示例#1
0
import pandas as pd
from caeser import utils
import geopandas as gpd
from config import cnx_params

engine = utils.connect(**cnx_params.blight)

req = pd.read_sql("""select geoid, c.wkb_geometry, sum(numreqs) totreqs 
                    from geography.cen_bg_2016 c
                    join (select parcelid, numreqs, wkb_geometry 
                        from sca_parcels join combined_table on parcelid = parid
                        where reported_date >= '2012-01-01' and 
                            reported_date < '2015-01-01') p
                    on st_within(st_centroid(p.wkb_geometry), 
                        c.wkb_geometry)
                    group by geoid, c.wkb_geometry""", engine)

par = pd.read_sql("""select parid, reported_date, startyr, geoid
                            from combined_table
                            join sca_parcels p on parcelid = parid
                            join geography.cen_bg_2016 c on 
                            st_within(st_centroid(p.wkb_geometry), 
                            c.wkb_geometry)""", engine)

bg =gpd.read_postgis("""select * from geography.cen_bg_2016""", engine, 
                        'wkb_geometry', 2274)

os.chdir('/home/nate/sharedworkspace/Data/Assessor')
years = ['2012','2013', '2014', '2015']

sales = pd.read_csv('2016/SALES.txt')
示例#2
0
'''
Created on Feb 25, 2014

@author: nfergusn
'''

import psycopg2 as psql
import os
sys.path.append('$HOME/source')
from caeser import utils

params = utils.connection_info('localhost', db='db')
engine = utils.connect(**params)

db = psql.connect(params)

cursor = db.cursor()

select = """select table_name from information_schema.tables where table_schema = 'tiger'"""
index = """create index idx_{0}_geom on tiger.{0} using gist(geom);"""
cursor.execute(select)

tables = cursor.fetchall()


def create_index():
    index = """create index idx_{0}_geom on tiger.{0} using gist(geom);"""


for t in tables:
    print t[0]
示例#3
0
"""
"""

import pandas as pd
import numpy as np
import os
from caeser import utils
from config import cnx_params
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import mean_squared_error, r2_score

engine_blight = utils.connect(**cnx_params.blight)
engine_wwl = utils.connect(**cnx_params.wwl_2017)

os.chdir("/home/nate/dropbox-caeser/Data/MIDT/downtown_businesses")
q_bus_info = (
    "select bus_name, address, b.name district, "
    "regexp_replace(msg, '- ', '') land_use, livunit "
    "from  "
    "(select bus_name, match_addr address, msg, livunit, l.wkb_geometry "
    "from sca_parcels p, sca_pardat, sca_aedit, geography.bp_business_licenses l  "
    "where parcelid = parid  "
    "and (tble = 'PARDAT' and fld = 'LUC')  "
    "and val = luc "
    "and st_within(l.wkb_geometry, p.wkb_geometry)) l,  "
    "(select * from geography.boundaries b  "
    "where name in ('CBID', 'The Core', 'Parkways', 'Main Street Mall')) b "
    "where st_within(l.wkb_geometry, b.wkb_geometry)  ")
bus_info = pd.read_sql(q_bus_info, engine_blight)