示例#1
0
    def __init__(self,
                 lemmatization=False,
                 granularity="label",
                 failures_skip=None):
        Model.__init__(self, lemmatization)

        self.granularity = granularity
        self.failures_skip = failures_skip

        self.training_dbs = [repository.COMMITS_DB]
        self.eval_dbs[repository.COMMITS_DB] = (
            repository.COMMITS_DB,
            repository.COMMIT_EXPERIENCES_DB,
        )
        if granularity == "label":
            self.training_dbs.append(test_scheduling.TEST_LABEL_SCHEDULING_DB)
            self.eval_dbs[test_scheduling.TEST_LABEL_SCHEDULING_DB] = (
                test_scheduling.PAST_FAILURES_LABEL_DB,
                test_scheduling.FAILING_TOGETHER_LABEL_DB,
            )
        elif granularity == "group":
            self.training_dbs.append(test_scheduling.TEST_GROUP_SCHEDULING_DB)
            self.eval_dbs[test_scheduling.TEST_GROUP_SCHEDULING_DB] = (
                test_scheduling.PAST_FAILURES_GROUP_DB,
                test_scheduling.TOUCHED_TOGETHER_DB,
            )

        self.cross_validation_enabled = False

        self.entire_dataset_training = True

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            test_scheduling_features.prev_failures(),
        ]

        if granularity == "label":
            feature_extractors += [
                test_scheduling_features.platform(),
                # test_scheduling_features.chunk(),
                test_scheduling_features.suite(),
            ]
        elif granularity == "group":
            feature_extractors += [
                test_scheduling_features.path_distance(),
                test_scheduling_features.common_path_components(),
                test_scheduling_features.touched_together(),
            ]

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors, []),
            ),
            ("union", ColumnTransformer([("data", DictVectorizer(), "data")])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#2
0
    def __init__(self, lemmatization=False, granularity="label"):
        Model.__init__(self, lemmatization)

        self.granularity = granularity

        self.required_dbs = [repository.COMMITS_DB]
        if granularity == "label":
            self.required_dbs.append(test_scheduling.TEST_LABEL_SCHEDULING_DB)
        elif granularity == "group":
            self.required_dbs.append(test_scheduling.TEST_GROUP_SCHEDULING_DB)

        self.cross_validation_enabled = False

        self.entire_dataset_training = True

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            test_scheduling_features.name(),
            test_scheduling_features.prev_failures(),
        ]

        if granularity == "label":
            feature_extractors += [
                test_scheduling_features.platform(),
                test_scheduling_features.chunk(),
                test_scheduling_features.suite(),
            ]
        elif granularity == "group":
            feature_extractors += [
                test_scheduling_features.path_distance(),
                test_scheduling_features.common_path_components(),
            ]

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors, []),
            ),
            ("union", ColumnTransformer([("data", DictVectorizer(), "data")])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#3
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({"dev-doc-needed", "dev-doc-complete"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.commit_added(),
            bug_features.commit_deleted(),
            bug_features.commit_types(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(
                    feature_extractors,
                    cleanup_functions,
                    rollback=True,
                    rollback_when=self.rollback,
                    commit_data=True,
                ),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(), "title"),
                    ("comments", self.text_vectorizer(), "comments"),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#4
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.sampler = InstanceHardnessThreshold(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.is_mozillian(),
            bug_features.bug_reporter(),
            bug_features.blocked_bugs_number(),
            bug_features.priority(),
            bug_features.has_cve_in_alias(),
            bug_features.comment_count(),
            bug_features.comment_length(),
            bug_features.reporter_experience(),
            bug_features.number_of_bug_dependencies()
        ]

        cleanup_functions = [
            bug_features.cleanup_url,
            bug_features.cleanup_fileref,
            bug_features.cleanup_hex,
            bug_features.cleanup_dll,
            bug_features.cleanup_synonyms,
            bug_features.cleanup_crash,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True, rollback_when=self.rollback)),
            ('union', ColumnTransformer([
                ('data', DictVectorizer(), 'data'),

                ('title', self.text_vectorizer(min_df=0.0001), 'title'),

                ('comments', self.text_vectorizer(min_df=0.0001), 'comments'),
            ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
示例#5
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.cross_validation_enabled = False
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(
                    feature_extractors,
                    cleanup_functions,
                    rollback=True,
                    rollback_when=self.rollback,
                ),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.0001), "title"),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.0001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#6
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({'dev-doc-needed', 'dev-doc-complete'}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.product(),
            bug_features.component(),
            bug_features.commit_added(),
            bug_features.commit_deleted(),
            bug_features.commit_types(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors,
                                       cleanup_functions,
                                       rollback=True,
                                       rollback_when=self.rollback,
                                       commit_data=True)),
            ('union',
             ColumnTransformer([
                 ('data', DictVectorizer(), 'data'),
                 ('title', self.text_vectorizer(stop_words='english'),
                  'title'),
                 ('comments', self.text_vectorizer(stop_words='english'),
                  'comments'),
             ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
示例#7
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            # Ignore keywords that would make the ML completely skewed
            # (we are going to use them as 100% rules in the evaluation phase).
            bug_features.keywords(
                {'regression', 'talos-regression', 'feature'}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        cleanup_functions = [
            bug_features.cleanup_url,
            bug_features.cleanup_fileref,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors, cleanup_functions)),
            ('union',
             ColumnTransformer([
                 ('data', DictVectorizer(), 'data'),
                 ('title', self.text_vectorizer(min_df=0.001), 'title'),
                 ('first_comment', self.text_vectorizer(min_df=0.001),
                  'first_comment'),
                 ('comments', self.text_vectorizer(min_df=0.001), 'comments'),
             ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
示例#8
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.undersampling_enabled = False
        self.cross_validation_enabled = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors, cleanup_functions)),
            (
                'union',
                ColumnTransformer([
                    # TODO: Re-enable when we'll support bug snapshotting (#5).
                    # ('data', DictVectorizer(), 'data'),
                    ('title', self.text_vectorizer(stop_words='english'),
                     'title'),

                    # TODO: Re-enable when we'll support bug snapshotting (#5).
                    # ('comments', self.text_vectorizer(stop_words='english'), 'comments'),
                    ('first_comment',
                     self.text_vectorizer(stop_words='english'),
                     'first_comment'),
                ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
示例#9
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.has_regression_range(),
            bug_features.severity(),
            bug_features.keywords({'qawanted'}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor',
             bug_features.BugExtractor(feature_extractors,
                                       cleanup_functions,
                                       rollback=True,
                                       rollback_when=self.rollback)),
            ('union',
             ColumnTransformer([
                 ('data', DictVectorizer(), 'data'),
                 ('title', self.text_vectorizer(), 'title'),
                 ('comments', self.text_vectorizer(), 'comments'),
             ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')
示例#10
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.required_dbs = [
            repository.COMMITS_DB, test_scheduling.TEST_SCHEDULING_DB
        ]

        self.calculate_importance = False
        self.cross_validation_enabled = False

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            commit_features.source_code_files_modified_num(),
            commit_features.other_files_modified_num(),
            commit_features.test_files_modified_num(),
            commit_features.source_code_file_size(),
            commit_features.other_file_size(),
            commit_features.test_file_size(),
            commit_features.source_code_added(),
            commit_features.other_added(),
            commit_features.test_added(),
            commit_features.source_code_deleted(),
            commit_features.other_deleted(),
            commit_features.test_deleted(),
            test_scheduling_features.name(),
            test_scheduling_features.platform(),
            test_scheduling_features.chunk(),
            test_scheduling_features.suite(),
            test_scheduling_features.prev_failures(),
        ]

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors, []),
            ),
            ("union", ColumnTransformer([("data", DictVectorizer(), "data")])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#11
0
    def __init__(self, lemmatization=False):
        Model.__init__(self, lemmatization)

        self.cross_validation_enabled = False
        self.calculate_importance = False

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            bug_features.keywords(),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
        ]

        cleanup_functions = [
            bug_features.cleanup_fileref,
            bug_features.cleanup_url,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            ('bug_extractor', bug_features.BugExtractor(feature_extractors, cleanup_functions, rollback=True)),
            ('union', ColumnTransformer([
                ('data', DictVectorizer(), 'data'),

                ('title', self.text_vectorizer(min_df=0.0001), 'title'),

                ('comments', self.text_vectorizer(min_df=0.0001), 'comments'),
            ])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor='cpu_predictor')

        self.CONFLATED_COMPONENTS_INVERSE_MAPPING = {v: k for k, v in self.CONFLATED_COMPONENTS_MAPPING.items()}
示例#12
0
    def __init__(self,
                 lemmatization=False,
                 granularity="label",
                 use_subset=False):
        Model.__init__(self, lemmatization)

        self.granularity = granularity
        # This is useful for development purposes, it avoids using too much memory
        # by using a subset of the dataset (dropping some passing runnables).
        self.use_subset = use_subset

        self.training_dbs = [repository.COMMITS_DB]
        self.eval_dbs[repository.COMMITS_DB] = (
            repository.COMMITS_DB,
            repository.COMMIT_EXPERIENCES_DB,
        )
        if granularity == "label":
            self.training_dbs.append(test_scheduling.TEST_LABEL_SCHEDULING_DB)
            self.eval_dbs[test_scheduling.TEST_LABEL_SCHEDULING_DB] = (
                test_scheduling.PAST_FAILURES_LABEL_DB,
                test_scheduling.FAILING_TOGETHER_LABEL_DB,
            )
        elif granularity == "group":
            self.training_dbs.append(test_scheduling.TEST_GROUP_SCHEDULING_DB)
            self.eval_dbs[test_scheduling.TEST_GROUP_SCHEDULING_DB] = (
                test_scheduling.PAST_FAILURES_GROUP_DB,
                test_scheduling.TOUCHED_TOGETHER_DB,
            )

        self.cross_validation_enabled = False

        self.entire_dataset_training = True

        self.sampler = RandomUnderSampler(random_state=0)

        feature_extractors = [
            test_scheduling_features.prev_failures(),
        ]

        if granularity == "label":
            feature_extractors += [
                test_scheduling_features.platform(),
                # test_scheduling_features.chunk(),
                test_scheduling_features.suite(),
            ]
        elif granularity == "group":
            feature_extractors += [
                commit_features.source_code_files_modified_num(),
                commit_features.other_files_modified_num(),
                commit_features.test_files_modified_num(),
                commit_features.source_code_file_size(),
                commit_features.other_file_size(),
                commit_features.test_file_size(),
                commit_features.source_code_added(),
                commit_features.other_added(),
                commit_features.test_added(),
                commit_features.source_code_deleted(),
                commit_features.other_deleted(),
                commit_features.test_deleted(),
                test_scheduling_features.path_distance(),
                test_scheduling_features.common_path_components(),
                test_scheduling_features.touched_together(),
            ]

        self.extraction_pipeline = Pipeline([
            (
                "commit_extractor",
                commit_features.CommitExtractor(feature_extractors, []),
            ),
            ("union", ColumnTransformer([("data", DictVectorizer(), "data")])),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")
示例#13
0
    def __init__(self, lemmatization=False, historical=False):
        Model.__init__(self, lemmatization)

        self.sampler = BorderlineSMOTE(random_state=0)

        feature_extractors = [
            bug_features.has_str(),
            bug_features.severity(),
            # Ignore keywords that would make the ML completely skewed
            # (we are going to use them as 100% rules in the evaluation phase).
            bug_features.keywords(
                {"regression", "talos-regression", "feature"}),
            bug_features.is_coverity_issue(),
            bug_features.has_crash_signature(),
            bug_features.has_url(),
            bug_features.has_w3c_url(),
            bug_features.has_github_url(),
            bug_features.whiteboard(),
            bug_features.patches(),
            bug_features.landings(),
            bug_features.title(),
            bug_features.blocked_bugs_number(),
            bug_features.ever_affected(),
            bug_features.affected_then_unaffected(),
            bug_features.product(),
            bug_features.component(),
        ]

        if historical:
            feature_extractors.append(bug_features.had_severity_enhancement())

        cleanup_functions = [
            bug_features.cleanup_url,
            bug_features.cleanup_fileref,
            bug_features.cleanup_synonyms,
        ]

        self.extraction_pipeline = Pipeline([
            (
                "bug_extractor",
                bug_features.BugExtractor(feature_extractors,
                                          cleanup_functions),
            ),
            (
                "union",
                ColumnTransformer([
                    ("data", DictVectorizer(), "data"),
                    ("title", self.text_vectorizer(min_df=0.001), "title"),
                    (
                        "first_comment",
                        self.text_vectorizer(min_df=0.001),
                        "first_comment",
                    ),
                    (
                        "comments",
                        self.text_vectorizer(min_df=0.001),
                        "comments",
                    ),
                ]),
            ),
        ])

        self.clf = xgboost.XGBClassifier(n_jobs=16)
        self.clf.set_params(predictor="cpu_predictor")