig(c.get_image_path("crack", "time-series-q5.pdf"))
    plt.close()
示例#26
0
def plot_mmm_strain_convergence(
    c: Config,
    pier: int,
    df: pd.DataFrame,
    all_strains: Dict[float, Responses],
    title: str,
    without: Optional[Callable[[Point], bool]] = None,
    append: Optional[str] = None,
):
    """Plot convergence of given fem as model size grows."""
    # A grid of points 1m apart, over which to calculate fem.
    grid = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, int(c.bridge.length)),
            np.linspace(c.bridge.z_min, c.bridge.z_max, int(c.bridge.width)),
        )
    ]
    # If requested, remove some values from the fem.
    if without is not None:
        grid = [point for point in grid if not without(point)]
        for msl, strains in all_strains.items():
            print(f"Removing points from strains with max_shell_len = {msl}")
            all_strains[msl] = strains.without(without)
    # Collect fem over all fem, and over the grid. Iterate by
    # decreasing max_shell_len.
    mins, maxes, means = [], [], []
    gmins, gmaxes, gmeans = [], [], []
    max_shell_lens = []
    for msl, strains in sorted(all_strains.items(), key=lambda kv: -kv[0]):
        max_shell_lens.append(msl)
        print_i(f"Gathering strains with max_shell_len = {msl}", end="\r")
        grid_strains = np.array([strains.at_deck(point, interp=True) for point in grid])
        gmins.append(scalar(np.min(grid_strains)))
        gmaxes.append(scalar(np.max(grid_strains)))
        gmeans.append(scalar(np.mean(grid_strains)))
        strains = np.array(list(strains.values()))
        mins.append(scalar(np.min(strains)))
        maxes.append(scalar(np.max(strains)))
        means.append(scalar(np.mean(strains)))
    print()
    # Normalize and plot the mins, maxes, and means.
    def normalize(ys):
        print(ys)
        return ys / np.mean(ys[-5:])

    mins, maxes, means = normalize(mins), normalize(maxes), normalize(means)
    gmins, gmaxes, gmeans = normalize(gmins), normalize(gmaxes), normalize(gmeans)
    deck_nodes = [df.at[msl, "deck-nodes"] for msl in max_shell_lens]
    pier_nodes = [df.at[msl, "pier-nodes"] for msl in max_shell_lens]
    num_nodes = np.array(deck_nodes) + np.array(pier_nodes)
    print(f"MSLs = {max_shell_lens}")
    print(f"num_nodes = {num_nodes}")
    # Plot all lines, for debugging.
    plt.landscape()
    plt.plot(num_nodes, mins, label="mins")
    plt.plot(num_nodes, maxes, label="maxes")
    plt.plot(num_nodes, means, label="means")
    plt.plot(num_nodes, gmins, label="gmins")
    plt.plot(num_nodes, gmaxes, label="gmaxes")
    plt.plot(num_nodes, gmeans, label="gmeans")
    plt.grid(axis="y")
    plt.xlabel("Nodes in FEM")
    plt.ylabel("Strain")
    plt.title(title)
    plt.tight_layout()
    plt.legend()
    plt.savefig(
        c.get_image_path("convergence-pier-strain", f"mmm-{append}-all.pdf", acc=False)
    )
    plt.close()
    # Only plot some lines, for the thesis.
    plt.landscape()
    plt.plot(num_nodes, gmins, label="Minimum")
    plt.plot(num_nodes, gmaxes, label="Maximum")
    plt.plot(num_nodes, gmeans, label="Mean")
    plt.grid(axis="y")
    plt.title(title)
    plt.xlabel("Nodes in FEM")
    plt.ylabel("Strain")
    plt.legend()
    plt.tight_layout()
    plt.savefig(
        c.get_image_path("convergence-pier-strain", f"mmm-{append}.pdf", acc=False)
    )
    plt.close()