示例#1
0
文件: spambug.py 项目: rock420/bugbug
    def __init__(self, lemmatization=False):
        BugModel.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.whiteboard(),
            bug_features.product(),
            # TODO: We would like to use the component at the time of filing too,
            # but we can't because the rollback script doesn't support changes to
            # components yet.
            # bug_features.component(),
            bug_features.num_words_title(),
            bug_features.num_words_comments(),
            bug_features.keywords(),
            bug_features.priority(),
            bug_features.version(),
            bug_features.target_milestone(),
            bug_features.has_attachment(),
            bug_features.platform(),
            bug_features.op_sys(),
        ]

        cleanup_functions = [
            feature_cleanup.fileref(),
            feature_cleanup.url(),
            feature_cleanup.synonyms(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions,
                                          rollback=True),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.0001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=utils.get_physical_cpu_count())
        self.clf.set_params(predictor="cpu_predictor")
示例#2
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.short_desc_maxlen = 20
        self.short_desc_vocab_size = 25000
        self.short_desc_emb_sz = 300
        self.long_desc_maxlen = 100
        self.long_desc_vocab_size = 25000
        self.long_desc_emb_sz = 300
        self.cross_validation_enabled = False

        self.params = [
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 256,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.5,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 256,
                "long_desc_encoded_dropout": 0.5,
                "long_desc_encoded_recurrent_dropout": 0.55,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 25,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.45,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 50,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.45,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 100,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.5,
                "tfidf_word_dense_units": 600,
                "tfidf_word_dropout_rate": 0.5,
                "tfidf_char_inp_dense_unit": 500,
                "tfidf_char_inp_dropout_rate": 0.5,
                "x_dense_unit": 2000,
                "x_dropout_rate": 0.6,
            },
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 250,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.45,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 250,
                "long_desc_encoded_dropout": 0.45,
                "long_desc_encoded_recurrent_dropout": 0.45,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 30,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.4,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 55,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.4,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 110,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.45,
                "tfidf_word_dense_units": 610,
                "tfidf_word_dropout_rate": 0.45,
                "tfidf_char_inp_dense_unit": 510,
                "tfidf_char_inp_dropout_rate": 0.5,
                "x_dense_unit": 1970,
                "x_dropout_rate": 0.5,
            },
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 266,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.45,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 266,
                "long_desc_encoded_dropout": 0.45,
                "long_desc_encoded_recurrent_dropout": 0.55,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 35,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.45,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 60,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.45,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 120,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.45,
                "tfidf_word_dense_units": 620,
                "tfidf_word_dropout_rate": 0.5,
                "tfidf_char_inp_dense_unit": 520,
                "tfidf_char_inp_dropout_rate": 0.45,
                "x_dense_unit": 1950,
                "x_dropout_rate": 0.5,
            },
        ]

        feature_extractors = [
            bug_features.bug_reporter(),
            bug_features.platform(),
            bug_features.op_sys(),
        ]

        cleanup_functions = []

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                StructuredColumnTransformer([
                    (
                        "platform",
                        make_pipeline(DictExtractor("platform"),
                                      OrdinalEncoder()),
                        "data",
                    ),
                    (
                        "op_sys",
                        make_pipeline(DictExtractor("op_sys"),
                                      OrdinalEncoder()),
                        "data",
                    ),
                    (
                        "bug_reporter",
                        make_pipeline(
                            DictExtractor("bug_reporter"),
                            MissingOrdinalEncoder(),
                        ),
                        "data",
                    ),
                    (
                        "title_sequence",
                        KerasTextToSequences(self.short_desc_maxlen,
                                             self.short_desc_vocab_size),
                        "title",
                    ),
                    (
                        "first_comment_sequence",
                        KerasTextToSequences(self.long_desc_maxlen,
                                             self.long_desc_vocab_size),
                        "first_comment",
                    ),
                    (
                        "title_char_tfidf",
                        TfidfVectorizer(
                            strip_accents="unicode",
                            analyzer="char",
                            stop_words="english",
                            ngram_range=(2, 4),
                            max_features=25000,
                            sublinear_tf=True,
                        ),
                        "title",
                    ),
                    (
                        "title_word_tfidf",
                        TfidfVectorizer(
                            strip_accents="unicode",
                            min_df=0.0001,
                            max_df=0.1,
                            analyzer="word",
                            token_pattern=r"\w{1,}",
                            stop_words="english",
                            ngram_range=(2, 4),
                            max_features=30000,
                            sublinear_tf=True,
                        ),
                        "title",
                    ),
                ]),
            ),
        ])

        kwargs = {
            "short_desc_maxlen": self.short_desc_maxlen,
            "short_desc_vocab_size": self.short_desc_vocab_size,
            "short_desc_emb_sz": self.short_desc_emb_sz,
            "long_desc_maxlen": self.long_desc_maxlen,
            "long_desc_vocab_size": self.long_desc_vocab_size,
            "long_desc_emb_sz": self.long_desc_emb_sz,
        }

        estimators = []
        for i, params in enumerate(self.params):
            kwargs["params"] = params
            estimator = ComponentNNClassifier(**kwargs)
            estimators.append(("model_{}".format(i), estimator))

        self.clf = VotingClassifier(estimators=estimators,
                                    voting="soft",
                                    weights=[1, 1, 1])
示例#3
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.short_desc_maxlen = 20
        self.short_desc_vocab_size = 25000
        self.short_desc_emb_sz = 300
        self.long_desc_maxlen = 100
        self.long_desc_vocab_size = 25000
        self.long_desc_emb_sz = 300
        self.cross_validation_enabled = False

        self.params = [{
            'short_desc_emb_dropout_rate': 0.2,
            'short_desc_encoded_gru_units': 256,
            'short_desc_encoded_gru_dropout': 0.45,
            'short_desc_encoded_recurrent_dropout': 0.5,
            'long_desc_emb_dropout_rate': 0.25,
            'long_desc_encoded_gru_units': 256,
            'long_desc_encoded_dropout': 0.5,
            'long_desc_encoded_recurrent_dropout': 0.55,
            'rep_platform_emb_input_dim': 14,
            'rep_platform_emb_output_dim': 25,
            'rep_platform_emb_spatial_dropout_rate': 0.1,
            'rep_platform_emb_dropout_rate': 0.45,
            'op_sys_emb_input_dim': 48,
            'op_sys_emb_output_dim': 50,
            'op_sys_emb_spatial_dropout_rate': 0.1,
            'op_sys_emb_dropout_rate': 0.45,
            'reporter_emb_input_dim': 46544,
            'reporter_emb_output_dim': 100,
            'reporter_emb_spatial_dropout_rate': 0.15,
            'reporter_emb_dropout_rate': 0.5,
            'tfidf_word_dense_units': 600,
            'tfidf_word_dropout_rate': 0.5,
            'tfidf_char_inp_dense_unit': 500,
            'tfidf_char_inp_dropout_rate': 0.5,
            'x_dense_unit': 2000,
            'x_dropout_rate': 0.6,
        }, {
            'short_desc_emb_dropout_rate': 0.2,
            'short_desc_encoded_gru_units': 250,
            'short_desc_encoded_gru_dropout': 0.45,
            'short_desc_encoded_recurrent_dropout': 0.45,
            'long_desc_emb_dropout_rate': 0.25,
            'long_desc_encoded_gru_units': 250,
            'long_desc_encoded_dropout': 0.45,
            'long_desc_encoded_recurrent_dropout': 0.45,
            'rep_platform_emb_input_dim': 14,
            'rep_platform_emb_output_dim': 30,
            'rep_platform_emb_spatial_dropout_rate': 0.1,
            'rep_platform_emb_dropout_rate': 0.4,
            'op_sys_emb_input_dim': 48,
            'op_sys_emb_output_dim': 55,
            'op_sys_emb_spatial_dropout_rate': 0.1,
            'op_sys_emb_dropout_rate': 0.4,
            'reporter_emb_input_dim': 46544,
            'reporter_emb_output_dim': 110,
            'reporter_emb_spatial_dropout_rate': 0.15,
            'reporter_emb_dropout_rate': 0.45,
            'tfidf_word_dense_units': 610,
            'tfidf_word_dropout_rate': 0.45,
            'tfidf_char_inp_dense_unit': 510,
            'tfidf_char_inp_dropout_rate': 0.5,
            'x_dense_unit': 1970,
            'x_dropout_rate': 0.5,
        }, {
            'short_desc_emb_dropout_rate': 0.2,
            'short_desc_encoded_gru_units': 266,
            'short_desc_encoded_gru_dropout': 0.45,
            'short_desc_encoded_recurrent_dropout': 0.45,
            'long_desc_emb_dropout_rate': 0.25,
            'long_desc_encoded_gru_units': 266,
            'long_desc_encoded_dropout': 0.45,
            'long_desc_encoded_recurrent_dropout': 0.55,
            'rep_platform_emb_input_dim': 14,
            'rep_platform_emb_output_dim': 35,
            'rep_platform_emb_spatial_dropout_rate': 0.1,
            'rep_platform_emb_dropout_rate': 0.45,
            'op_sys_emb_input_dim': 48,
            'op_sys_emb_output_dim': 60,
            'op_sys_emb_spatial_dropout_rate': 0.1,
            'op_sys_emb_dropout_rate': 0.45,
            'reporter_emb_input_dim': 46544,
            'reporter_emb_output_dim': 120,
            'reporter_emb_spatial_dropout_rate': 0.15,
            'reporter_emb_dropout_rate': 0.45,
            'tfidf_word_dense_units': 620,
            'tfidf_word_dropout_rate': 0.5,
            'tfidf_char_inp_dense_unit': 520,
            'tfidf_char_inp_dropout_rate': 0.45,
            'x_dense_unit': 1950,
            'x_dropout_rate': 0.5,
        }]

        feature_extractors = [
            bug_features.bug_reporter(),
            bug_features.platform(),
            bug_features.op_sys()
        ]

        cleanup_functions = []

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors, cleanup_functions)),
            ('union',
             StructuredColumnTransformer([
                 ('platform',
                  make_pipeline(DictExtractor('platform'),
                                OrdinalEncoder()), 'data'),
                 ('op_sys',
                  make_pipeline(DictExtractor('op_sys'),
                                OrdinalEncoder()), 'data'),
                 ('bug_reporter',
                  make_pipeline(DictExtractor('bug_reporter'),
                                MissingOrdinalEncoder()), 'data'),
                 ('title_sequence',
                  KerasTextToSequences(self.short_desc_maxlen,
                                       self.short_desc_vocab_size), 'title'),
                 ('first_comment_sequence',
                  KerasTextToSequences(self.long_desc_maxlen,
                                       self.long_desc_vocab_size),
                  'first_comment'),
                 ('title_char_tfidf',
                  TfidfVectorizer(strip_accents='unicode',
                                  analyzer='char',
                                  stop_words='english',
                                  ngram_range=(2, 4),
                                  max_features=25000,
                                  sublinear_tf=True), 'title'),
                 ('title_word_tfidf',
                  TfidfVectorizer(strip_accents='unicode',
                                  min_df=0.0001,
                                  max_df=0.1,
                                  analyzer='word',
                                  token_pattern=r'\w{1,}',
                                  stop_words='english',
                                  ngram_range=(2, 4),
                                  max_features=30000,
                                  sublinear_tf=True), 'title')
             ])),
        ])

        kwargs = {
            'short_desc_maxlen': self.short_desc_maxlen,
            'short_desc_vocab_size': self.short_desc_vocab_size,
            'short_desc_emb_sz': self.short_desc_emb_sz,
            'long_desc_maxlen': self.long_desc_maxlen,
            'long_desc_vocab_size': self.long_desc_vocab_size,
            'long_desc_emb_sz': self.long_desc_emb_sz
        }

        estimators = []
        for i, params in enumerate(self.params):
            kwargs['params'] = params
            estimator = ComponentNNClassifier(**kwargs)
            estimators.append(('model_{}'.format(i), estimator))

        self.clf = VotingClassifier(estimators=estimators,
                                    voting='soft',
                                    weights=[1, 1, 1])
示例#4
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.short_desc_maxlen = 20
        self.short_desc_vocab_size = 25000
        self.short_desc_emb_sz = 300
        self.long_desc_maxlen = 100
        self.long_desc_vocab_size = 25000
        self.long_desc_emb_sz = 300
        self.cross_validation_enabled = False

        feature_extractors = [
            bug_features.bug_reporter(),
            bug_features.platform(),
            bug_features.op_sys()
        ]

        cleanup_functions = []

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors, cleanup_functions)),
            ('union',
             StructuredColumnTransformer([
                 ('platform',
                  make_pipeline(DictExtractor('platform'),
                                OrdinalEncoder()), 'data'),
                 ('op_sys',
                  make_pipeline(DictExtractor('op_sys'),
                                OrdinalEncoder()), 'data'),
                 ('bug_reporter',
                  make_pipeline(DictExtractor('bug_reporter'),
                                OrdinalEncoder()), 'data'),
                 ('title_sequence',
                  KerasTextToSequences(self.short_desc_maxlen,
                                       self.short_desc_vocab_size), 'title'),
                 ('first_comment_sequence',
                  KerasTextToSequences(self.long_desc_maxlen,
                                       self.long_desc_vocab_size),
                  'first_comment'),
                 ('title_char_tfidf',
                  TfidfVectorizer(strip_accents='unicode',
                                  analyzer='char',
                                  stop_words='english',
                                  ngram_range=(2, 4),
                                  max_features=25000,
                                  sublinear_tf=True), 'title'),
                 ('title_word_tfidf',
                  TfidfVectorizer(strip_accents='unicode',
                                  min_df=0.0001,
                                  max_df=0.1,
                                  analyzer='word',
                                  token_pattern=r'\w{1,}',
                                  stop_words='english',
                                  ngram_range=(2, 4),
                                  max_features=30000,
                                  sublinear_tf=True), 'title')
             ])),
        ])

        kwargs = {
            'short_desc_maxlen': self.short_desc_maxlen,
            'short_desc_vocab_size': self.short_desc_vocab_size,
            'short_desc_emb_sz': self.short_desc_emb_sz,
            'long_desc_maxlen': self.long_desc_maxlen,
            'long_desc_vocab_size': self.long_desc_vocab_size,
            'long_desc_emb_sz': self.long_desc_emb_sz
        }
        self.clf = ComponentNNClassifier(**kwargs)
示例#5
0
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.short_desc_maxlen = 20
        self.short_desc_vocab_size = 25000
        self.short_desc_emb_sz = 300
        self.long_desc_maxlen = 100
        self.long_desc_vocab_size = 25000
        self.long_desc_emb_sz = 300
        self.cross_validation_enabled = False

        self.params = [
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 256,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.5,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 256,
                "long_desc_encoded_dropout": 0.5,
                "long_desc_encoded_recurrent_dropout": 0.55,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 25,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.45,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 50,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.45,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 100,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.5,
                "tfidf_word_dense_units": 600,
                "tfidf_word_dropout_rate": 0.5,
                "tfidf_char_inp_dense_unit": 500,
                "tfidf_char_inp_dropout_rate": 0.5,
                "x_dense_unit": 2000,
                "x_dropout_rate": 0.6,
            },
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 250,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.45,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 250,
                "long_desc_encoded_dropout": 0.45,
                "long_desc_encoded_recurrent_dropout": 0.45,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 30,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.4,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 55,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.4,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 110,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.45,
                "tfidf_word_dense_units": 610,
                "tfidf_word_dropout_rate": 0.45,
                "tfidf_char_inp_dense_unit": 510,
                "tfidf_char_inp_dropout_rate": 0.5,
                "x_dense_unit": 1970,
                "x_dropout_rate": 0.5,
            },
            {
                "short_desc_emb_dropout_rate": 0.2,
                "short_desc_encoded_gru_units": 266,
                "short_desc_encoded_gru_dropout": 0.45,
                "short_desc_encoded_recurrent_dropout": 0.45,
                "long_desc_emb_dropout_rate": 0.25,
                "long_desc_encoded_gru_units": 266,
                "long_desc_encoded_dropout": 0.45,
                "long_desc_encoded_recurrent_dropout": 0.55,
                "rep_platform_emb_input_dim": 14,
                "rep_platform_emb_output_dim": 35,
                "rep_platform_emb_spatial_dropout_rate": 0.1,
                "rep_platform_emb_dropout_rate": 0.45,
                "op_sys_emb_input_dim": 48,
                "op_sys_emb_output_dim": 60,
                "op_sys_emb_spatial_dropout_rate": 0.1,
                "op_sys_emb_dropout_rate": 0.45,
                "reporter_emb_input_dim": 46544,
                "reporter_emb_output_dim": 120,
                "reporter_emb_spatial_dropout_rate": 0.15,
                "reporter_emb_dropout_rate": 0.45,
                "tfidf_word_dense_units": 620,
                "tfidf_word_dropout_rate": 0.5,
                "tfidf_char_inp_dense_unit": 520,
                "tfidf_char_inp_dropout_rate": 0.45,
                "x_dense_unit": 1950,
                "x_dropout_rate": 0.5,
            },
        ]

        feature_extractors = [
            bug_features.bug_reporter(),
            bug_features.platform(),
            bug_features.op_sys(),
        ]

        cleanup_functions = []

        self.extraction_pipeline = Pipeline(
            [
                (
                    "bug_extractor",
                    bug_features.BugExtractor(feature_extractors, cleanup_functions),
                ),
                (
                    "union",
                    StructuredColumnTransformer(
                        [
                            (
                                "platform",
                                make_pipeline(
                                    DictExtractor("platform"), OrdinalEncoder()
                                ),
                                "data",
                            ),
                            (
                                "op_sys",
                                make_pipeline(
                                    DictExtractor("op_sys"), OrdinalEncoder()
                                ),
                                "data",
                            ),
                            (
                                "bug_reporter",
                                make_pipeline(
                                    DictExtractor("bug_reporter"),
                                    MissingOrdinalEncoder(),
                                ),
                                "data",
                            ),
                            (
                                "title_sequence",
                                KerasTextToSequences(
                                    self.short_desc_maxlen, self.short_desc_vocab_size
                                ),
                                "title",
                            ),
                            (
                                "first_comment_sequence",
                                KerasTextToSequences(
                                    self.long_desc_maxlen, self.long_desc_vocab_size
                                ),
                                "first_comment",
                            ),
                            (
                                "title_char_tfidf",
                                TfidfVectorizer(
                                    strip_accents="unicode",
                                    analyzer="char",
                                    stop_words="english",
                                    ngram_range=(2, 4),
                                    max_features=25000,
                                    sublinear_tf=True,
                                ),
                                "title",
                            ),
                            (
                                "title_word_tfidf",
                                TfidfVectorizer(
                                    strip_accents="unicode",
                                    min_df=0.0001,
                                    max_df=0.1,
                                    analyzer="word",
                                    token_pattern=r"\w{1,}",
                                    stop_words="english",
                                    ngram_range=(2, 4),
                                    max_features=30000,
                                    sublinear_tf=True,
                                ),
                                "title",
                            ),
                        ]
                    ),
                ),
            ]
        )

        kwargs = {
            "short_desc_maxlen": self.short_desc_maxlen,
            "short_desc_vocab_size": self.short_desc_vocab_size,
            "short_desc_emb_sz": self.short_desc_emb_sz,
            "long_desc_maxlen": self.long_desc_maxlen,
            "long_desc_vocab_size": self.long_desc_vocab_size,
            "long_desc_emb_sz": self.long_desc_emb_sz,
        }

        estimators = []
        for i, params in enumerate(self.params):
            kwargs["params"] = params
            estimator = ComponentNNClassifier(**kwargs)
            estimators.append(("model_{}".format(i), estimator))

        self.clf = VotingClassifier(
            estimators=estimators, voting="soft", weights=[1, 1, 1]
        )