示例#1
0
def match_projections(
    rasters,
    master,
    out_dir,
    overwrite=False,
    dst_nodata="infer",
    copy_if_already_correct=True,
):
    target_projection = parse_projection(master)

    created = []

    for raster in rasters:
        metadata = raster_to_metadata(raster)
        outname = out_dir + metadata["name"] + ".tif"
        created.append(outname)

        if os.path.exists(outname):
            if not overwrite:
                continue

        internal_reproject_raster(
            raster,
            target_projection,
            outname,
            copy_if_already_correct=copy_if_already_correct,
            dst_nodata=dst_nodata,
        )

    return created
示例#2
0
def raster_get_nodata_value(
    raster: Union[List[Union[gdal.Dataset, str]], gdal.Dataset, str],
) -> Union[List[Optional[Number]], Optional[Number]]:
    """Get the nodata value of a raster or a from a list of rasters.

    Args:
        raster (path | raster | list): The raster(s) to retrieve nodata values from.

    Returns:
        Returns the nodata value from a raster or a list of rasters
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")

    rasters = get_raster_path(raster, return_list=True)

    nodata_values = []
    for internal_raster in rasters:
        if not is_raster(internal_raster):
            raise ValueError(f"Input raster is invalid: {internal_raster}")

        raster_metadata = raster_to_metadata(internal_raster)

        if not isinstance(raster_metadata, dict):
            raise Exception("Metadata is in the wrong format.")

        raster_nodata = raster_metadata["nodata_value"]

        nodata_values.append(raster_nodata)

    if isinstance(raster, list):
        return nodata_values
    else:
        return nodata_values[0]
示例#3
0
def raster_has_nodata_value(
    raster: Union[List[Union[gdal.Dataset, str]], gdal.Dataset, str],
) -> Union[bool, List[bool]]:
    """Check if a raster or a list of rasters contain nodata values

    Args:
        raster (path | raster | list): The raster(s) to check for nodata values.

    Returns:
        True if input raster has nodata values. If a list is the input, the output
        is a list of booleans indicating if the input raster has nodata values.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")

    nodata_values = []
    rasters = get_raster_path(raster, return_list=True)

    for internal_raster in rasters:
        if not is_raster(internal_raster):
            raise ValueError(f"Input raster is invalid: {internal_raster}")

        raster_metadata = raster_to_metadata(internal_raster)

        if not isinstance(raster_metadata, dict):
            raise Exception("Metadata is in the wrong format.")

        raster_nodata = raster_metadata["nodata_value"]

        if raster_nodata is not None:
            nodata_values.append(True)
        else:
            nodata_values.append(False)

    if isinstance(raster, list):
        return nodata_values
    else:
        return nodata_values[0]
示例#4
0
def raster_mask_values(
    raster: Union[gdal.Dataset, str, list],
    values_to_mask: list,
    out_path: Union[list, str, None] = None,
    include_original_nodata: bool = True,
    dst_nodata: Union[float, int, str, list, None] = "infer",
    in_place: bool = False,
    overwrite: bool = True,
    opened: bool = False,
    prefix: str = "",
    postfix: str = "_nodata_masked",
    creation_options: list = [],
) -> Union[list, gdal.Dataset, str]:
    """Mask a raster with a list of values.

    Args:
        raster (path | raster | list): The raster(s) to retrieve nodata values from.

        values_to_mask (list): The list of values to mask in the raster(s)

    **kwargs:
        include_original_nodata: (bool): If True, the nodata value of the raster(s) will be
        included in the values to mask.

        dst_nodata (float, int, str, None): The target nodata value. If 'infer' the nodata
        value is set based on the input datatype. A list of nodata values can be based matching
        the amount of input rasters. If multiple nodata values should be set, use raster_mask_values.

        out_path (path | list | None): The destination of the changed rasters. If out_paths
        are specified, in_place is automatically set to False. The path can be a folder.

        in_place (bool): Should the rasters be changed in_place or copied?

        prefix (str): Prefix to add the the output if a folder is specified in out_path.

        postfix (str): Postfix to add the the output if a folder is specified in out_path.

    Returns:
        Returns the rasters with nodata removed. If in_place is True a reference to the
        changed orignal is returned, otherwise a copied memory raster or the path to the
        generated raster is outputted.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(values_to_mask, [list], "values_to_mask")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(include_original_nodata, [bool], "include_original_nodata")
    type_check(dst_nodata, [float, int, str, list],
               "dst_nodata",
               allow_none=True)
    type_check(in_place, [bool], "in_place")
    type_check(overwrite, [bool], "overwrite")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")
    type_check(opened, [bool], "opened")
    type_check(creation_options, [list], "creation_options")

    rasters_metadata = []
    internal_in_place = in_place if out_path is None else False
    internal_dst_nodata = None

    for value in values_to_mask:
        if not isinstance(value, (int, float)):
            raise ValueError("Values in values_to_mask must be ints or floats")

    if isinstance(dst_nodata, str) and dst_nodata != "infer":
        raise ValueError(f"Invalid dst_nodata value. {dst_nodata}")

    if isinstance(dst_nodata, list):
        if not isinstance(raster, list) or len(dst_nodata) != len(raster):
            raise ValueError(
                "If dst_nodata is a list, raster must also be a list of equal length."
            )

        for value in dst_nodata:
            if isinstance(value, (float, int, str, None)):
                raise ValueError("Invalid type in dst_nodata list.")

            if isinstance(value, str) and value != "infer":
                raise ValueError(
                    "If dst_nodata is a string it must be 'infer'")

    raster_list, out_names = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)

    output_rasters = []

    for index, internal_raster in enumerate(raster_list):

        raster_metadata = None
        if len(rasters_metadata) == 0:
            raster_metadata = raster_to_metadata(internal_raster)
            rasters_metadata.append(raster_metadata)
        else:
            raster_metadata = rasters_metadata[index]

        if dst_nodata == "infer":
            internal_dst_nodata = gdal_nodata_value_from_type(
                raster_metadata["dtype_gdal_raw"])
        elif isinstance(dst_nodata, list):
            internal_dst_nodata = dst_nodata[index]
        else:
            internal_dst_nodata = dst_nodata

        mask_values = list(values_to_mask)
        if include_original_nodata:
            if raster_metadata["nodata_value"] is not None:
                mask_values.append(raster_metadata["nodata_value"])

        arr = raster_to_array(internal_raster, filled=True)

        mask = None
        for index, mask_value in enumerate(mask_values):
            if index == 0:
                mask = arr == mask_value
            else:
                mask = mask | arr == mask_value

        arr = np.ma.masked_array(arr,
                                 mask=mask,
                                 fill_value=internal_dst_nodata)

        if internal_in_place:
            for band in range(raster_metadata["bands"]):
                raster_band = internal_raster.GetRasterBand(band + 1)
                raster_band.WriteArray(arr[:, :, band])
                raster_band = None
        else:
            out_name = out_names[index]
            remove_if_overwrite(out_name, overwrite)

            output_rasters.append(
                array_to_raster(arr, internal_raster, out_path=out_name))

    if isinstance(raster, list):
        return output_rasters

    return output_rasters[0]
示例#5
0
def raster_set_nodata(
    raster: Union[List[Union[gdal.Dataset, str]], gdal.Dataset, str],
    dst_nodata: Union[float, int, str, list, None],
    out_path: Union[list, str, None] = None,
    overwrite: bool = True,
    in_place: bool = False,
    prefix: str = "",
    postfix: str = "_nodata_set",
    opened: bool = False,
    creation_options: list = [],
) -> Union[list, gdal.Dataset, str]:
    """Sets all the nodata from a raster or a list of rasters.

    Args:
        raster (path | raster | list): The raster(s) to retrieve nodata values from.

        dst_nodata (float, int, str, None): The target nodata value. If 'infer' the nodata
        value is set based on the input datatype. A list of nodata values can be based matching
        the amount of input rasters. If multiple nodata values should be set, use raster_mask_values.

    **kwargs:
        out_path (path | list | None): The destination of the changed rasters. If out_paths
        are specified, in_place is automatically set to False. The path can be a folder.

        in_place (bool): Should the rasters be changed in_place or copied?

        prefix (str): Prefix to add the the output if a folder is specified in out_path.

        postfix (str): Postfix to add the the output if a folder is specified in out_path.

    Returns:
        Returns the rasters with nodata set. If in_place is True a reference to the
        changed orignal is returned, otherwise a copied memory raster or the path to the
        generated raster is outputted.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(dst_nodata, [float, int, str, list],
               "dst_nodata",
               allow_none=True)
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")
    type_check(opened, [bool], "opened")
    type_check(creation_options, [list], "creation_options")

    rasters, out_names = ready_io_raster(raster, out_path, overwrite, prefix,
                                         postfix)

    rasters_metadata: List[Metadata_raster] = []
    internal_dst_nodata = None

    if isinstance(dst_nodata, str) and dst_nodata != "infer":
        raise ValueError(f"Invalid dst_nodata value. {dst_nodata}")

    if isinstance(dst_nodata, list):
        if not isinstance(raster, list) or len(dst_nodata) != len(raster):
            raise ValueError(
                "If dst_nodata is a list, raster must also be a list of equal length."
            )

        for value in dst_nodata:
            if isinstance(value, (float, int, str, None)):
                raise ValueError("Invalid type in dst_nodata list.")

            if isinstance(value, str) and value != "infer":
                raise ValueError(
                    "If dst_nodata is a string it must be 'infer'")

    output_rasters = []

    for index, internal_raster in enumerate(rasters):

        raster_metadata = None
        if len(rasters_metadata) == 0:
            raster_metadata = raster_to_metadata(internal_raster)

            if not isinstance(raster_metadata, dict):
                raise Exception("Metadata is in the wrong format.")

            rasters_metadata.append(raster_metadata)
        else:
            raster_metadata = rasters_metadata[index]

        if dst_nodata == "infer":
            internal_dst_nodata = gdal_nodata_value_from_type(
                raster_metadata["dtype_gdal_raw"])
        elif isinstance(dst_nodata, list):
            internal_dst_nodata = dst_nodata[index]
        else:
            internal_dst_nodata = dst_nodata

        if in_place:
            for band in range(raster_metadata["bands"]):
                raster_band = internal_raster.GetRasterBand(band + 1)
                raster_band.SetNodataValue(internal_dst_nodata)
                raster_band = None
        else:
            if out_path is None:
                raster_mem = raster_to_memory(internal_raster)
                raster_mem_ref = raster_to_reference(raster_mem)
            else:
                remove_if_overwrite(out_names[index], overwrite)
                raster_mem = raster_to_disk(internal_raster, out_names[index])
                raster_mem_ref = raster_to_reference(raster_mem)

            for band in range(raster_metadata["bands"]):
                raster_band = raster_mem_ref.GetRasterBand(band + 1)
                raster_band.SetNodataValue(internal_dst_nodata)

    if isinstance(raster, list):
        return output_rasters

    return output_rasters[0]
示例#6
0
def internal_reproject_raster(
    raster: Union[str, gdal.Dataset],
    projection: Union[int, str, gdal.Dataset, ogr.DataSource,
                      osr.SpatialReference],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    copy_if_already_correct: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_reprojected",
) -> str:
    """OBS: Internal. Single output.

    Reproject a raster(s) to a target coordinate reference system.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(
        projection,
        [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference],
        "projection",
    )
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(copy_if_already_correct, [bool], "copy_if_already_correct")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)
    out_name = path_list[0]
    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    original_projection = parse_projection(ref)
    target_projection = parse_projection(projection)

    if not isinstance(original_projection, osr.SpatialReference):
        raise Exception("Error while parsing input projection.")

    if not isinstance(target_projection, osr.SpatialReference):
        raise Exception("Error while parsing target projection.")

    if original_projection.IsSame(target_projection):
        if not copy_if_already_correct:
            return get_raster_path(ref)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    reprojected = gdal.Warp(
        out_name,
        ref,
        format=out_format,
        srcSRS=original_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if reprojected is None:
        raise Exception(f"Error while reprojecting raster: {raster}")

    return out_name
示例#7
0
def _warp_raster(
    raster: Union[str, gdal.Dataset],
    out_path: Optional[str] = None,
    projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource,
                               osr.SpatialReference]] = None,
    clip_geom: Optional[Union[str, ogr.DataSource]] = None,
    target_size: Optional[Union[Tuple[Number], Number]] = None,
    target_in_pixels: bool = False,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    all_touch: bool = True,
    adjust_bbox: bool = True,
    overwrite: bool = True,
    creation_options: Union[list, None] = None,
    src_nodata: Union[str, int, float] = "infer",
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_resampled",
) -> str:
    """WARNING: INTERNAL. DO NOT USE."""
    raster_list, path_list = ready_io_raster(raster, out_path, overwrite,
                                             prefix, postfix)

    origin = open_raster(raster_list[0])
    out_name = path_list[0]
    raster_metadata = raster_to_metadata(origin, create_geometry=True)

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_projection: osr.SpatialReference = raster_metadata["projection_osr"]
    origin_extent: ogr.Geometry = raster_metadata["extent_geom_latlng"]

    target_projection = origin_projection
    if projection is not None:
        target_projection = parse_projection(projection)

    if clip_geom is not None:
        if is_raster(clip_geom):
            opened_raster = open_raster(clip_geom)
            clip_metadata_raster = raster_to_metadata(opened_raster,
                                                      create_geometry=True)
            clip_ds = clip_metadata_raster["extent_datasource"]
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        elif is_vector(clip_geom):
            clip_ds = open_vector(clip_geom)
            clip_metadata = internal_vector_to_metadata(clip_ds,
                                                        create_geometry=True)
        else:
            if file_exists(clip_geom):
                raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
            else:
                raise ValueError(f"Unable to find clip geometry {clip_geom}")

        if layer_to_clip > (clip_metadata["layer_count"] - 1):
            raise ValueError("Requested an unable layer_to_clip.")

        clip_projection = clip_metadata["projection_osr"]
        clip_extent = clip_metadata["extent_geom_latlng"]

        # Fast check: Does the extent of the two inputs overlap?
        if not origin_extent.Intersects(clip_extent):
            raise Exception("Clipping geometry did not intersect raster.")

        # Check if projections match, otherwise reproject target geom.
        if not target_projection.IsSame(clip_projection):
            clip_metadata["extent"] = reproject_extent(
                clip_metadata["extent"],
                clip_projection,
                target_projection,
            )

        # The extent needs to be reprojected to the target.
        # this ensures that adjust_bbox works.
        x_min_og, y_max_og, x_max_og, y_min_og = reproject_extent(
            raster_metadata["extent"],
            origin_projection,
            target_projection,
        )
        output_bounds = (x_min_og, y_min_og, x_max_og, y_max_og
                         )  # gdal_warp format

        if crop_to_geom:

            if adjust_bbox:
                output_bounds = align_bbox(
                    raster_metadata["extent"],
                    clip_metadata["extent"],
                    raster_metadata["pixel_width"],
                    raster_metadata["pixel_height"],
                    warp_format=True,
                )

            else:
                x_min_og, y_max_og, x_max_og, y_min_og = clip_metadata[
                    "extent"]
                output_bounds = (
                    x_min_og,
                    y_min_og,
                    x_max_og,
                    y_max_og,
                )  # gdal_warp format

        if clip_metadata["layer_count"] > 1:
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
                layer_to_extract=layer_to_clip,
            )
        elif not isinstance(clip_ds, str):
            clip_ds = vector_to_memory(
                clip_ds,
                memory_path=f"clip_geom_{uuid4().int}.gpkg",
            )

        if clip_ds is None:
            raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    out_nodata = None
    if src_nodata is not None:
        out_nodata = raster_metadata["nodata_value"]
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        else:
            out_nodata = dst_nodata

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    warped = gdal.Warp(
        out_name,
        origin,
        xRes=x_res,
        yRes=y_res,
        width=x_pixels,
        height=y_pixels,
        cutlineDSName=clip_ds,
        outputBounds=output_bounds,
        format=out_format,
        srcSRS=origin_projection,
        dstSRS=target_projection,
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        warpOptions=warp_options,
        srcNodata=src_nodata,
        dstNodata=out_nodata,
        targetAlignedPixels=False,
        cropToCutline=False,
        multithread=True,
    )

    if warped is None:
        raise Exception(f"Error while warping raster: {raster}")

    return out_name
示例#8
0
def backscatter_step1(
    zip_file,
    out_path,
    gpt_path="~/snap/bin/gpt",
    extent=None,
    tmp_folder=None,
):
    graph = "backscatter_step1.xml"

    # Get absolute location of graph processing tool
    gpt = find_gpt(gpt_path)

    out_path_ext = out_path + ".dim"
    if os.path.exists(out_path_ext):
        print(f"{out_path_ext} already processed")
        return out_path_ext

    xmlfile = os.path.join(os.path.dirname(__file__), f"./graphs/{graph}")

    snap_graph_step1 = open(xmlfile, "r")
    snap_graph_step1_str = snap_graph_step1.read()
    snap_graph_step1.close()

    if extent is not None:
        if is_vector(extent):
            metadata = vector_to_metadata(extent, create_geometry=True)
        elif is_raster(extent):
            metadata = raster_to_metadata(extent, create_geometry=True)
        elif isinstance(extent, str):
            metadata = raster_to_metadata(extent, create_geometry=True)
        else:
            raise ValueError("Extent must be a vector, raster or a path to a raster.")

        interest_area = metadata["extent_wkt_latlng"]

    else:
        interest_area = "POLYGON ((-180.0 -90.0, 180.0 -90.0, 180.0 90.0, -180.0 90.0, -180.0 -90.0))"

    snap_graph_step1_str = snap_graph_step1_str.replace("${extent}", interest_area)
    snap_graph_step1_str = snap_graph_step1_str.replace("${inputfile}", zip_file)
    snap_graph_step1_str = snap_graph_step1_str.replace("${outputfile}", out_path)

    xmlfile = tmp_folder + os.path.basename(out_path) + "_graph.xml"

    f = open(xmlfile, "w")
    f.write(snap_graph_step1_str)
    f.close()

    command = [
        gpt,
        os.path.abspath(xmlfile),
        f"-q {cpu_count()}",
    ]

    if platform == "linux" or platform == "linux2":
        cmd = " ".join(command)
    else:
        cmd = f'cmd /c {" ".join(command)}'

    os.system(cmd)

    return out_path_ext
示例#9
0
def download_s2_tile(
    scihub_username,
    scihub_password,
    onda_username,
    onda_password,
    destination,
    aoi_vector,
    date_start="20200601",
    date_end="20210101",
    clouds=10,
    producttype="S2MSI2A",
    tile=None,
    retry_count=10,
    retry_wait_min=30,
    retry_current=0,
    retry_downloaded=[],
    api_url="http://apihub.copernicus.eu/apihub",
):
    print("Downloading Sentinel-2 tiles")
    try:
        api = SentinelAPI(scihub_username,
                          scihub_password,
                          api_url,
                          timeout=60)
    except Exception as e:
        print(e)
        raise Exception("Error connecting to SciHub")

    if is_vector(aoi_vector):
        geom = internal_vector_to_metadata(aoi_vector, create_geometry=True)
    elif is_raster(aoi_vector):
        geom = raster_to_metadata(aoi_vector, create_geometry=True)

    geom_extent = geom["extent_wkt_latlng"]

    download_products = OrderedDict()
    download_ids = []

    date = (date_start, date_end)

    if tile is not None and tile != "":
        kw = {"raw": f"tileid:{tile} OR filename:*_T{tile}_*"}

        try:
            products = api.query(
                date=date,
                platformname="Sentinel-2",
                cloudcoverpercentage=(0, clouds),
                producttype="S2MSI2A",
                timeout=60,
                **kw,
            )
        except Exception as e:
            print(e)
            raise Exception("Error connecting to SciHub")
    else:
        try:
            products = api.query(
                geom_extent,
                date=date,
                platformname="Sentinel-2",
                cloudcoverpercentage=(0, clouds),
                producttype=producttype,
            )

        except Exception as e:
            print(e)
            raise Exception("Error connecting to SciHub")

    for product in products:
        dic = products[product]

        product_tile = dic["title"].split("_")[-2][1:]
        if (tile is not None and tile != "") and product_tile != tile:
            continue

        download_products[product] = dic
        download_ids.append(product)

    print(f"Downloading {len(download_products)} tiles")

    downloaded = [] + retry_downloaded
    for img_id in download_ids:
        out_path = destination + download_products[img_id]["filename"] + ".zip"

        if out_path in downloaded:
            continue

        # /footprint url for.
        download_url = (
            f"https://catalogue.onda-dias.eu/dias-catalogue/Products({img_id})/$value"
        )

        try:
            content_size = get_content_size(download_url,
                                            auth=(onda_username,
                                                  onda_password))
        except Exception as e:
            print(f"Failed to get content size for {img_id}")
            print(e)
            continue

        try:
            if content_size > 0:

                if os.path.isfile(
                        out_path) and content_size == os.path.getsize(
                            out_path):
                    downloaded.append(out_path)
                    print(f"Skipping {img_id}")
                else:
                    print(f"Downloading: {img_id}")
                    download(
                        download_url,
                        out_path,
                        auth=HTTPBasicAuth(onda_username, onda_password),
                        verbose=False,
                        skip_if_exists=True,
                    )

                    downloaded.append(out_path)
            else:
                print("Requesting from archive. Not downloaded.")
                order_url = f"https://catalogue.onda-dias.eu/dias-catalogue/Products({img_id})/Ens.Order"
                order_response = order(order_url,
                                       auth=(onda_username, onda_password))

        except Exception as e:
            print(f"Error downloading {img_id}: {e}")

    if len(downloaded) >= len(download_ids):
        return downloaded
    elif retry_current < retry_count:
        print(
            f"Retrying {retry_current}/{retry_count}. Sleeping for {retry_wait_min} minutes."
        )
        sleep(retry_wait_min * 60)
        download_s2_tile(
            scihub_username,
            scihub_password,
            onda_username,
            onda_password,
            destination,
            aoi_vector,
            date_start=date_start,
            date_end=date_end,
            clouds=clouds,
            producttype=producttype,
            tile=tile,
            retry_count=retry_count,
            retry_wait_min=retry_wait_min,
            retry_current=retry_current + 1,
            retry_downloaded=retry_downloaded + downloaded,
        )
    else:
        return retry_downloaded + downloaded
示例#10
0
def internal_resample_raster(
    raster: Union[str, gdal.Dataset],
    target_size: Union[tuple, int, float, str, gdal.Dataset],
    target_in_pixels: bool = False,
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    overwrite: bool = True,
    creation_options: list = [],
    dtype=None,
    dst_nodata: Union[str, int, float] = "infer",
    prefix: str = "",
    postfix: str = "_resampled",
    add_uuid: bool = False,
) -> str:
    """OBS: Internal. Single output.

    Reprojects a raster given a target projection. Beware if your input is in
    latitude and longitude, you'll need to specify the target_size in degrees as well.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(target_size, [tuple, int, float, str, gdal.Dataset],
               "target_size")
    type_check(target_in_pixels, [bool], "target_in_pixels")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(
        raster,
        out_path,
        overwrite=overwrite,
        prefix=prefix,
        postfix=postfix,
        uuid=add_uuid,
    )

    ref = open_raster(raster_list[0])
    metadata = raster_to_metadata(ref)
    out_name = path_list[0]

    x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
        target_size, target_in_pixels)

    out_creation_options = default_options(creation_options)
    out_format = path_to_driver_raster(out_name)

    src_nodata = metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                metadata["datatype_gdal_raw"])
        elif isinstance(dst_nodata, str):
            raise TypeError(f"dst_nodata is in a wrong format: {dst_nodata}")
        else:
            out_nodata = dst_nodata

    remove_if_overwrite(out_path, overwrite)

    resampled = gdal.Warp(
        out_name,
        ref,
        width=x_pixels,
        height=y_pixels,
        xRes=x_res,
        yRes=y_res,
        format=out_format,
        outputType=translate_datatypes(dtype),
        resampleAlg=translate_resample_method(resample_alg),
        creationOptions=out_creation_options,
        srcNodata=metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if resampled is None:
        raise Exception(f"Error while resampling raster: {out_name}")

    return out_name
示例#11
0
def shift_raster(
    raster: Union[gdal.Dataset, str],
    shift: Union[Number, Tuple[Number, Number], List[Number]],
    out_path: Optional[str] = None,
    overwrite: bool = True,
    creation_options: list = [],
) -> Union[gdal.Dataset, str]:
    """Shifts a raster in a given direction.

    Returns:
        An in-memory raster. If an out_path is given the output is a string containing
        the path to the newly created raster.
    """
    type_check(raster, [list, str, gdal.Dataset], "raster")
    type_check(shift, [tuple, list], "shift")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")

    ref = open_raster(raster)
    metadata = raster_to_metadata(ref)

    x_shift: float = 0.0
    y_shift: float = 0.0
    if isinstance(shift, tuple) or isinstance(shift, list):
        if len(shift) == 1:
            if is_number(shift[0]):
                x_shift = float(shift[0])
                y_shift = float(shift[0])
            else:
                raise ValueError(
                    "shift is not a number or a list/tuple of numbers.")
        elif len(shift) == 2:
            if is_number(shift[0]) and is_number(shift[1]):
                x_shift = float(shift[0])
                y_shift = float(shift[1])
        else:
            raise ValueError("shift is either empty or larger than 2.")
    elif is_number(shift):
        x_shift = float(shift)
        y_shift = float(shift)
    else:
        raise ValueError("shift is invalid.")

    out_name = None
    out_format = None
    out_creation_options = []
    if out_path is None:
        raster_name = metadata["basename"]
        out_name = f"/vsimem/{raster_name}_{uuid4().int}_resampled.tif"
        out_format = "GTiff"
    else:
        out_creation_options = default_options(creation_options)
        out_name = out_path
        out_format = path_to_driver_raster(out_path)

    remove_if_overwrite(out_path, overwrite)

    driver = gdal.GetDriverByName(out_format)

    shifted = driver.Create(
        out_name,  # Location of the saved raster, ignored if driver is memory.
        metadata["width"],  # Dataframe width in pixels (e.g. 1920px).
        metadata["height"],  # Dataframe height in pixels (e.g. 1280px).
        metadata["band_count"],  # The number of bands required.
        metadata["datatype_gdal_raw"],  # Datatype of the destination.
        out_creation_options,
    )

    new_transform = list(metadata["transform"])
    new_transform[0] += x_shift
    new_transform[3] += y_shift

    shifted.SetGeoTransform(new_transform)
    shifted.SetProjection(metadata["projection"])

    src_nodata = metadata["nodata_value"]

    for band in range(metadata["band_count"]):
        origin_raster_band = ref.GetRasterBand(band + 1)
        target_raster_band = shifted.GetRasterBand(band + 1)

        target_raster_band.WriteArray(origin_raster_band.ReadAsArray())
        target_raster_band.SetNoDataValue(src_nodata)

    if out_path is not None:
        shifted = None
        return out_path
    else:
        return shifted
示例#12
0
def align_rasters(
    rasters: List[Union[str, gdal.Dataset]],
    out_path: Optional[Union[List[str], str]] = None,
    master: Optional[Union[gdal.Dataset, str]] = None,
    postfix: str = "_aligned",
    bounding_box: Union[str, gdal.Dataset, ogr.DataSource, list,
                        tuple] = "intersection",
    resample_alg: str = "nearest",
    target_size: Optional[Union[tuple, list, int, float, str,
                                gdal.Dataset]] = None,
    target_in_pixels: bool = False,
    projection: Optional[Union[int, str, gdal.Dataset, ogr.DataSource,
                               osr.SpatialReference]] = None,
    overwrite: bool = True,
    creation_options: list = [],
    src_nodata: Optional[Union[str, int, float]] = "infer",
    dst_nodata: Optional[Union[str, int, float]] = "infer",
    prefix: str = "",
    ram=8000,
    skip_existing=False,
) -> List[str]:
    type_check(rasters, [list], "rasters")
    type_check(out_path, [list, str], "out_path", allow_none=True)
    type_check(master, [list, str], "master", allow_none=True)
    type_check(bounding_box, [str, gdal.Dataset, ogr.DataSource, list, tuple],
               "bounding_box")
    type_check(resample_alg, [str], "resample_alg")
    type_check(
        target_size,
        [tuple, list, int, float, str, gdal.Dataset],
        "target_size",
        allow_none=True,
    )
    type_check(
        target_in_pixels,
        [int, str, gdal.Dataset, ogr.DataSource, osr.SpatialReference],
        "target_in_pixels",
        allow_none=True,
    )
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(src_nodata, [str, int, float], "src_nodata", allow_none=True)
    type_check(dst_nodata, [str, int, float], "dst_nodata", allow_none=True)
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")

    raster_list, path_list = ready_io_raster(
        rasters,
        out_path,
        overwrite=overwrite,
        prefix=prefix,
        postfix=postfix,
        uuid=False,
    )

    x_pixels = None
    y_pixels = None
    x_res = None
    y_res = None
    target_projection = None
    target_bounds = None

    reprojected_rasters: List[str] = []

    # Read the metadata for each raster.
    # Catalogue the used projections, to choose the most common one if necessary.
    used_projections: List[dict] = []
    metadata: List[str] = []

    for raster in rasters:
        meta = raster_to_metadata(raster)
        metadata.append(meta)
        used_projections.append(meta["projection"])

    # If there is a master layer, copy information from that layer.
    if master is not None:
        master_metadata = raster_to_metadata(master)

        target_projection = master_metadata["projection_osr"]
        x_min, y_max, x_max, y_min = master_metadata["extent"]

        # Set the target values.
        target_bounds = (x_min, y_min, x_max, y_max)
        x_res = master_metadata["pixel_width"]
        y_res = master_metadata["pixel_height"]
        x_pixels = master_metadata["width"]
        y_pixels = master_metadata["height"]
        target_size = (x_res, y_res)

        target_in_pixels = False

    # We allow overwrite of parameters specifically set.
    # Handle projection
    if projection is not None:
        target_projection = parse_projection(projection)

    # If no projection is specified, other from master or parameters. The most common one is chosen.
    elif target_projection is None:

        # Sort and count the projections
        projection_counter: dict = {}
        for proj in used_projections:
            if proj in projection_counter:
                projection_counter[proj] += 1
            else:
                projection_counter[proj] = 1

        # Choose most common projection
        most_common_projection = sorted(projection_counter,
                                        key=projection_counter.get,
                                        reverse=True)

        target_projection = parse_projection(most_common_projection[0])

    if target_size is not None:

        # If a raster is input, use it's pixel size as target values.
        if isinstance(target_size, (gdal.Dataset, str)):
            if isinstance(target_size, str) and not is_raster(target_size):
                raise ValueError(
                    f"Unable to parse the raster used for target_size: {target_size}"
                )

            # Reprojection is necessary to ensure the correct pixel_size
            reprojected_target_size = internal_reproject_raster(
                target_size, target_projection)
            target_size_raster = raster_to_metadata(reprojected_target_size)

            # Set the target values.
            x_res = target_size_raster["width"]
            y_res = target_size_raster["height"]
        else:
            # If a list, tuple, int or float is passed. Turn them into target values.
            x_res, y_res, x_pixels, y_pixels = raster_size_from_list(
                target_size, target_in_pixels)

    # If nothing has been specified, we will infer the pixel_size based on the median of all input rasters.
    elif x_res is None and y_res is None and x_pixels is None and y_pixels is None:

        # Ready numpy arrays for insertion
        x_res_arr = np.empty(len(raster_list), dtype="float32")
        y_res_arr = np.empty(len(raster_list), dtype="float32")

        for index, raster in enumerate(raster_list):
            # It is necessary to reproject each raster, as pixel height and width might be different after projection.
            reprojected = internal_reproject_raster(raster, target_projection)
            target_size_raster = raster_to_metadata(reprojected)

            # Add the pixel sizes to the numpy arrays
            x_res_arr[index] = target_size_raster["pixel_width"]
            y_res_arr[index] = target_size_raster["pixel_height"]

            # Keep track of the reprojected arrays so we only reproject rasters once.
            reprojected_rasters.append(reprojected)

        # Use the median values of pixel sizes as target values.
        x_res = np.median(x_res_arr)
        y_res = np.median(y_res_arr)

    if target_bounds is None:

        # If a bounding box is supplied, simply use that one. It must be in the target projection.
        if isinstance(bounding_box, (list, tuple)):
            if len(bounding_box) != 4:
                raise ValueError(
                    "bounding_box as a list/tuple must have 4 values.")
            target_bounds = bounding_box

        # If the bounding box is a raster. Take the extent and reproject it to the target projection.
        elif is_raster(bounding_box):
            reprojected_bbox_raster = raster_to_metadata(
                internal_reproject_raster(bounding_box, target_projection))

            x_min, y_max, x_max, y_min = reprojected_bbox_raster["extent"]

            # add to target values.
            target_bounds = (x_min, y_min, x_max, y_max)

        # If the bounding box is a raster. Take the extent and reproject it to the target projection.
        elif is_vector(bounding_box):
            reprojected_bbox_vector = internal_vector_to_metadata(
                internal_reproject_vector(bounding_box, target_projection))

            x_min, y_max, x_max, y_min = reprojected_bbox_vector["extent"]

            # add to target values.
            target_bounds = (x_min, y_min, x_max, y_max)

        # If the bounding box is a string, we either take the union or the intersection of all the
        # bounding boxes of the input rasters.
        elif isinstance(bounding_box, str):
            if bounding_box == "intersection" or bounding_box == "union":
                extents = []

                # If the rasters have not been reprojected, reproject them now.
                if len(reprojected_rasters) != len(raster_list):
                    reprojected_rasters = []

                    for raster in raster_list:
                        raster_metadata = raster_to_metadata(raster)

                        if raster_metadata["projection_osr"].IsSame(
                                target_projection):
                            reprojected_rasters.append(raster)
                        else:
                            reprojected = internal_reproject_raster(
                                raster, target_projection)
                            reprojected_rasters.append(reprojected)

                # Add the extents of the reprojected rasters to the extents list.
                for reprojected_raster in reprojected_rasters:
                    reprojected_raster_metadata = dict(
                        raster_to_metadata(reprojected_raster))
                    extents.append(reprojected_raster_metadata["extent"])

                # Placeholder values
                x_min, y_max, x_max, y_min = extents[0]

                # Loop the extents. Narrowing if intersection, expanding if union.
                for index, extent in enumerate(extents):
                    if index == 0:
                        continue

                    if bounding_box == "intersection":
                        if extent[0] > x_min:
                            x_min = extent[0]
                        if extent[1] < y_max:
                            y_max = extent[1]
                        if extent[2] < x_max:
                            x_max = extent[2]
                        if extent[3] > y_min:
                            y_min = extent[3]

                    elif bounding_box == "union":
                        if extent[0] < x_min:
                            x_min = extent[0]
                        if extent[1] > y_max:
                            y_max = extent[1]
                        if extent[2] > x_max:
                            x_max = extent[2]
                        if extent[3] < y_min:
                            y_min = extent[3]

                # Add to target values.
                target_bounds = (x_min, y_min, x_max, y_max)

            else:
                raise ValueError(
                    f"Unable to parse or infer target_bounds: {target_bounds}")
        else:
            raise ValueError(
                f"Unable to parse or infer target_bounds: {target_bounds}")
    """ 
        If the rasters have not been reprojected, we reproject them now.
        The reprojection is necessary as warp has to be a two step process
        in order to align the rasters properly. This might not be necessary
        in a future version of gdal.
    """
    if len(reprojected_rasters) != len(raster_list):
        reprojected_rasters = []

        for raster in raster_list:
            raster_metadata = raster_to_metadata(raster)

            # If the raster is already the correct projection, simply append the raster.
            if raster_metadata["projection_osr"].IsSame(target_projection):
                reprojected_rasters.append(raster)
            else:
                reprojected = internal_reproject_raster(
                    raster, target_projection)
                reprojected_rasters.append(reprojected)

    # If any of the target values are still undefined. Throw an error!
    if target_projection is None or target_bounds is None:
        raise Exception(
            "Error while preparing the target projection or bounds.")

    if x_res is None and y_res is None and x_pixels is None and y_pixels is None:
        raise Exception("Error while preparing the target pixel size.")

    # This is the list of rasters to return. If output is not memory, it's a list of paths.
    return_list: List[str] = []
    for index, raster in enumerate(reprojected_rasters):
        raster_metadata = raster_to_metadata(raster)

        out_name = path_list[index]
        out_format = path_to_driver_raster(out_name)

        if skip_existing and os.path.exists(out_name):
            return_list.append(out_name)
            continue

        # Handle nodata.
        out_src_nodata = None
        out_dst_nodata = None
        if src_nodata == "infer":
            out_src_nodata = raster_metadata["nodata_value"]

            if out_src_nodata is None:
                out_src_nodata = gdal_nodata_value_from_type(
                    raster_metadata["datatype_gdal_raw"])

        elif src_nodata == None:
            out_src_nodata = None
        elif not isinstance(src_nodata, str):
            out_src_nodata = src_nodata

        if dst_nodata == "infer":
            out_dst_nodata = out_src_nodata
        elif dst_nodata == False or dst_nodata == None:
            out_dst_nodata = None
        elif src_nodata == None:
            out_dst_nodata = None
        elif not isinstance(dst_nodata, str):
            out_dst_nodata = dst_nodata

        # Removes file if it exists and overwrite is True.
        remove_if_overwrite(out_name, overwrite)

        # Hand over to gdal.Warp to do the heavy lifting!
        warped = gdal.Warp(
            out_name,
            raster,
            xRes=x_res,
            yRes=y_res,
            width=x_pixels,
            height=y_pixels,
            dstSRS=target_projection,
            outputBounds=target_bounds,
            format=out_format,
            resampleAlg=translate_resample_method(resample_alg),
            creationOptions=default_options(creation_options),
            srcNodata=out_src_nodata,
            dstNodata=out_dst_nodata,
            targetAlignedPixels=False,
            cropToCutline=False,
            multithread=True,
            warpMemoryLimit=ram,
        )

        if warped == None:
            raise Exception("Error while warping rasters.")

        return_list.append(out_name)

    if not rasters_are_aligned(return_list, same_extent=True):
        raise Exception("Error while aligning rasters. Output is not aligned")

    return return_list
示例#13
0
def _clip_raster(
    raster: Union[str, gdal.Dataset],
    clip_geom: Union[str, ogr.DataSource, gdal.Dataset],
    out_path: Optional[str] = None,
    resample_alg: str = "nearest",
    crop_to_geom: bool = True,
    adjust_bbox: bool = True,
    all_touch: bool = True,
    overwrite: bool = True,
    creation_options: list = [],
    dst_nodata: Union[str, int, float] = "infer",
    layer_to_clip: int = 0,
    prefix: str = "",
    postfix: str = "_clipped",
    verbose: int = 1,
    uuid: bool = False,
    ram: int = 8000,
) -> str:
    """OBS: Internal. Single output.

    Clips a raster(s) using a vector geometry or the extents of
    a raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(clip_geom, [str, ogr.DataSource, gdal.Dataset], "clip_geom")
    type_check(out_path, [str], "out_path", allow_none=True)
    type_check(resample_alg, [str], "resample_alg")
    type_check(crop_to_geom, [bool], "crop_to_geom")
    type_check(adjust_bbox, [bool], "adjust_bbox")
    type_check(all_touch, [bool], "all_touch")
    type_check(dst_nodata, [str, int, float], "dst_nodata")
    type_check(layer_to_clip, [int], "layer_to_clip")
    type_check(overwrite, [bool], "overwrite")
    type_check(creation_options, [list], "creation_options")
    type_check(prefix, [str], "prefix")
    type_check(postfix, [str], "postfix")
    type_check(verbose, [int], "verbose")
    type_check(uuid, [bool], "uuid")

    _, path_list = ready_io_raster(raster,
                                   out_path,
                                   overwrite=overwrite,
                                   prefix=prefix,
                                   postfix=postfix,
                                   uuid=uuid)

    if out_path is not None:
        if "vsimem" not in out_path:
            if not os.path.isdir(os.path.split(os.path.normpath(out_path))[0]):
                raise ValueError(
                    f"out_path folder does not exists: {out_path}")

    # Input is a vector.
    if is_vector(clip_geom):
        clip_ds = open_vector(clip_geom)

        clip_metadata = internal_vector_to_metadata(
            clip_ds, process_layer=layer_to_clip)

        if clip_metadata["layer_count"] > 1:
            clip_ds = internal_vector_to_memory(clip_ds,
                                                layer_to_extract=layer_to_clip)

        if isinstance(clip_ds, ogr.DataSource):
            clip_ds = clip_ds.GetName()

    # Input is a raster (use extent)
    elif is_raster(clip_geom):
        clip_metadata = raster_to_metadata(clip_geom, create_geometry=True)
        clip_metadata["layer_count"] = 1
        clip_ds = clip_metadata["extent_datasource"].GetName()
    else:
        if file_exists(clip_geom):
            raise ValueError(f"Unable to parse clip geometry: {clip_geom}")
        else:
            raise ValueError(f"Unable to locate clip geometry {clip_geom}")

    if layer_to_clip > (clip_metadata["layer_count"] - 1):
        raise ValueError("Requested an unable layer_to_clip.")

    if clip_ds is None:
        raise ValueError(f"Unable to parse input clip geom: {clip_geom}")

    clip_projection = clip_metadata["projection_osr"]
    clip_extent = clip_metadata["extent"]

    # options
    warp_options = []
    if all_touch:
        warp_options.append("CUTLINE_ALL_TOUCHED=TRUE")
    else:
        warp_options.append("CUTLINE_ALL_TOUCHED=FALSE")

    origin_layer = open_raster(raster)

    raster_metadata = raster_to_metadata(raster)
    origin_projection = raster_metadata["projection_osr"]
    origin_extent = raster_metadata["extent"]

    # Check if projections match, otherwise reproject target geom.
    if not origin_projection.IsSame(clip_projection):
        clip_metadata["extent"] = reproject_extent(
            clip_metadata["extent"],
            clip_projection,
            origin_projection,
        )

    # Fast check: Does the extent of the two inputs overlap?
    if not gdal_bbox_intersects(origin_extent, clip_extent):
        raise Exception("Geometries did not intersect.")

    output_bounds = raster_metadata["extent_gdal_warp"]

    if crop_to_geom:

        if adjust_bbox:
            output_bounds = align_bbox(
                raster_metadata["extent"],
                clip_metadata["extent"],
                raster_metadata["pixel_width"],
                raster_metadata["pixel_height"],
                warp_format=True,
            )

        else:
            output_bounds = clip_metadata["extent_gdal_warp"]

    # formats
    out_name = path_list[0]
    out_format = path_to_driver_raster(out_name)
    out_creation_options = default_options(creation_options)

    # nodata
    src_nodata = raster_metadata["nodata_value"]
    out_nodata = None
    if src_nodata is not None:
        out_nodata = src_nodata
    else:
        if dst_nodata == "infer":
            out_nodata = gdal_nodata_value_from_type(
                raster_metadata["datatype_gdal_raw"])
        elif dst_nodata is None:
            out_nodata = None
        elif isinstance(dst_nodata, (int, float)):
            out_nodata = dst_nodata
        else:
            raise ValueError(f"Unable to parse nodata_value: {dst_nodata}")

    # Removes file if it exists and overwrite is True.
    remove_if_overwrite(out_path, overwrite)

    if verbose == 0:
        gdal.PushErrorHandler("CPLQuietErrorHandler")

    clipped = gdal.Warp(
        out_name,
        origin_layer,
        format=out_format,
        resampleAlg=translate_resample_method(resample_alg),
        targetAlignedPixels=False,
        outputBounds=output_bounds,
        xRes=raster_metadata["pixel_width"],
        yRes=raster_metadata["pixel_height"],
        cutlineDSName=clip_ds,
        cropToCutline=
        False,  # GDAL does this incorrectly when targetAlignedPixels is True.
        creationOptions=out_creation_options,
        warpMemoryLimit=ram,
        warpOptions=warp_options,
        srcNodata=raster_metadata["nodata_value"],
        dstNodata=out_nodata,
        multithread=True,
    )

    if verbose == 0:
        gdal.PopErrorHandler()

    if clipped is None:
        raise Exception("Error while clipping raster.")

    return out_name
示例#14
0
def extract_patches(
    raster_list,
    outdir,
    tile_size=32,
    zones=None,
    options=None,
):
    """
    Generate patches for machine learning from rasters
    """
    base_options = {
        "overlaps": True,
        "border_check": True,
        "merge_output": True,
        "force_align": True,
        "output_raster_labels": True,
        "label_geom": None,
        "label_res": 0.2,
        "label_mult": 100,
        "tolerance": 0.0,
        "fill_value": 0,
        "zone_layer_id": 0,
        "align_with_size": 20,
        "prefix": "",
        "postfix": "",
    }

    if options is None:
        options = base_options
    else:
        for key in options:
            if key not in base_options:
                raise ValueError(f"Invalid option: {key}")
            base_options[key] = options[key]
        options = base_options

    if zones is not None and not is_vector(zones):
        raise TypeError(
            "Clip geom is invalid. Did you input a valid geometry?")

    if not isinstance(raster_list, list):
        raster_list = [raster_list]

    for raster in raster_list:
        if not is_raster(raster):
            raise TypeError("raster_list is not a list of rasters.")

    if not os.path.isdir(outdir):
        raise ValueError(
            "Outdir does not exist. Please create before running the function."
        )

    if not rasters_are_aligned(raster_list, same_extent=True):
        if options["force_align"]:
            print(
                "Rasters we not aligned. Realigning rasters due to force_align=True option."
            )
            raster_list = align_rasters(raster_list)
        else:
            raise ValueError("Rasters in raster_list are not aligned.")

    offsets = get_offsets(tile_size) if options["overlaps"] else [[0, 0]]
    raster_metadata = raster_to_metadata(raster_list[0], create_geometry=True)
    pixel_size = min(raster_metadata["pixel_height"],
                     raster_metadata["pixel_width"])

    if zones is None:
        zones = raster_metadata["extent_datasource_path"]

    zones_meta = vector_to_metadata(zones)

    mem_driver = ogr.GetDriverByName("ESRI Shapefile")

    if zones_meta["layer_count"] == 0:
        raise ValueError("Vector contains no layers.")

    zones_layer_meta = zones_meta["layers"][options["zone_layer_id"]]

    if zones_layer_meta["geom_type"] not in ["Multi Polygon", "Polygon"]:
        raise ValueError("clip geom is not Polygon or Multi Polygon.")

    zones_ogr = open_vector(zones)
    zones_layer = zones_ogr.GetLayer(options["zone_layer_id"])
    feature_defn = zones_layer.GetLayerDefn()
    fids = vector_get_fids(zones_ogr, options["zone_layer_id"])

    progress(0, len(fids) * len(raster_list), "processing fids")
    processed_fids = []
    processed = 0
    labels_processed = False

    for idx, raster in enumerate(raster_list):
        name = os.path.splitext(os.path.basename(raster))[0]
        list_extracted = []
        list_masks = []
        list_labels = []

        for fid in fids:
            feature = zones_layer.GetFeature(fid)
            geom = feature.GetGeometryRef()
            fid_path = f"/vsimem/fid_mem_{uuid4().int}_{str(fid)}.shp"
            fid_ds = mem_driver.CreateDataSource(fid_path)
            fid_ds_lyr = fid_ds.CreateLayer(
                "fid_layer",
                geom_type=ogr.wkbPolygon,
                srs=zones_layer_meta["projection_osr"],
            )
            copied_feature = ogr.Feature(feature_defn)
            copied_feature.SetGeometry(geom)
            fid_ds_lyr.CreateFeature(copied_feature)

            fid_ds.FlushCache()
            fid_ds.SyncToDisk()

            valid_path = f"/vsimem/{options['prefix']}validmask_{str(fid)}{options['postfix']}.tif"

            rasterize_vector(
                fid_path,
                pixel_size,
                out_path=valid_path,
                extent=fid_path,
            )
            valid_arr = raster_to_array(valid_path)

            if options["label_geom"] is not None and fid not in processed_fids:
                if not is_vector(options["label_geom"]):
                    raise TypeError(
                        "label geom is invalid. Did you input a valid geometry?"
                    )

                uuid = str(uuid4().int)

                label_clip_path = f"/vsimem/fid_{uuid}_{str(fid)}_clipped.shp"
                label_ras_path = f"/vsimem/fid_{uuid}_{str(fid)}_rasterized.tif"
                label_warp_path = f"/vsimem/fid_{uuid}_{str(fid)}_resampled.tif"

                intersect_vector(options["label_geom"],
                                 fid_ds,
                                 out_path=label_clip_path)

                try:
                    rasterize_vector(
                        label_clip_path,
                        options["label_res"],
                        out_path=label_ras_path,
                        extent=valid_path,
                    )

                except Exception:
                    array_to_raster(
                        np.zeros(valid_arr.shape, dtype="float32"),
                        valid_path,
                        out_path=label_ras_path,
                    )

                resample_raster(
                    label_ras_path,
                    pixel_size,
                    resample_alg="average",
                    out_path=label_warp_path,
                )

                labels_arr = (raster_to_array(label_warp_path) *
                              options["label_mult"]).astype("float32")

                if options["output_raster_labels"]:
                    array_to_raster(
                        labels_arr,
                        label_warp_path,
                        out_path=
                        f"{outdir}{options['prefix']}label_{str(fid)}{options['postfix']}.tif",
                    )

            raster_clip_path = f"/vsimem/raster_{uuid}_{str(idx)}_clipped.tif"

            try:
                clip_raster(
                    raster,
                    valid_path,
                    raster_clip_path,
                    all_touch=False,
                    adjust_bbox=False,
                )
            except Exception as e:
                print(
                    f"Warning: {raster} did not intersect geom with fid: {fid}."
                )
                print(e)

                if options["label_geom"] is not None:
                    gdal.Unlink(label_clip_path)
                    gdal.Unlink(label_ras_path)
                    gdal.Unlink(label_warp_path)
                gdal.Unlink(fid_path)

                continue

            arr = raster_to_array(raster_clip_path)

            if arr.shape[:2] != valid_arr.shape[:2]:
                raise Exception(
                    f"Error while matching array shapes. Raster: {arr.shape}, Valid: {valid_arr.shape}"
                )

            arr_offsets = get_overlaps(arr, offsets, tile_size,
                                       options["border_check"])

            arr = np.concatenate(arr_offsets)
            valid_offsets = np.concatenate(
                get_overlaps(valid_arr, offsets, tile_size,
                             options["border_check"]))

            valid_mask = ((1 - (valid_offsets.sum(axis=(1, 2)) /
                                (tile_size * tile_size))) <=
                          options["tolerance"])[:, 0]

            arr = arr[valid_mask]
            valid_masked = valid_offsets[valid_mask]

            if options["label_geom"] is not None and not labels_processed:
                labels_masked = np.concatenate(
                    get_overlaps(labels_arr, offsets, tile_size,
                                 options["border_check"]))[valid_mask]

            if options["merge_output"]:
                list_extracted.append(arr)
                list_masks.append(valid_masked)

                if options["label_geom"] is not None and not labels_processed:
                    list_labels.append(labels_masked)
            else:
                np.save(
                    f"{outdir}{options['prefix']}{str(fid)}_{name}{options['postfix']}.npy",
                    arr.filled(options["fill_value"]),
                )

                np.save(
                    f"{outdir}{options['prefix']}{str(fid)}_mask_{name}{options['postfix']}.npy",
                    valid_masked.filled(options["fill_value"]),
                )

                if options["label_geom"] is not None and not labels_processed:
                    np.save(
                        f"{outdir}{options['prefix']}{str(fid)}_label_{name}{options['postfix']}.npy",
                        valid_masked.filled(options["fill_value"]),
                    )

            if fid not in processed_fids:
                processed_fids.append(fid)

            processed += 1
            progress(processed,
                     len(fids) * len(raster_list), "processing fids")

            if not options["merge_output"]:
                gdal.Unlink(label_clip_path)
                gdal.Unlink(label_ras_path)
                gdal.Unlink(label_warp_path)
                gdal.Unlink(fid_path)

            gdal.Unlink(valid_path)

        if options["merge_output"]:
            np.save(
                f"{outdir}{options['prefix']}{name}{options['postfix']}.npy",
                np.ma.concatenate(list_extracted).filled(
                    options["fill_value"]),
            )
            np.save(
                f"{outdir}{options['prefix']}mask_{name}{options['postfix']}.npy",
                np.ma.concatenate(list_masks).filled(options["fill_value"]),
            )

            if options["label_geom"] is not None and not labels_processed:
                np.save(
                    f"{outdir}{options['prefix']}label_{name}{options['postfix']}.npy",
                    np.ma.concatenate(list_labels).filled(
                        options["fill_value"]),
                )
                labels_processed = True

    progress(1, 1, "processing fids")

    return 1
示例#15
0
def download_s1_tile(
    scihub_username,
    scihub_password,
    onda_username,
    onda_password,
    destination,
    footprint,
    date=("20200601", "20210101"),
    orbitdirection="ASCENDING",  # ASCENDING, DESCENDING
    min_overlap=0.50,
    producttype="GRD",
    sensoroperationalmode="IW",
    polarisationmode="VV VH",
    api_url="https://apihub.copernicus.eu/apihub/",
):
    api = SentinelAPI(scihub_username, scihub_password, api_url, timeout=60)

    if is_vector:
        geom = internal_vector_to_metadata(footprint, create_geometry=True)
    elif is_raster:
        geom = raster_to_metadata(footprint, create_geometry=True)

    products = api.query(
        geom["extent_wkt_latlng"],
        date=date,
        platformname="Sentinel-1",
        orbitdirection=orbitdirection,
        producttype=producttype,
        sensoroperationalmode=sensoroperationalmode,
        polarisationmode=polarisationmode,
        timeout=60,
    )

    download_products = OrderedDict()
    download_ids = []
    zero_contents = 0

    geom_footprint = ogr.CreateGeometryFromWkt(geom["extent_wkt_latlng"])

    for product in products:
        dic = products[product]

        img_footprint = ogr.CreateGeometryFromWkt(dic["footprint"])
        img_area = img_footprint.GetArea()

        intersection = img_footprint.Intersection(geom_footprint)

        within = img_footprint.Intersection(intersection)
        within_area = within.GetArea()

        overlap_img = within_area / img_area
        overlap_geom = within_area / geom_footprint.GetArea()

        if max(overlap_img, overlap_geom) > min_overlap:
            download_products[product] = dic

            download_ids.append(product)

    if len(download_products) > 0:
        print(f"Downloading {len(download_products)} files.")

        downloaded = []
        for img_id in download_ids:
            out_path = destination + download_products[img_id][
                "filename"] + ".zip"

            if os.path.exists(out_path):
                print(f"Skipping {out_path}")
                continue

            download_url = f"https://catalogue.onda-dias.eu/dias-catalogue/Products({img_id})/$value"

            try:
                content_size = get_content_size(download_url,
                                                out_path,
                                                auth=(onda_username,
                                                      onda_password))
            except Exception as e:
                print(f"Failed to get content size for {img_id}")
                print(e)
                continue

            if content_size == 0:
                zero_contents += 1
                print(
                    f"{img_id} requested from Archive but was not downloaded.")
                continue

            try:
                if content_size > 0:
                    download(
                        download_url,
                        out_path,
                        auth=(onda_username, onda_password),
                        verbose=True,
                    )
                    downloaded.append(img_id)
            except Exception as e:
                print(f"Error downloading {img_id}: {e}")

        return downloaded
    else:
        print("No images found")
        return []
示例#16
0
def add_border_to_raster(
    input_raster,
    out_path=None,
    border_size=100,
    border_size_unit="px",
    border_value=0,
    overwrite: bool = True,
    creation_options: list = [],
):
    in_raster = open_raster(input_raster)
    metadata = raster_to_metadata(in_raster)

    # Parse the driver
    driver_name = "GTiff" if out_path is None else path_to_driver_raster(
        out_path)
    if driver_name is None:
        raise ValueError(f"Unable to parse filetype from path: {out_path}")

    driver = gdal.GetDriverByName(driver_name)
    if driver is None:
        raise ValueError(
            f"Error while creating driver from extension: {out_path}")

    output_name = None
    if out_path is None:
        output_name = f"/vsimem/raster_proximity_{uuid4().int}.tif"
    else:
        output_name = out_path

    in_arr = raster_to_array(in_raster)

    if border_size_unit == "px":
        border_size_y = border_size
        border_size_x = border_size
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )
    else:
        border_size_y = round(border_size / metadata["pixel_height"])
        border_size_x = round(border_size / metadata["pixel_width"])
        new_shape = (
            in_arr.shape[0] + (2 * border_size_y),
            in_arr.shape[1] + (2 * border_size_x),
            in_arr.shape[2],
        )

    new_arr = np.full(new_shape, border_value, dtype=in_arr.dtype)
    new_arr[border_size_y:-border_size_y,
            border_size_x:-border_size_x, :] = in_arr

    if isinstance(in_arr, np.ma.MaskedArray):
        mask = np.zeros(new_shape, dtype=bool)
        mask[border_size_y:-border_size_y,
             border_size_x:-border_size_x, :] = in_arr.mask
        new_arr = np.ma.array(new_arr, mask=mask)
        new_arr.fill_value = in_arr.fill_value

    remove_if_overwrite(out_path, overwrite)

    dest_raster = driver.Create(
        output_name,
        new_shape[1],
        new_shape[0],
        metadata["band_count"],
        numpy_to_gdal_datatype(in_arr.dtype),
        default_options(creation_options),
    )

    og_transform = in_raster.GetGeoTransform()

    new_transform = []
    for i in og_transform:
        new_transform.append(i)

    new_transform[0] -= border_size_x * og_transform[1]
    new_transform[3] -= border_size_y * og_transform[5]

    dest_raster.SetGeoTransform(new_transform)
    dest_raster.SetProjection(in_raster.GetProjectionRef())

    for band_num in range(1, metadata["band_count"] + 1):
        dst_band = dest_raster.GetRasterBand(band_num)
        dst_band.WriteArray(new_arr[:, :, band_num - 1])

        if metadata["has_nodata"]:
            dst_band.SetNoDataValue(metadata["nodata_value"])

    return output_name
示例#17
0
def raster_to_grid(
    raster: Union[str, gdal.Dataset],
    grid: Union[str, ogr.DataSource],
    out_dir: str,
    use_field: Optional[str] = None,
    generate_vrt: bool = True,
    overwrite: bool = True,
    process_layer: int = 0,
    creation_options: list = [],
    verbose: int = 1,
) -> Union[List[str], Tuple[Optional[List[str]], Optional[str]]]:
    """Clips a raster to a grid. Generate .vrt.

    Returns:
        The filepath for the newly created raster.
    """
    type_check(raster, [str, gdal.Dataset], "raster")
    type_check(grid, [str, ogr.DataSource], "grid")
    type_check(out_dir, [str], "out_dir")
    type_check(overwrite, [bool], "overwrite")
    type_check(process_layer, [int], "process_layer")
    type_check(creation_options, [list], "creation_options")
    type_check(verbose, [int], "verbose")

    use_grid = open_vector(grid)
    grid_metadata = internal_vector_to_metadata(use_grid)
    raster_metadata = raster_to_metadata(raster, create_geometry=True)

    # Reproject raster if necessary.
    if not raster_metadata["projection_osr"].IsSame(grid_metadata["projection_osr"]):
        use_grid = reproject_vector(grid, raster_metadata["projection_osr"])
        grid_metadata = internal_vector_to_metadata(use_grid)

        if not isinstance(grid_metadata, dict):
            raise Exception("Error while parsing metadata.")

    # Only use the polygons in the grid that intersect the extent of the raster.
    use_grid = intersect_vector(use_grid, raster_metadata["extent_datasource"])

    ref = open_raster(raster)
    use_grid = open_vector(use_grid)

    layer = use_grid.GetLayer(process_layer)
    feature_count = layer.GetFeatureCount()
    raster_extent = raster_metadata["extent_ogr"]
    filetype = path_to_ext(raster)
    name = raster_metadata["name"]
    geom_type = grid_metadata["layers"][process_layer]["geom_type_ogr"]

    if use_field is not None:
        if use_field not in grid_metadata["layers"][process_layer]["field_names"]:
            names = grid_metadata["layers"][process_layer]["field_names"]
            raise ValueError(
                f"Requested field not found. Fields available are: {names}"
            )

    generated = []

    # For the sake of good reporting - lets first establish how many features intersect
    # the raster.

    if verbose:
        print("Finding intersections.")

    intersections = 0
    for _ in range(feature_count):
        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        intersections += 1

    layer.ResetReading()

    if verbose:
        print(f"Found {intersections} intersections.")

    if intersections == 0:
        print("Warning: Found 0 intersections. Returning empty list.")
        return ([], None)

    # TODO: Replace this in gdal. 3.1
    driver = ogr.GetDriverByName("Esri Shapefile")

    clipped = 0
    for _ in range(feature_count):

        feature = layer.GetNextFeature()
        geom = feature.GetGeometryRef()

        if not ogr_bbox_intersects(raster_extent, geom.GetEnvelope()):
            continue

        if verbose == 1:
            progress(clipped, intersections - 1, "clip_grid")

        fid = feature.GetFID()

        test_ds_path = f"/vsimem/grid_{uuid4().int}.shp"
        test_ds = driver.CreateDataSource(test_ds_path)
        test_ds_lyr = test_ds.CreateLayer(
            "mem_layer_grid",
            geom_type=geom_type,
            srs=raster_metadata["projection_osr"],
        )
        test_ds_lyr.CreateFeature(feature.Clone())
        test_ds.FlushCache()

        out_name = None

        if use_field is not None:
            out_name = f"{out_dir}{feature.GetField(use_field)}{filetype}"
        else:
            out_name = f"{out_dir}{name}_{fid}{filetype}"

        clip_raster(
            ref,
            test_ds_path,
            out_path=out_name,
            adjust_bbox=True,
            crop_to_geom=True,
            all_touch=False,
            postfix="",
            prefix="",
            creation_options=default_options(creation_options),
            verbose=0,
        )

        generated.append(out_name)
        clipped += 1

    if generate_vrt:
        vrt_name = f"{out_dir}{name}.vrt"
        stack_rasters_vrt(generated, vrt_name, seperate=False)

        return (generated, vrt_name)

    return generated