def test_transform(self, feature_set_dataframe):

        test_key = TimestampFeature()

        df = test_key.transform(feature_set_dataframe)

        assert df.schema[TIMESTAMP_COLUMN].dataType == DataType.TIMESTAMP.spark
    def test_transform_ms(self, feature_set_dataframe_ms):

        test_key = TimestampFeature(from_ms=True)

        df = test_key.transform(feature_set_dataframe_ms).orderBy("timestamp")

        df = df.withColumn("timestamp",
                           df["timestamp"].cast(StringType())).collect()

        assert df[0]["timestamp"] == "2020-02-12 21:18:31"
        assert df[1]["timestamp"] == "2020-02-12 21:18:42"
    def test_transform_mask(self, feature_set_dataframe_date):

        test_key = TimestampFeature(mask="yyyy-MM-dd")

        df = test_key.transform(feature_set_dataframe_date).orderBy(
            "timestamp")

        df = df.withColumn("timestamp",
                           df["timestamp"].cast(StringType())).collect()

        assert df[0]["timestamp"] == "2020-02-07 00:00:00"
        assert df[1]["timestamp"] == "2020-02-08 00:00:00"
示例#4
0
    def test_construct(
        self, feature_set_dataframe, fixed_windows_output_feature_set_dataframe
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = FeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=SparkFunctionTransform(
                        functions=[
                            Function(F.avg, DataType.FLOAT),
                            Function(F.stddev_pop, DataType.FLOAT),
                        ]
                    ).with_window(
                        partition_by="id",
                        order_by=TIMESTAMP_COLUMN,
                        mode="fixed_windows",
                        window_definition=["2 minutes", "15 minutes"],
                    ),
                ),
                Feature(
                    name="divided_feature",
                    description="unit test",
                    dtype=DataType.FLOAT,
                    transformation=CustomTransform(
                        transformer=divide, column1="feature1", column2="feature2",
                    ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        )

        output_df = (
            feature_set.construct(feature_set_dataframe, client=spark_client)
            .orderBy(feature_set.timestamp_column)
            .select(feature_set.columns)
        )

        target_df = fixed_windows_output_feature_set_dataframe.orderBy(
            feature_set.timestamp_column
        ).select(feature_set.columns)

        # assert
        assert_dataframe_equality(output_df, target_df)
示例#5
0
    def test_h3_feature_set(self, h3_input_df, h3_target_df):
        spark_client = SparkClient()

        feature_set = AggregatedFeatureSet(
            name="h3_test",
            entity="h3geolocation",
            description="Test",
            keys=[
                KeyFeature(
                    name="h3_id",
                    description="The h3 hash ID",
                    dtype=DataType.DOUBLE,
                    transformation=H3HashTransform(
                        h3_resolutions=[6, 7, 8, 9, 10, 11, 12],
                        lat_column="lat",
                        lng_column="lng",
                    ).with_stack(),
                )
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="house_id",
                    description="Count of house ids over a day.",
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
        ).with_windows(definitions=["1 day"])

        output_df = feature_set.construct(h3_input_df,
                                          client=spark_client,
                                          end_date="2016-04-14")

        assert_dataframe_equality(output_df, h3_target_df)
    def test_args_without_transformation(self):

        test_key = TimestampFeature(from_column="ts")

        assert test_key.name == TIMESTAMP_COLUMN
        assert test_key.from_column == "ts"
        assert test_key.dtype == DataType.TIMESTAMP
示例#7
0
    def test_run_with_repartition(self, spark_session):
        test_pipeline = FeatureSetPipeline(
            spark_client=SparkClient(),
            source=Mock(
                spec=Source,
                readers=[TableReader(id="source_a", database="db", table="table",)],
                query="select * from source_a",
            ),
            feature_set=Mock(
                spec=FeatureSet,
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=SparkFunctionTransform(
                            functions=[
                                Function(functions.avg, DataType.FLOAT),
                                Function(functions.stddev_pop, DataType.FLOAT),
                            ],
                        ).with_window(
                            partition_by="user_id",
                            order_by=TIMESTAMP_COLUMN,
                            window_definition=["7 days", "2 weeks"],
                            mode="fixed_windows",
                        ),
                    ),
                ],
            ),
            sink=Mock(
                spec=Sink, writers=[HistoricalFeatureStoreWriter(db_config=None)],
            ),
        )

        # feature_set need to return a real df for streaming validation
        sample_df = spark_session.createDataFrame([{"a": "x", "b": "y", "c": "3"}])
        test_pipeline.feature_set.construct.return_value = sample_df

        test_pipeline.run(partition_by=["id"])

        test_pipeline.source.construct.assert_called_once()
        test_pipeline.feature_set.construct.assert_called_once()
        test_pipeline.sink.flush.assert_called_once()
        test_pipeline.sink.validate.assert_called_once()
    def timestamp(self, value: TimestampFeature):
        if not isinstance(value, TimestampFeature):
            raise ValueError(
                "timestamp needs to be a TimestampFeature object.")

        timestamp_columns = value.get_output_columns()
        if len(timestamp_columns) > 1:
            raise ValueError(
                "TimestampFeature will produce multiple output columns.")

        self.__timestamp = value
示例#9
0
    def test_construct_rolling_windows_with_end_date(
        self,
        feature_set_dataframe,
        rolling_windows_output_feature_set_dataframe_base_date,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"])

        # act
        output_df = feature_set.construct(
            feature_set_dataframe, client=spark_client,
            end_date="2016-04-18").orderBy("timestamp")

        target_df = rolling_windows_output_feature_set_dataframe_base_date.orderBy(
            feature_set.timestamp_column).select(feature_set.columns)

        # assert
        assert_dataframe_equality(output_df, target_df)
示例#10
0
    def test_construct_without_window(
        self,
        feature_set_dataframe,
        target_df_without_window,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    dtype=DataType.DOUBLE,
                    transformation=AggregatedTransform(
                        functions=[Function(F.avg, DataType.DOUBLE)]),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    dtype=DataType.FLOAT,
                    transformation=AggregatedTransform(
                        functions=[Function(F.count, DataType.BIGINT)]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        )

        # act
        output_df = feature_set.construct(feature_set_dataframe,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_without_window)
示例#11
0
 def test_feature_set_raise(self):
     with pytest.raises(
         ValueError, match="feature_set must be a FeatureSet instance"
     ):
         FeatureSetPipeline(
             spark_client=SparkClient(),
             source=Mock(
                 spec=Source,
                 readers=[
                     TableReader(id="source_a", database="db", table="table",),
                 ],
                 query="select * from source_a",
             ),
             feature_set=Mock(
                 name="feature_set",
                 entity="entity",
                 description="description",
                 keys=[
                     KeyFeature(
                         name="user_id",
                         description="The user's Main ID or device ID",
                         dtype=DataType.INTEGER,
                     )
                 ],
                 timestamp=TimestampFeature(from_column="ts"),
                 features=[
                     Feature(
                         name="listing_page_viewed__rent_per_month",
                         description="Average of something.",
                         transformation=SparkFunctionTransform(
                             functions=[
                                 Function(functions.avg, DataType.FLOAT),
                                 Function(functions.stddev_pop, DataType.FLOAT),
                             ],
                         ).with_window(
                             partition_by="user_id",
                             order_by=TIMESTAMP_COLUMN,
                             window_definition=["7 days", "2 weeks"],
                             mode="fixed_windows",
                         ),
                     ),
                 ],
             ),
             sink=Mock(
                 spec=Sink, writers=[HistoricalFeatureStoreWriter(db_config=None)],
             ),
         )
示例#12
0
    def test_construct_with_pivot(
        self,
        feature_set_df_pivot,
        target_df_pivot_agg,
    ):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature",
                    description="unit test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.FLOAT),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                    from_column="feature1",
                )
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(from_column="fixed_ts"),
        ).with_pivot("pivot_col", ["S", "N"])

        # act
        output_df = feature_set.construct(feature_set_df_pivot,
                                          client=spark_client)

        # assert
        assert_dataframe_equality(output_df, target_df_pivot_agg)
示例#13
0
def feature_set():
    key_features = [
        KeyFeature(name="id",
                   description="Description",
                   dtype=DataType.INTEGER)
    ]
    ts_feature = TimestampFeature(from_column="timestamp")
    features = [
        Feature(name="feature",
                description="Description",
                dtype=DataType.FLOAT),
    ]
    return FeatureSet(
        "test_sink_feature_set",
        "test_sink_entity",
        "description",
        keys=key_features,
        timestamp=ts_feature,
        features=features,
    )
示例#14
0
    def test_construct_rolling_windows_without_end_date(
            self, feature_set_dataframe,
            rolling_windows_output_feature_set_dataframe):
        # given

        spark_client = SparkClient()

        # arrange

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(F.avg, DataType.DOUBLE),
                        Function(F.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.INTEGER,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 day", "1 week"], )

        # act & assert
        with pytest.raises(ValueError):
            _ = feature_set.construct(feature_set_dataframe,
                                      client=spark_client)
    def test_get_schema(self):
        expected_schema = [
            {
                "column_name": "id",
                "type": LongType(),
                "primary_key": True
            },
            {
                "column_name": "timestamp",
                "type": TimestampType(),
                "primary_key": False
            },
            {
                "column_name": "feature1__avg_over_2_minutes_fixed_windows",
                "type": FloatType(),
                "primary_key": False,
            },
            {
                "column_name": "feature1__avg_over_15_minutes_fixed_windows",
                "type": FloatType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_2_minutes_fixed_windows",
                "type": FloatType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_15_minutes_fixed_windows",
                "type": FloatType(),
                "primary_key": False,
            },
        ]

        feature_set = FeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=SparkFunctionTransform(functions=[
                        Function(F.avg, DataType.FLOAT),
                        Function(F.stddev_pop, DataType.FLOAT),
                    ]).with_window(
                        partition_by="id",
                        order_by=TIMESTAMP_COLUMN,
                        mode="fixed_windows",
                        window_definition=["2 minutes", "15 minutes"],
                    ),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.BIGINT,
                )
            ],
            timestamp=TimestampFeature(),
        )

        schema = feature_set.get_schema()

        assert schema == expected_schema
示例#16
0
    def test_get_schema(self):
        expected_schema = [
            {
                "column_name": "id",
                "type": LongType(),
                "primary_key": True
            },
            {
                "column_name": "timestamp",
                "type": TimestampType(),
                "primary_key": False
            },
            {
                "column_name": "feature1__avg_over_1_week_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name": "feature1__avg_over_2_days_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_1_week_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name":
                "feature1__stddev_pop_over_2_days_rolling_windows",
                "type": DoubleType(),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_1_week_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
            {
                "column_name": "feature2__count_over_2_days_rolling_windows",
                "type": ArrayType(StringType(), True),
                "primary_key": False,
            },
        ]

        feature_set = AggregatedFeatureSet(
            name="feature_set",
            entity="entity",
            description="description",
            features=[
                Feature(
                    name="feature1",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.avg, DataType.DOUBLE),
                        Function(functions.stddev_pop, DataType.DOUBLE),
                    ], ),
                ),
                Feature(
                    name="feature2",
                    description="test",
                    transformation=AggregatedTransform(functions=[
                        Function(functions.count, DataType.ARRAY_STRING)
                    ]),
                ),
            ],
            keys=[
                KeyFeature(
                    name="id",
                    description="The user's Main ID or device ID",
                    dtype=DataType.BIGINT,
                )
            ],
            timestamp=TimestampFeature(),
        ).with_windows(definitions=["1 week", "2 days"])

        schema = feature_set.get_schema()

        assert schema == expected_schema
示例#17
0
    def test_feature_transform_with_data_type_array(self, spark_context,
                                                    spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [30.0, 20.0, 10.0],
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature__collect_set": [10.0],
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature",
                    description="aggregations with ",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(functions=[
                        Function(functions.collect_set, DataType.ARRAY_FLOAT),
                    ], ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)
示例#18
0
    def test_feature_transform_with_filter_expression(self, spark_context,
                                                      spark_session):
        # arrange
        input_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 20,
                "type": "a",
            },
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 30,
                "type": "b",
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature": 10,
                "type": "a",
            },
        ]
        target_data = [
            {
                "id": 1,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 15.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 20,
            },
            {
                "id": 2,
                "timestamp": "2020-04-22T00:00:00+00:00",
                "feature_only_type_a__avg": 10.0,
                "feature_only_type_a__min": 10,
                "feature_only_type_a__max": 10,
            },
        ]
        input_df = create_df_from_collection(
            input_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))
        target_df = create_df_from_collection(
            target_data, spark_context, spark_session).withColumn(
                "timestamp",
                functions.to_timestamp(functions.col("timestamp")))

        fs = AggregatedFeatureSet(
            name="name",
            entity="entity",
            description="description",
            keys=[
                KeyFeature(name="id",
                           description="test",
                           dtype=DataType.INTEGER)
            ],
            timestamp=TimestampFeature(),
            features=[
                Feature(
                    name="feature_only_type_a",
                    description="aggregations only when type = a",
                    dtype=DataType.BIGINT,
                    transformation=AggregatedTransform(
                        functions=[
                            Function(functions.avg, DataType.FLOAT),
                            Function(functions.min, DataType.FLOAT),
                            Function(functions.max, DataType.FLOAT),
                        ],
                        filter_expression="type = 'a'",
                    ),
                    from_column="feature",
                ),
            ],
        )

        # act
        output_df = fs.construct(input_df, SparkClient())

        # assert
        assert_dataframe_equality(target_df, output_df)
示例#19
0
    def test_feature_set_args(self):
        # arrange and act
        out_columns = [
            "user_id",
            "timestamp",
            "listing_page_viewed__rent_per_month__avg_over_7_days_fixed_windows",
            "listing_page_viewed__rent_per_month__avg_over_2_weeks_fixed_windows",
            "listing_page_viewed__rent_per_month__stddev_pop_over_7_days_fixed_windows",
            "listing_page_viewed__rent_per_month__"
            "stddev_pop_over_2_weeks_fixed_windows",
            # noqa
        ]
        pipeline = FeatureSetPipeline(
            source=Source(
                readers=[
                    TableReader(id="source_a", database="db", table="table",),
                    FileReader(id="source_b", path="path", format="parquet",),
                ],
                query="select a.*, b.specific_feature "
                "from source_a left join source_b on a.id=b.id",
            ),
            feature_set=FeatureSet(
                name="feature_set",
                entity="entity",
                description="description",
                keys=[
                    KeyFeature(
                        name="user_id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(from_column="ts"),
                features=[
                    Feature(
                        name="listing_page_viewed__rent_per_month",
                        description="Average of something.",
                        transformation=SparkFunctionTransform(
                            functions=[
                                Function(functions.avg, DataType.FLOAT),
                                Function(functions.stddev_pop, DataType.FLOAT),
                            ],
                        ).with_window(
                            partition_by="user_id",
                            order_by=TIMESTAMP_COLUMN,
                            window_definition=["7 days", "2 weeks"],
                            mode="fixed_windows",
                        ),
                    ),
                ],
            ),
            sink=Sink(
                writers=[
                    HistoricalFeatureStoreWriter(db_config=None),
                    OnlineFeatureStoreWriter(db_config=None),
                ],
            ),
        )

        assert isinstance(pipeline.spark_client, SparkClient)
        assert len(pipeline.source.readers) == 2
        assert all(isinstance(reader, Reader) for reader in pipeline.source.readers)
        assert isinstance(pipeline.source.query, str)
        assert pipeline.feature_set.name == "feature_set"
        assert pipeline.feature_set.entity == "entity"
        assert pipeline.feature_set.description == "description"
        assert isinstance(pipeline.feature_set.timestamp, TimestampFeature)
        assert len(pipeline.feature_set.keys) == 1
        assert all(isinstance(k, KeyFeature) for k in pipeline.feature_set.keys)
        assert len(pipeline.feature_set.features) == 1
        assert all(
            isinstance(feature, Feature) for feature in pipeline.feature_set.features
        )
        assert pipeline.feature_set.columns == out_columns
        assert len(pipeline.sink.writers) == 2
        assert all(isinstance(writer, Writer) for writer in pipeline.sink.writers)
示例#20
0
def timestamp_c():
    return TimestampFeature()
示例#21
0
    def test_feature_set_pipeline(self, mocked_df, spark_session,
                                  fixed_windows_output_feature_set_dataframe):
        # arrange
        table_reader_id = "a_source"
        table_reader_table = "table"
        table_reader_db = environment.get_variable(
            "FEATURE_STORE_HISTORICAL_DATABASE")
        create_temp_view(dataframe=mocked_df, name=table_reader_id)
        create_db_and_table(
            spark=spark_session,
            table_reader_id=table_reader_id,
            table_reader_db=table_reader_db,
            table_reader_table=table_reader_table,
        )
        dbconfig = Mock()
        dbconfig.get_options = Mock(
            return_value={
                "mode": "overwrite",
                "format_": "parquet",
                "path": "test_folder/historical/entity/feature_set",
            })

        # act
        test_pipeline = FeatureSetPipeline(
            source=Source(
                readers=[
                    TableReader(
                        id=table_reader_id,
                        database=table_reader_db,
                        table=table_reader_table,
                    ),
                ],
                query=f"select * from {table_reader_id} ",  # noqa
            ),
            feature_set=FeatureSet(
                name="feature_set",
                entity="entity",
                description="description",
                features=[
                    Feature(
                        name="feature1",
                        description="test",
                        transformation=SparkFunctionTransform(functions=[
                            Function(F.avg, DataType.FLOAT),
                            Function(F.stddev_pop, DataType.FLOAT),
                        ], ).with_window(
                            partition_by="id",
                            order_by=TIMESTAMP_COLUMN,
                            mode="fixed_windows",
                            window_definition=["2 minutes", "15 minutes"],
                        ),
                    ),
                    Feature(
                        name="divided_feature",
                        description="unit test",
                        dtype=DataType.FLOAT,
                        transformation=CustomTransform(
                            transformer=divide,
                            column1="feature1",
                            column2="feature2",
                        ),
                    ),
                ],
                keys=[
                    KeyFeature(
                        name="id",
                        description="The user's Main ID or device ID",
                        dtype=DataType.INTEGER,
                    )
                ],
                timestamp=TimestampFeature(),
            ),
            sink=Sink(
                writers=[HistoricalFeatureStoreWriter(db_config=dbconfig)], ),
        )
        test_pipeline.run()

        # assert
        path = dbconfig.get_options("historical/entity/feature_set").get(
            "path")
        df = spark_session.read.parquet(path).orderBy(TIMESTAMP_COLUMN)

        target_df = fixed_windows_output_feature_set_dataframe.orderBy(
            test_pipeline.feature_set.timestamp_column)

        # assert
        assert_dataframe_equality(df, target_df)

        # tear down
        shutil.rmtree("test_folder")