示例#1
0
def test_second_generator() -> None:
    """
    important remarks on secp256-zkp prefix for
    compressed encoding of the second generator:
    https://github.com/garyyu/rust-secp256k1-zkp/wiki/Pedersen-Commitment
    """

    H = (
        0x50929B74C1A04954B78B4B6035E97A5E078A5A0F28EC96D547BFEE9ACE803AC0,
        0x31D3C6863973926E049E637CB1B5F40A36DAC28AF1766968C30C2313F3A38904,
    )
    assert H == pedersen.second_generator(secp256k1, sha256)

    H = pedersen.second_generator(secp256r1, sha256)
    H = pedersen.second_generator(secp384r1, sha384)
示例#2
0
def test_assorted_mult() -> None:
    ec = ec23_31
    H = second_generator(ec)
    for k1 in range(-ec.n + 1, ec.n):
        K1 = mult(k1, ec.G, ec)
        for k2 in range(ec.n):
            K2 = mult(k2, H, ec)

            shamir = double_mult(k1, ec.G, k2, ec.G, ec)
            assert shamir == mult(k1 + k2, ec.G, ec)

            shamir = double_mult(k1, INF, k2, H, ec)
            assert ec.is_on_curve(shamir)
            assert shamir == K2

            shamir = double_mult(k1, ec.G, k2, INF, ec)
            assert ec.is_on_curve(shamir)
            assert shamir == K1

            shamir = double_mult(k1, ec.G, k2, H, ec)
            assert ec.is_on_curve(shamir)
            K1K2 = ec.add(K1, K2)
            assert K1K2 == shamir

            k3 = 1 + secrets.randbelow(ec.n - 1)
            K3 = mult(k3, ec.G, ec)
            K1K2K3 = ec.add(K1K2, K3)
            assert ec.is_on_curve(K1K2K3)
            boscoster = multi_mult([k1, k2, k3], [ec.G, H, ec.G], ec)
            assert ec.is_on_curve(boscoster)
            assert K1K2K3 == boscoster, k3

            k4 = 1 + secrets.randbelow(ec.n - 1)
            K4 = mult(k4, H, ec)
            K1K2K3K4 = ec.add(K1K2K3, K4)
            assert ec.is_on_curve(K1K2K3K4)
            points = [ec.G, H, ec.G, H]
            boscoster = multi_mult([k1, k2, k3, k4], points, ec)
            assert ec.is_on_curve(boscoster)
            assert K1K2K3K4 == boscoster, k4
            assert K1K2K3 == multi_mult([k1, k2, k3, 0], points, ec)
            assert K1K2 == multi_mult([k1, k2, 0, 0], points, ec)
            assert K1 == multi_mult([k1, 0, 0, 0], points, ec)
            assert INF == multi_mult([0, 0, 0, 0], points, ec)

    err_msg = "mismatch between number of scalars and points: "
    with pytest.raises(ValueError, match=err_msg):
        multi_mult([k1, k2, k3, k4], [ec.G, H, ec.G], ec)
示例#3
0
def test_assorted_mult():
    ec = ec23_31
    H = second_generator(ec)
    HJ = _jac_from_aff(H)
    for k1 in range(ec.n):
        K1J = _mult_jac(k1, ec.GJ, ec)
        for k2 in range(ec.n):
            K2J = _mult_jac(k2, HJ, ec)

            shamir = _double_mult(k1, ec.GJ, k2, ec.GJ, ec)
            assert ec._jac_equality(shamir, _mult_jac(k1 + k2, ec.GJ, ec))

            shamir = _double_mult(k1, INFJ, k2, HJ, ec)
            assert ec._jac_equality(shamir, K2J)
            shamir = _double_mult(k1, ec.GJ, k2, INFJ, ec)
            assert ec._jac_equality(shamir, K1J)

            shamir = _double_mult(k1, ec.GJ, k2, HJ, ec)
            K1JK2J = ec._add_jac(K1J, K2J)
            assert ec._jac_equality(K1JK2J, shamir)

            k3 = 1 + secrets.randbelow(ec.n - 1)
            K3J = _mult_jac(k3, ec.GJ, ec)
            K1JK2JK3J = ec._add_jac(K1JK2J, K3J)
            boscoster = _multi_mult([k1, k2, k3], [ec.GJ, HJ, ec.GJ], ec)
            assert ec._jac_equality(K1JK2JK3J, boscoster)

            k4 = 1 + secrets.randbelow(ec.n - 1)
            K4J = _mult_jac(k4, HJ, ec)
            K1JK2JK3JK4J = ec._add_jac(K1JK2JK3J, K4J)
            points = [ec.GJ, HJ, ec.GJ, HJ]
            boscoster = _multi_mult([k1, k2, k3, k4], points, ec)
            assert ec._jac_equality(K1JK2JK3JK4J, boscoster)
            assert ec._jac_equality(K1JK2JK3J, _multi_mult([k1, k2, k3, 0], points, ec))
            assert ec._jac_equality(K1JK2J, _multi_mult([k1, k2, 0, 0], points, ec))
            assert ec._jac_equality(K1J, _multi_mult([k1, 0, 0, 0], points, ec))
            assert ec._jac_equality(INFJ, _multi_mult([0, 0, 0, 0], points, ec))

    err_msg = "mismatch between number of scalars and points: "
    with pytest.raises(ValueError, match=err_msg):
        _multi_mult([k1, k2, k3, k4], [ec.GJ, HJ, ec.GJ], ec)

    with pytest.raises(ValueError, match="negative first coefficient: "):
        _double_mult(-5, HJ, 1, ec.GJ, ec)
    with pytest.raises(ValueError, match="negative second coefficient: "):
        _double_mult(1, HJ, -5, ec.GJ, ec)
示例#4
0
    def test_second_generator(self):
        """
        important remark on secp256-zkp prefix for compressed encoding of the second generator:
        https://github.com/garyyu/rust-secp256k1-zkp/wiki/Pedersen-Commitment
        """

        ec = secp256k1
        hf = sha256

        H = pedersen.second_generator(ec, hf)
        self.assertEqual(
            H,
            point_from_octets(
                '0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0',
                ec))

        # 0*G + 1*H
        T = double_mult(1, H, 0, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '0250929b74c1a04954b78b4b6035e97a5e078a5a0f28ec96d547bfee9ace803ac0',
                ec))

        # 0*G + 2*H
        T = double_mult(2, H, 0, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '03fad265e0a0178418d006e247204bcf42edb6b92188074c9134704c8686eed37a',
                ec))
        T = mult(2, H, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '03fad265e0a0178418d006e247204bcf42edb6b92188074c9134704c8686eed37a',
                ec))

        # 0*G + 3*H
        T = double_mult(3, H, 0, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '025ef47fcde840a435e831bbb711d466fc1ee160da3e15437c6c469a3a40daacaa',
                ec))
        T = mult(3, H, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '025ef47fcde840a435e831bbb711d466fc1ee160da3e15437c6c469a3a40daacaa',
                ec))

        # 1*G+0*H
        T = double_mult(0, H, 1, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798',
                ec))
        T = ec.G
        self.assertEqual(
            T,
            point_from_octets(
                '0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798',
                ec))

        # 2*G+0*H
        T = double_mult(0, H, 2, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5',
                ec))
        T = mult(2, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5',
                ec))

        # 3*G+0*H
        T = double_mult(0, H, 3, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9',
                ec))
        T = mult(3, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9',
                ec))

        # 0*G+5*H
        T = double_mult(5, H, 0, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '039e431be0851721f9ce35cc0f718fce7d6d970e3ddd796643d71294d7a09b554e',
                ec))
        T = mult(5, H, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '039e431be0851721f9ce35cc0f718fce7d6d970e3ddd796643d71294d7a09b554e',
                ec))

        # 0*G-5*H
        T = double_mult(-5, H, 0, ec.G, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '029e431be0851721f9ce35cc0f718fce7d6d970e3ddd796643d71294d7a09b554e',
                ec))
        T = mult(-5, H, ec)
        self.assertEqual(
            T,
            point_from_octets(
                '029e431be0851721f9ce35cc0f718fce7d6d970e3ddd796643d71294d7a09b554e',
                ec))

        # 1*G-5*H
        U = double_mult(-5, H, 1, ec.G, ec)
        self.assertEqual(
            U,
            point_from_octets(
                '02b218ddacb34d827c71760e601b41d309bc888cf7e3ab7cc09ec082b645f77e5a',
                ec))
        U = ec.add(ec.G, T)  # reusing previous T value
        self.assertEqual(
            U,
            point_from_octets(
                '02b218ddacb34d827c71760e601b41d309bc888cf7e3ab7cc09ec082b645f77e5a',
                ec))

        H = pedersen.second_generator(secp256r1, hf)
        H = pedersen.second_generator(secp384r1, sha384)
示例#5
0
def test_mult_double_mult():
    H = second_generator(secp256k1)
    G = secp256k1.G

    # 0*G + 1*H
    T = double_mult(1, H, 0, G)
    assert T == H
    T = multi_mult([1, 0], [H, G])
    assert T == H

    # 0*G + 2*H
    exp = mult(2, H)
    T = double_mult(2, H, 0, G)
    assert T == exp
    T = multi_mult([2, 0], [H, G])
    assert T == exp

    # 0*G + 3*H
    exp = mult(3, H)
    T = double_mult(3, H, 0, G)
    assert T == exp
    T = multi_mult([3, 0], [H, G])
    assert T == exp

    # 1*G + 0*H
    T = double_mult(0, H, 1, G)
    assert T == G
    T = multi_mult([0, 1], [H, G])
    assert T == G

    # 2*G + 0*H
    exp = mult(2, G)
    T = double_mult(0, H, 2, G)
    assert T == exp
    T = multi_mult([0, 2], [H, G])
    assert T == exp

    # 3*G + 0*H
    exp = mult(3, G)
    T = double_mult(0, H, 3, G)
    assert T == exp
    T = multi_mult([0, 3], [H, G])
    assert T == exp

    # 0*G + 5*H
    exp = mult(5, H)
    T = double_mult(5, H, 0, G)
    assert T == exp
    T = multi_mult([5, 0], [H, G])
    assert T == exp

    # 0*G - 5*H
    exp = mult(-5, H)
    T = double_mult(-5, H, 0, G)
    assert T == exp
    T = multi_mult([-5, 0], [H, G])
    assert T == exp

    # 1*G - 5*H
    exp = secp256k1.add(G, T)
    T = double_mult(-5, H, 1, G)
    assert T == exp
示例#6
0
def test_threshold() -> None:
    "testing 2-of-3 threshold signature (Pedersen secret sharing)"

    ec = CURVES["secp256k1"]

    # parameters
    m = 2
    H = second_generator(ec)

    # FIRST PHASE: key pair generation ###################################

    # 1.1 signer one acting as the dealer
    commits1: List[Point] = []
    q1, _ = ssa.gen_keys()
    q1_prime, _ = ssa.gen_keys()
    commits1.append(double_mult(q1_prime, H, q1, ec.G))
    # sharing polynomials
    f1 = [q1]
    f1_prime = [q1_prime]
    for i in range(1, m):
        f1.append(ssa.gen_keys()[0])
        f1_prime.append(ssa.gen_keys()[0])
        commits1.append(double_mult(f1_prime[i], H, f1[i], ec.G))
    # shares of the secret
    alpha12 = 0  # share of q1 belonging to signer two
    alpha12_prime = 0
    alpha13 = 0  # share of q1 belonging to signer three
    alpha13_prime = 0
    for i in range(m):
        alpha12 += (f1[i] * pow(2, i)) % ec.n
        alpha12_prime += (f1_prime[i] * pow(2, i)) % ec.n
        alpha13 += (f1[i] * pow(3, i)) % ec.n
        alpha13_prime += (f1_prime[i] * pow(3, i)) % ec.n
    # signer two verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(2, i), commits1[i]))
    t = double_mult(alpha12_prime, H, alpha12, ec.G)
    assert t == RHS, "signer one is cheating"
    # signer three verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(3, i), commits1[i]))
    t = double_mult(alpha13_prime, H, alpha13, ec.G)
    assert t == RHS, "signer one is cheating"

    # 1.2 signer two acting as the dealer
    commits2: List[Point] = []
    q2, _ = ssa.gen_keys()
    q2_prime, _ = ssa.gen_keys()
    commits2.append(double_mult(q2_prime, H, q2, ec.G))
    # sharing polynomials
    f2 = [q2]
    f2_prime = [q2_prime]
    for i in range(1, m):
        f2.append(ssa.gen_keys()[0])
        f2_prime.append(ssa.gen_keys()[0])
        commits2.append(double_mult(f2_prime[i], H, f2[i], ec.G))
    # shares of the secret
    alpha21 = 0  # share of q2 belonging to signer one
    alpha21_prime = 0
    alpha23 = 0  # share of q2 belonging to signer three
    alpha23_prime = 0
    for i in range(m):
        alpha21 += (f2[i] * pow(1, i)) % ec.n
        alpha21_prime += (f2_prime[i] * pow(1, i)) % ec.n
        alpha23 += (f2[i] * pow(3, i)) % ec.n
        alpha23_prime += (f2_prime[i] * pow(3, i)) % ec.n
    # signer one verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(1, i), commits2[i]))
    t = double_mult(alpha21_prime, H, alpha21, ec.G)
    assert t == RHS, "signer two is cheating"
    # signer three verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(3, i), commits2[i]))
    t = double_mult(alpha23_prime, H, alpha23, ec.G)
    assert t == RHS, "signer two is cheating"

    # 1.3 signer three acting as the dealer
    commits3: List[Point] = []
    q3, _ = ssa.gen_keys()
    q3_prime, _ = ssa.gen_keys()
    commits3.append(double_mult(q3_prime, H, q3, ec.G))
    # sharing polynomials
    f3 = [q3]
    f3_prime = [q3_prime]
    for i in range(1, m):
        f3.append(ssa.gen_keys()[0])
        f3_prime.append(ssa.gen_keys()[0])
        commits3.append(double_mult(f3_prime[i], H, f3[i], ec.G))
    # shares of the secret
    alpha31 = 0  # share of q3 belonging to signer one
    alpha31_prime = 0
    alpha32 = 0  # share of q3 belonging to signer two
    alpha32_prime = 0
    for i in range(m):
        alpha31 += (f3[i] * pow(1, i)) % ec.n
        alpha31_prime += (f3_prime[i] * pow(1, i)) % ec.n
        alpha32 += (f3[i] * pow(2, i)) % ec.n
        alpha32_prime += (f3_prime[i] * pow(2, i)) % ec.n
    # signer one verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(1, i), commits3[i]))
    t = double_mult(alpha31_prime, H, alpha31, ec.G)
    assert t == RHS, "signer three is cheating"
    # signer two verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(2, i), commits3[i]))
    t = double_mult(alpha32_prime, H, alpha32, ec.G)
    assert t == RHS, "signer three is cheating"
    # shares of the secret key q = q1 + q2 + q3
    alpha1 = (alpha21 + alpha31) % ec.n
    alpha2 = (alpha12 + alpha32) % ec.n
    alpha3 = (alpha13 + alpha23) % ec.n
    for i in range(m):
        alpha1 += (f1[i] * pow(1, i)) % ec.n
        alpha2 += (f2[i] * pow(2, i)) % ec.n
        alpha3 += (f3[i] * pow(3, i)) % ec.n

    # 1.4 it's time to recover the public key
    # each participant i = 1, 2, 3 shares Qi as follows
    # Q = Q1 + Q2 + Q3 = (q1 + q2 + q3) G
    A1: List[Point] = []
    A2: List[Point] = []
    A3: List[Point] = []
    for i in range(m):
        A1.append(mult(f1[i]))
        A2.append(mult(f2[i]))
        A3.append(mult(f3[i]))
    # signer one checks others' values
    RHS2 = INF
    RHS3 = INF
    for i in range(m):
        RHS2 = ec.add(RHS2, mult(pow(1, i), A2[i]))
        RHS3 = ec.add(RHS3, mult(pow(1, i), A3[i]))
    assert mult(alpha21) == RHS2, "signer two is cheating"
    assert mult(alpha31) == RHS3, "signer three is cheating"
    # signer two checks others' values
    RHS1 = INF
    RHS3 = INF
    for i in range(m):
        RHS1 = ec.add(RHS1, mult(pow(2, i), A1[i]))
        RHS3 = ec.add(RHS3, mult(pow(2, i), A3[i]))
    assert mult(alpha12) == RHS1, "signer one is cheating"
    assert mult(alpha32) == RHS3, "signer three is cheating"
    # signer three checks others' values
    RHS1 = INF
    RHS2 = INF
    for i in range(m):
        RHS1 = ec.add(RHS1, mult(pow(3, i), A1[i]))
        RHS2 = ec.add(RHS2, mult(pow(3, i), A2[i]))
    assert mult(alpha13) == RHS1, "signer one is cheating"
    assert mult(alpha23) == RHS2, "signer two is cheating"
    # commitment at the global sharing polynomial
    A: List[Point] = []
    for i in range(m):
        A.append(ec.add(A1[i], ec.add(A2[i], A3[i])))

    # aggregated public key
    Q = A[0]
    if Q[1] % 2:
        # print('Q has been negated')
        A[1] = ec.negate(A[1])  # pragma: no cover
        alpha1 = ec.n - alpha1  # pragma: no cover
        alpha2 = ec.n - alpha2  # pragma: no cover
        alpha3 = ec.n - alpha3  # pragma: no cover
        Q = ec.negate(Q)  # pragma: no cover

    # SECOND PHASE: generation of the nonces' pair  ######################
    # Assume signer one and three want to sign

    msg = "message to sign"

    # 2.1 signer one acting as the dealer
    commits1 = []
    k1 = ssa.det_nonce(msg, q1, ec, hf)
    k1_prime = ssa.det_nonce(msg, q1_prime, ec, hf)
    commits1.append(double_mult(k1_prime, H, k1, ec.G))
    # sharing polynomials
    f1 = [k1]
    f1_prime = [k1_prime]
    for i in range(1, m):
        f1.append(ssa.gen_keys()[0])
        f1_prime.append(ssa.gen_keys()[0])
        commits1.append(double_mult(f1_prime[i], H, f1[i], ec.G))
    # shares of the secret
    beta13 = 0  # share of k1 belonging to signer three
    beta13_prime = 0
    for i in range(m):
        beta13 += (f1[i] * pow(3, i)) % ec.n
        beta13_prime += (f1_prime[i] * pow(3, i)) % ec.n
    # signer three verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(3, i), commits1[i]))
    t = double_mult(beta13_prime, H, beta13, ec.G)
    assert t == RHS, "signer one is cheating"

    # 2.2 signer three acting as the dealer
    commits3 = []
    k3 = ssa.det_nonce(msg, q3, ec, hf)
    k3_prime = ssa.det_nonce(msg, q3_prime, ec, hf)
    commits3.append(double_mult(k3_prime, H, k3, ec.G))
    # sharing polynomials
    f3 = [k3]
    f3_prime = [k3_prime]
    for i in range(1, m):
        f3.append(ssa.gen_keys()[0])
        f3_prime.append(ssa.gen_keys()[0])
        commits3.append(double_mult(f3_prime[i], H, f3[i], ec.G))
    # shares of the secret
    beta31 = 0  # share of k3 belonging to signer one
    beta31_prime = 0
    for i in range(m):
        beta31 += (f3[i] * pow(1, i)) % ec.n
        beta31_prime += (f3_prime[i] * pow(1, i)) % ec.n
    # signer one verifies consistency of his share
    RHS = INF
    for i in range(m):
        RHS = ec.add(RHS, mult(pow(1, i), commits3[i]))
    t = double_mult(beta31_prime, H, beta31, ec.G)
    assert t == RHS, "signer three is cheating"

    # 2.3 shares of the secret nonce
    beta1 = beta31 % ec.n
    beta3 = beta13 % ec.n
    for i in range(m):
        beta1 += (f1[i] * pow(1, i)) % ec.n
        beta3 += (f3[i] * pow(3, i)) % ec.n

    # 2.4 it's time to recover the public nonce
    # each participant i = 1, 3 shares Qi as follows
    B1: List[Point] = []
    B3: List[Point] = []
    for i in range(m):
        B1.append(mult(f1[i]))
        B3.append(mult(f3[i]))

    # signer one checks values from signer three
    RHS3 = INF
    for i in range(m):
        RHS3 = ec.add(RHS3, mult(pow(1, i), B3[i]))
    assert mult(beta31) == RHS3, "signer three is cheating"

    # signer three checks values from signer one
    RHS1 = INF
    for i in range(m):
        RHS1 = ec.add(RHS1, mult(pow(3, i), B1[i]))
    assert mult(beta13) == RHS1, "signer one is cheating"

    # commitment at the global sharing polynomial
    B: List[Point] = []
    for i in range(m):
        B.append(ec.add(B1[i], B3[i]))

    # aggregated public nonce
    K = B[0]
    if K[1] % 2:
        # print('K has been negated')
        B[1] = ec.negate(B[1])  # pragma: no cover
        beta1 = ec.n - beta1  # pragma: no cover
        beta3 = ec.n - beta3  # pragma: no cover
        K = ec.negate(K)  # pragma: no cover

    # PHASE THREE: signature generation ###

    # partial signatures
    e = ssa.challenge(msg, Q[0], K[0], ec, hf)
    gamma1 = (beta1 + e * alpha1) % ec.n
    gamma3 = (beta3 + e * alpha3) % ec.n

    # each participant verifies the other partial signatures

    # signer one
    RHS3 = ec.add(K, mult(e, Q))
    for i in range(1, m):
        temp = double_mult(pow(3, i), B[i], e * pow(3, i), A[i])
        RHS3 = ec.add(RHS3, temp)
    assert mult(gamma3) == RHS3, "signer three is cheating"

    # signer three
    RHS1 = ec.add(K, mult(e, Q))
    for i in range(1, m):
        temp = double_mult(pow(1, i), B[i], e * pow(1, i), A[i])
        RHS1 = ec.add(RHS1, temp)
    assert mult(gamma1) == RHS1, "signer one is cheating"

    # PHASE FOUR: aggregating the signature ###
    omega1 = 3 * mod_inv(3 - 1, ec.n) % ec.n
    omega3 = 1 * mod_inv(1 - 3, ec.n) % ec.n
    sigma = (gamma1 * omega1 + gamma3 * omega3) % ec.n

    sig = K[0], sigma

    assert ssa.verify(msg, Q[0], sig)

    # ADDITIONAL PHASE: reconstruction of the private key ###
    secret = (omega1 * alpha1 + omega3 * alpha3) % ec.n
    assert (q1 + q2 + q3) % ec.n in (secret, ec.n - secret)
示例#7
0
    def test_threshold(self):
        """testing 2-of-3 threshold signature (Pedersen secret sharing)"""

        ec = secp256k1
        hf = sha256
        # parameters
        t = 2
        H = second_generator(ec, hf)
        msg = hf(b'message to sign').digest()

        ### FIRST PHASE: key pair generation ###

        # signer one acting as the dealer
        commits1: List[Point] = list()
        q1 = (1 + random.getrandbits(ec.nlen)) % ec.n
        q1_prime = (1 + random.getrandbits(ec.nlen)) % ec.n
        commits1.append(double_mult(q1_prime, H, q1))

        # sharing polynomials
        f1: List[int] = list()
        f1.append(q1)
        f1_prime: List[int] = list()
        f1_prime.append(q1_prime)
        for i in range(1, t):
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f1.append(temp)
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f1_prime.append(temp)
            commits1.append(double_mult(f1_prime[i], H, f1[i]))

        # shares of the secret
        alpha12 = 0  # share of q1 belonging to P2
        alpha12_prime = 0
        alpha13 = 0  # share of q1 belonging to P3
        alpha13_prime = 0
        for i in range(t):
            alpha12 += (f1[i] * pow(2, i)) % ec.n
            alpha12_prime += (f1_prime[i] * pow(2, i)) % ec.n

            alpha13 += (f1[i] * pow(3, i)) % ec.n
            alpha13_prime += (f1_prime[i] * pow(3, i)) % ec.n

        # player two verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(2, i), commits1[i]))
        assert double_mult(alpha12_prime, H,
                           alpha12) == RHS, 'player one is cheating'

        # player three verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(3, i), commits1[i]))
        assert double_mult(alpha13_prime, H,
                           alpha13) == RHS, 'player one is cheating'

        # signer two acting as the dealer
        commits2: List[Point] = list()
        q2 = (1 + random.getrandbits(ec.nlen)) % ec.n
        q2_prime = (1 + random.getrandbits(ec.nlen)) % ec.n
        commits2.append(double_mult(q2_prime, H, q2))

        # sharing polynomials
        f2: List[int] = list()
        f2.append(q2)
        f2_prime: List[int] = list()
        f2_prime.append(q2_prime)
        for i in range(1, t):
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f2.append(temp)
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f2_prime.append(temp)
            commits2.append(double_mult(f2_prime[i], H, f2[i]))

        # shares of the secret
        alpha21 = 0  # share of q2 belonging to P1
        alpha21_prime = 0
        alpha23 = 0  # share of q2 belonging to P3
        alpha23_prime = 0
        for i in range(t):
            alpha21 += (f2[i] * pow(1, i)) % ec.n
            alpha21_prime += (f2_prime[i] * pow(1, i)) % ec.n

            alpha23 += (f2[i] * pow(3, i)) % ec.n
            alpha23_prime += (f2_prime[i] * pow(3, i)) % ec.n

        # player one verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(1, i), commits2[i]))
        assert double_mult(alpha21_prime, H,
                           alpha21) == RHS, 'player two is cheating'

        # player three verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(3, i), commits2[i]))
        assert double_mult(alpha23_prime, H,
                           alpha23) == RHS, 'player two is cheating'

        # signer three acting as the dealer
        commits3: List[Point] = list()
        q3 = (1 + random.getrandbits(ec.nlen)) % ec.n
        q3_prime = (1 + random.getrandbits(ec.nlen)) % ec.n
        commits3.append(double_mult(q3_prime, H, q3))

        # sharing polynomials
        f3: List[int] = list()
        f3.append(q3)
        f3_prime: List[int] = list()
        f3_prime.append(q3_prime)
        for i in range(1, t):
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f3.append(temp)
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f3_prime.append(temp)
            commits3.append(double_mult(f3_prime[i], H, f3[i]))

        # shares of the secret
        alpha31 = 0  # share of q3 belonging to P1
        alpha31_prime = 0
        alpha32 = 0  # share of q3 belonging to P2
        alpha32_prime = 0
        for i in range(t):
            alpha31 += (f3[i] * pow(1, i)) % ec.n
            alpha31_prime += (f3_prime[i] * pow(1, i)) % ec.n

            alpha32 += (f3[i] * pow(2, i)) % ec.n
            alpha32_prime += (f3_prime[i] * pow(2, i)) % ec.n

        # player one verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(1, i), commits3[i]))
        assert double_mult(alpha31_prime, H,
                           alpha31) == RHS, 'player three is cheating'

        # player two verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(2, i), commits3[i]))
        assert double_mult(alpha32_prime, H,
                           alpha32) == RHS, 'player two is cheating'

        # shares of the secret key q = q1 + q2 + q3
        alpha1 = (alpha21 + alpha31) % ec.n
        alpha2 = (alpha12 + alpha32) % ec.n
        alpha3 = (alpha13 + alpha23) % ec.n
        for i in range(t):
            alpha1 += (f1[i] * pow(1, i)) % ec.n
            alpha2 += (f2[i] * pow(2, i)) % ec.n
            alpha3 += (f3[i] * pow(3, i)) % ec.n

        # it's time to recover the public key Q = Q1 + Q2 + Q3 = (q1 + q2 + q3)G
        A1: List[Point] = list()
        A2: List[Point] = list()
        A3: List[Point] = list()

        # each participant i = 1, 2, 3 shares Qi as follows

        # he broadcasts these values
        for i in range(t):
            A1.append(mult(f1[i]))
            A2.append(mult(f2[i]))
            A3.append(mult(f3[i]))

        # he checks the others' values
        # player one
        RHS2 = 1, 0
        RHS3 = 1, 0
        for i in range(t):
            RHS2 = ec.add(RHS2, mult(pow(1, i), A2[i]))
            RHS3 = ec.add(RHS3, mult(pow(1, i), A3[i]))
        assert mult(alpha21) == RHS2, 'player two is cheating'
        assert mult(alpha31) == RHS3, 'player three is cheating'

        # player two
        RHS1 = 1, 0
        RHS3 = 1, 0
        for i in range(t):
            RHS1 = ec.add(RHS1, mult(pow(2, i), A1[i]))
            RHS3 = ec.add(RHS3, mult(pow(2, i), A3[i]))
        assert mult(alpha12) == RHS1, 'player one is cheating'
        assert mult(alpha32) == RHS3, 'player three is cheating'

        # player three
        RHS1 = 1, 0
        RHS2 = 1, 0
        for i in range(t):
            RHS1 = ec.add(RHS1, mult(pow(3, i), A1[i]))
            RHS2 = ec.add(RHS2, mult(pow(3, i), A2[i]))
        assert mult(alpha13) == RHS1, 'player one is cheating'
        assert mult(alpha23) == RHS2, 'player two is cheating'

        A: List[Point] = list()  # commitment at the global sharing polynomial
        for i in range(t):
            A.append(ec.add(A1[i], ec.add(A2[i], A3[i])))

        Q = A[0]  # aggregated public key

        ### SECOND PHASE: generation of the nonces' pair ###
        # This phase follows exactly the key generation procedure
        # suppose that player one and three want to sign

        # signer one acting as the dealer
        commits1: List[Point] = list()
        k1 = (1 + random.getrandbits(ec.nlen)) % ec.n
        k1_prime = (1 + random.getrandbits(ec.nlen)) % ec.n
        commits1.append(double_mult(k1_prime, H, k1))

        # sharing polynomials
        f1: List[int] = list()
        f1.append(k1)
        f1_prime: List[int] = list()
        f1_prime.append(k1_prime)
        for i in range(1, t):
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f1.append(temp)
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f1_prime.append(temp)
            commits1.append(double_mult(f1_prime[i], H, f1[i]))

        # shares of the secret
        beta13 = 0  # share of k1 belonging to P3
        beta13_prime = 0
        for i in range(t):
            beta13 += (f1[i] * pow(3, i)) % ec.n
            beta13_prime += (f1_prime[i] * pow(3, i)) % ec.n

        # player three verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(3, i), commits1[i]))
        assert double_mult(beta13_prime, H,
                           beta13) == RHS, 'player one is cheating'

        # signer three acting as the dealer
        commits3: List[Point] = list()
        k3 = (1 + random.getrandbits(ec.nlen)) % ec.n
        k3_prime = (1 + random.getrandbits(ec.nlen)) % ec.n
        commits3.append(double_mult(k3_prime, H, k3))

        # sharing polynomials
        f3: List[int] = list()
        f3.append(k3)
        f3_prime: List[int] = list()
        f3_prime.append(k3_prime)
        for i in range(1, t):
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f3.append(temp)
            temp = (1 + random.getrandbits(ec.nlen)) % ec.n
            f3_prime.append(temp)
            commits3.append(double_mult(f3_prime[i], H, f3[i]))

        # shares of the secret
        beta31 = 0  # share of k3 belonging to P1
        beta31_prime = 0
        for i in range(t):
            beta31 += (f3[i] * pow(1, i)) % ec.n
            beta31_prime += (f3_prime[i] * pow(1, i)) % ec.n

        # player one verifies consistency of his share
        RHS = 1, 0
        for i in range(t):
            RHS = ec.add(RHS, mult(pow(1, i), commits3[i]))
        assert double_mult(beta31_prime, H,
                           beta31) == RHS, 'player three is cheating'

        # shares of the secret nonce
        beta1 = beta31 % ec.n
        beta3 = beta13 % ec.n
        for i in range(t):
            beta1 += (f1[i] * pow(1, i)) % ec.n
            beta3 += (f3[i] * pow(3, i)) % ec.n

        # it's time to recover the public nonce
        B1: List[Point] = list()
        B3: List[Point] = list()

        # each participant i = 1, 3 shares Qi as follows

        # he broadcasts these values
        for i in range(t):
            B1.append(mult(f1[i]))
            B3.append(mult(f3[i]))

        # he checks the others' values
        # player one
        RHS3 = 1, 0
        for i in range(t):
            RHS3 = ec.add(RHS3, mult(pow(1, i), B3[i]))
        assert mult(beta31) == RHS3, 'player three is cheating'

        # player three
        RHS1 = 1, 0
        for i in range(t):
            RHS1 = ec.add(RHS1, mult(pow(3, i), B1[i]))
        assert mult(beta13) == RHS1, 'player one is cheating'

        B: List[Point] = list()  # commitment at the global sharing polynomial
        for i in range(t):
            B.append(ec.add(B1[i], B3[i]))

        K = B[0]  # aggregated public nonce
        if legendre_symbol(K[1], ec._p) != 1:
            beta1 = ec.n - beta1
            beta3 = ec.n - beta3

        ### PHASE THREE: signature generation ###

        # partial signatures
        ebytes = K[0].to_bytes(32, byteorder='big')
        ebytes += octets_from_point(Q, True, ec)
        ebytes += msg
        e = int_from_bits(hf(ebytes).digest(), ec)
        gamma1 = (beta1 + e * alpha1) % ec.n
        gamma3 = (beta3 + e * alpha3) % ec.n

        # each participant verifies the other partial signatures

        # player one
        if legendre_symbol(K[1], ec._p) == 1:
            RHS3 = ec.add(K, mult(e, Q))
            for i in range(1, t):
                temp = double_mult(pow(3, i), B[i], e * pow(3, i), A[i])
                RHS3 = ec.add(RHS3, temp)
        else:
            assert legendre_symbol(K[1], ec._p) != 1
            RHS3 = ec.add(ec.opposite(K), mult(e, Q))
            for i in range(1, t):
                temp = double_mult(pow(3, i), ec.opposite(B[i]), e * pow(3, i),
                                   A[i])
                RHS3 = ec.add(RHS3, temp)

        assert mult(gamma3) == RHS3, 'player three is cheating'

        # player three
        if legendre_symbol(K[1], ec._p) == 1:
            RHS1 = ec.add(K, mult(e, Q))
            for i in range(1, t):
                temp = double_mult(pow(1, i), B[i], e * pow(1, i), A[i])
                RHS1 = ec.add(RHS1, temp)
        else:
            assert legendre_symbol(K[1], ec._p) != 1
            RHS1 = ec.add(ec.opposite(K), mult(e, Q))
            for i in range(1, t):
                temp = double_mult(pow(1, i), ec.opposite(B[i]), e * pow(1, i),
                                   A[i])
                RHS1 = ec.add(RHS1, temp)

        assert mult(gamma1) == RHS1, 'player two is cheating'

        ### PHASE FOUR: aggregating the signature ###
        omega1 = 3 * mod_inv(3 - 1, ec.n) % ec.n
        omega3 = 1 * mod_inv(1 - 3, ec.n) % ec.n
        sigma = (gamma1 * omega1 + gamma3 * omega3) % ec.n

        sig = K[0], sigma

        self.assertTrue(ssa._verify(msg, Q, sig))

        ### ADDITIONAL PHASE: reconstruction of the private key ###
        secret = (omega1 * alpha1 + omega3 * alpha3) % ec.n
        self.assertEqual((q1 + q2 + q3) % ec.n, secret)