def test_set_state_get_state():
    
    classifier = module.DiseaseClassifier(components={'in_width': 100, 'out_width': 55})
    state = classifier.get_state()
    new_classifier = module.DiseaseClassifier(components={'in_width': 100, 'out_width': 55})
    assert not (classifier.state_dict()['classification_layer.weight'] == new_classifier.state_dict()['classification_layer.weight']).all()
    new_state = new_classifier.get_state()
    new_classifier.set_state(state, reset=False)
    assert (classifier.state_dict()['classification_layer.weight'] == new_classifier.state_dict()['classification_layer.weight']).all()
示例#2
0
def test_roc_trainer():

    data = get_test_examples()
    metanet = module.MetaphlanNet(
        components={'widths': [12365, 6000, 2000, 55]})
    classifier = module.DiseaseClassifier(components={
        "in_width": 55,
        "out_width": 49
    },
                                          input=metanet)
    if torch.cuda.is_available():
        data.cuda()
        metanet.cuda()
        classifier.cuda()
    bce = nn.BCELoss()

    def loss(batch):
        return bce(batch['predictions'], batch['label'])

    trainer = hyperfactory.roc_trainer(classifier,
                                       loss,
                                       components={
                                           "in_width": 55,
                                           "out_width": 49
                                       },
                                       input=metanet)
    evaluator = trainer(Message({'roc_bias': torch.ones(49)}))
    assert hasattr(evaluator, 'run')
    evaluator.run(data)
    def trainer(parameters: dict, max_epochs: int = 15):

        converted_params = convert_keys_to_variables(parameters)
        embedder = module.MetaphlanNet(converted_params['widths'])
        classifier = module.DiseaseClassifier(converted_params['in_width'],
                                              converted_params['out_width'])
        learning_rate = converted_params['learning_rate']
        engine = module.get_trainer(embedder, classifier)
        train_loader = BatchingPipe(inputs=train_dataset)
        engine.run(train_loader, max_epochs=max_epochs)
        eval_engine = module.get_evaluator(embedder, classifier, attach=False)
        engine = None
        return eval_engine
def test_DiseaseClassifier():

    metanet = module.MetaphlanNet(components={'widths': [12365, 6000, 2000, 100]})
    classifier = module.DiseaseClassifier(components={'in_width': 100, 'out_width': 55})
    data = get_test_examples()
    if torch.cuda.is_available():
        metanet.cuda()
        classifier.cuda()
        data.cuda()
    output = classifier(metanet((data[2])))
    assert len(output['embeddings'][0]) == 100
    output = classifier(metanet(data[3:10]))
    assert output['predictions'].shape == torch.Size([7, 55])
示例#5
0
def test_roc_bias_generator():

    in_width = 50
    out_width = 55
    classifier = module.DiseaseClassifier(components={
        'in_width': in_width,
        'out_width': out_width
    })
    bias_generator = hyperfactory.roc_bias_generator(classifier)
    new_bias = bias_generator(None, None)
    assert type(new_bias) is Message
    assert 'roc_bias' in new_bias
    assert len(new_bias['roc_bias'][0]) == out_width
    assert len(new_bias['roc_bias']) == 1
def test_PrevalenceNet():

    metanet = module.MetaphlanNet(components={'widths': [12365, 6000, 1000]})
    prior = torch.empty(55).uniform_(0,1)
    prior = prior / sum(prior)
    prevalence = module.Concatenator(input=metanet, components={"in_column": "embeddings", "out_column": "embeddings", "concatenate_column": "prevalence"})
    posterior = module.PosteriorNet(input=prevalence, components={'widths': [1055, 100]})    
    classifier = module.DiseaseClassifier(input=posterior, components={'in_width': 100, 'out_width': 55})
    data = get_test_examples()
    batch = data[0:10]
    batch['prevalence'] = prior.expand(len(batch), len(prior))
    if torch.cuda.is_available():
        metanet.cuda()
        prevalence.cuda()
        posterior.cuda()
        classifier.cuda()
        batch.cuda()
    
    output = classifier(batch)
        'phylogenetic_tree.torch'
    )  # This is the adjacency matrix for the tree in COO format.

    conv_net = module.DeepConvNet(components={
        "channels": [1, 64, 64, 1],
        "edge_index": coo,
        "num_nodes": 12365
    })
    deep_net = module.MetaphlanNet(components={
        "widths": [12365, 350],
        "in_column": 'embeddings'
    },
                                   input=conv_net)
    classifier = module.DiseaseClassifier(input=deep_net,
                                          components={
                                              'in_column': 'embeddings',
                                              'in_width': 350,
                                              'out_width': len(study_labels)
                                          })

    single_classifier = module.MulticlassDiseaseClassifier(input=classifier,
                                                           components={
                                                               'in_column':
                                                               'embeddings',
                                                               'out_column':
                                                               'top_prediction'
                                                           })

    bce = nn.BCELoss(size_average=False)
    ce = nn.CrossEntropyLoss()

    if torch.cuda.is_available():