示例#1
0
    time_num = settings.TIME_SLICE
    train_percent = 0.95
    alpha = 0.95

    x_values = []
    y_values1 = []
    y_values2 = []
    y_values3 = []

    # data, axis_users, axis_pois, check_data = init_data(region, filter_count, train_percent)
    data, axis_users, axis_pois, check_data = init_data_by_user(tuple([0, 3, 4, 5, 30]), filter_count, train_percent)
    user_num = len(axis_users)
    poi_num = len(axis_pois)

    init_tensor = [[[1/(poi_num * time_num * user_num) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
    transition_tensor = inreducible_tensor(mtt(data, user_num, poi_num), user_num, time_num, poi_num, alpha)
    res1, iterator_values1 = tensor_three_mode_product(transition_tensor, init_tensor)

    order = 1
    while order <= settings.ITERATOR_NUMBER:
        x_values.append(order)
        y_values1.append(iterator_values1[order])
        order += 1

    label = ""+str(((settings.TIME_SLICE*user_num*poi_num)**2))
    pylab.plot(x_values, y_values1, 'rs', linewidth=1, linestyle="-", label=label)


    data, axis_users, axis_pois, check_data = init_data_by_user(tuple([0, 3, 4]), filter_count, train_percent)
    user_num = len(axis_users)
    poi_num = len(axis_pois)
示例#2
0

if __name__ == '__main__':
    # beijing = (39.433333, 41.05, 115.416667, 117.5)
    # haidian = (39.883333, 40.15, 116.05, 116.383333)
    region = (39.883333, 40.05, 116.05, 116.383333)
    filter_count = 600
    alpha = 0.8
    alpha_shift = 0.1

    data, axis_users, axis_pois, check_data = init_data(region, filter_count)
    user_num = len(axis_users)
    time_num = settings.TIME_SLICE
    poi_num = len(axis_pois)

    transition_tensor = mtt(data, user_num, poi_num)
    transition_tensor2 = inreducible_tensor(transition_tensor, user_num, time_num, poi_num, alpha)
    transition_tensor3 = mtt(data, user_num, poi_num, zero_adjustment=False)

    # equal_all_sum_one: equal
    # init_tensor1 = [[[1/(poi_num * time_num * user_num) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
    # # random_all_sum_one: no zero element
    # temp_tensor = [[[random.choice([1, 2, 3, 100]) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
    # init_tensor2 = three_tensor_hadarmard(1/three_order_tensor_first_norm(temp_tensor), temp_tensor)
    #
    # init_tensor3 = [[[0 for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
    # init_tensor3[0][0][0] = 1
    # # random_all_sum_one: exist zero element
    # temp_tensor = [[[random.choice([0, 1, 2, 3, 4]) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
    # init_tensor3 = three_tensor_hadarmard(1/three_order_tensor_first_norm(temp_tensor), temp_tensor)
    # # user_slice_sum_one: equal
示例#3
0
    filter_count = 600
    time_num = settings.TIME_SLICE
    train_percent = 0.1

    x_values = []
    y_values1 = []
    y_values2 = []

    order = 1
    while train_percent < 1:
        data, axis_users, axis_pois, check_data = init_data(
            region, filter_count, train_percent)
        user_num = len(axis_users)
        poi_num = len(axis_pois)

        transition_tensor = mtt(data, user_num, poi_num)

        # equal_all_sum_one: equal
        init_tensor1 = [[[
            1 / (poi_num * time_num * user_num) for i in range(poi_num)
        ] for j in range(time_num)] for k in range(user_num)]
        # user_slice_sum_one: equal
        init_tensor2 = [[[1 / (poi_num * time_num) for i in range(poi_num)]
                         for j in range(time_num)] for k in range(user_num)]

        res1, iterator_values1 = tensor_three_mode_product(
            transition_tensor, init_tensor1)
        res2, iterator_values2 = tensor_three_mode_product(
            transition_tensor, init_tensor2)

        # print res
示例#4
0
    values = []
    x_values = []
    y_values1 = []
    y_values2 = []
    y_values3 = []
    y_values4 = []

    order = 1
    while alpha >= 0.2:
        data, axis_users, axis_pois, check_data = init_data(
            region, filter_count, train_percent)
        user_num = len(axis_users)
        poi_num = len(axis_pois)

        transition_tensor = inreducible_tensor(mtt(data, user_num,
                                                   poi_num), user_num,
                                               time_num, poi_num, alpha)

        # equal_all_sum_one: equal
        init_tensor = [[[
            1 / (poi_num * time_num * user_num) for i in range(poi_num)
        ] for j in range(time_num)] for k in range(user_num)]
        res, iterator_values = tensor_three_mode_product(
            transition_tensor, init_tensor)

        values.append(iterator_values)
        alpha -= 0.2

    print values
    # print values.keys()
    value1 = values[0]
示例#5
0
    region = (39.883333, 40.05, 116.05, 116.383333)
    filter_count = 600
    time_num = settings.TIME_SLICE
    train_percent = 0.1

    x_values = []
    y_values1 = []
    y_values2 = []

    order = 1
    while train_percent < 1:
        data, axis_users, axis_pois, check_data = init_data(region, filter_count, train_percent)
        user_num = len(axis_users)
        poi_num = len(axis_pois)

        transition_tensor = mtt(data, user_num, poi_num)

        # equal_all_sum_one: equal
        init_tensor1 = [[[1/(poi_num * time_num * user_num) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]
        # user_slice_sum_one: equal
        init_tensor2 = [[[1/(poi_num * time_num) for i in range(poi_num)] for j in range(time_num)] for k in range(user_num)]

        res1, iterator_values1 = tensor_three_mode_product(transition_tensor, init_tensor1)
        res2, iterator_values2 = tensor_three_mode_product(transition_tensor, init_tensor2)

        # print res

        check_tensor = get_check_tensor(check_data, user_num, time_num, poi_num)
        residual1 = delta_tensor_norm(res1, check_tensor)
        residual2 = delta_tensor_norm(res2, check_tensor)