def mean_pixel(input, dirout):
    """
    Generate a pixelwise mean for a file containing paths to images.

    Parameters:
    -----------
    input : string
        File containing the path to all images and their true labels
    dirout : string
        Path to the output folder

    Notes:
    -------
    The function generates three files:
        fname.binaryproto : contains the pixelwise mean of the images
        fname.npy : numpy array containing the mean
        fname.png : image resulting of the mean
    """
    caffe = True
    try:
        from caffe.io import array_to_blobproto
    except:
        logger.warning(
            'The system does not contain caffe.io to save as binaryproto')
        caffe = False
    from skimage import io

    input = realpath(input)
    fname = fh.filename(input, extension=False)
    dirout = fh.is_folder(dirout)
    fnameout = join(dirout, fname + '_mean')

    pf = fh.PathfileHandler(input)
    n = pf.nb_lines
    logger.info('Calculating mean for %d files.' % n)

    for nbline, arr in enumerate(pf):
        path = arr[0]
        img = io.imread(path)
        if nbline == 0:
            size = img.shape[1]
            mean = np.zeros((1, 3, size, size))
        mean[0][0] += img[:, :, 0]
        mean[0][1] += img[:, :, 1]
        mean[0][2] += img[:, :, 2]

    mean[0] /= n
    if caffe:
        blob = array_to_blobproto(mean)
        logger.info('Saving data into: %s' % fnameout + '.binaryproto')
        with open(fnameout + '.binaryproto', 'wb') as f:
            f.write(blob.SerializeToString())

    logger.info('Saving numpy matrix into: %s' % fnameout + '.npy')
    np.save(fnameout + '.npy', mean[0])
    mean_img = np.transpose(mean[0].astype(np.uint8), (1, 2, 0))
    logger.info('Saving mean image into: %s' % fnameout + '.png')
    io.imsave(fnameout + '.png', mean_img)
示例#2
0
def getPixelMean(input, dirout, size=256, fname=None):
    """
    Generate a pixelwise mean for a file containing paths to images.

    Parameters:
    -----------
    input : string
        File containing the path to all images and their true labels
    dirout : string
        Path to the output folder

    Notes:
    -------
    The function generates three files:
        fname.binaryproto : contains the pixelwise mean of the images
        fname.npy : numpy array containing the mean
        fname.png : image resulting of the mean
    """
    from caffe.io import array_to_blobproto
    from skimage import io

    input = realpath(input)
    fnamein, ext = splitext(basename(input))
    dirout = realpath(dirout)
    if fname:
        fnameout = join(dirout, fname + '_mean')
    else:
        fnameout = join(dirout, fnamein + '_mean')
    mean = np.zeros((1, 3, size, size))

    logger.info('calculating mean for %d files.' % n)

    n = 251392

    pb = progressbar.ProgressBar(n)

    with open(input) as imgs_path:

        for i in imgs_path:
            path = i
            img = io.imread(path)

            mean[0][0] += img[:, :, 0]
            mean[0][1] += img[:, :, 1]
            mean[0][2] += img[:, :, 2]
            pb.update()

    mean[0] /= n
    blob = array_to_blobproto(mean)
    with open(fnameout + '.binaryproto', 'wb') as f:
        f.write(blob.SerializeToString())
    np.save(fnameout + ".npy", mean[0])
    meanImg = np.transpose(mean[0].astype(np.uint8), (1, 2, 0))
    io.imsave(fnameout + ".png", meanImg)
def compute_mean(data_dir):
    print 'compute mean file...'
    sumfile = np.zeros((210, 160, 3), dtype=np.float)
    count = 0
    for d in glob.glob(data_dir + '/*'):
        for im in glob.glob(d + '/*.png'):
            im = cv2.imread(im, cv2.IMREAD_COLOR)
            sumfile += im
            count += 1

    meanfile = sumfile / count
    np.save(data_dir + '/mean.npy', meanfile)
    cv2.imwrite(data_dir + '/mean.png', meanfile)

    meanblob = np.zeros((1, 3, 210, 160), dtype=np.float)
    meanblob[0,:] = meanfile.transpose((2,0,1))
    meanblob = array_to_blobproto(meanblob)
    with open(data_dir + '/mean.binaryproto', 'wb') as f:
        f.write(meanblob.SerializeToString())
    mean = np.zeros((1, 3, 152, 152))
    N = 0
    classSizes = defaultdict(int)

    beginTime = time.time()
    for subdir, dirs, files in os.walk(args.imageDir):
        for fName in files:
            (imageClass, imageName) = (os.path.basename(subdir), fName)
            if any(imageName.lower().endswith("." + ext) for ext in exts):
                img = io.imread(os.path.join(subdir, fName))
                if img.shape == (152, 152, 3):
                    mean[0][0] += img[:, :, 0]
                    mean[0][1] += img[:, :, 1]
                    mean[0][2] += img[:, :, 2]
                    N += 1
                    if N % 1000 == 0:
                        elapsed = time.time() - beginTime
                        print("Processed {} images in {:.2f} seconds. "
                              "{:.2f} images/second.".format(
                                  N, elapsed, N / elapsed))
    mean[0] /= N

    blob = array_to_blobproto(mean)
    with open("{}.binaryproto".format(args.meanPrefix), 'wb') as f:
        f.write(blob.SerializeToString())
    np.save("{}.npy".format(args.meanPrefix), mean[0])

    meanImg = np.transpose(mean[0].astype(np.uint8), (1, 2, 0))
    io.imsave("{}.png".format(args.meanPrefix), meanImg)
示例#5
0
from caffe.proto import caffe_pb2
from caffe.io import array_to_blobproto

OFs = ["1"];
height = 256;
width = 340;

for count in range(len(OFs)):

    OF = OFs[count];
    stacked_count = int(OF) * 2;

    mean = np.zeros((1, stacked_count, height, width));
    mean[np.where(mean == 0)] = 128;

    blob = array_to_blobproto(mean);

    mean_file = OF + "opflows_mean.binaryproto";
    with open(mean_file, 'wb') as fid:
        fid.write(blob.SerializeToString());

    arr = np.array( caffe.io.blobproto_to_array(blob) );
    mean_file = OF + "opflows_mean.npy";
    np.save(  mean_file , arr )


for count in range(len(OFs)):

    OF = OFs[count];
    stacked_count = int(OF) * 2 * 2;
示例#6
0
def npy_to_bp(npy_data):
    if npy_data.ndim is 3:
        npy_data = npy_data.reshape(1,npy_data.shape[0],npy_data.shape[1],npy_data.shape[2])
    blob = array_to_blobproto(npy_data)
    blob_data = blob.SerializeToString()
    return blob_data
""" Find imageset mean. Calculates the mean of a data in a given file for each 
channel, and saves them in npy format, in the order BGR """

from PIL import Image
import numpy as np
caffe_root = '/home/alex/Caffe/caffe/'
import sys
sys.path.insert(0, caffe_root + 'python')
from caffe import io

path = '/home/alex/Documents/Caffe_First_Attempt/'
imageSet = path + 'resized'
imageLabels = path + 'temp/test_labels.txt'
destination = path + 'temp/img_mean.binaryproto'
img_size = (227, 227)
img_mean = np.zeros((3,img_size[0],img_size[1]))
imageFile = open(imageLabels,'r')
nImages = 0

for line in imageFile:
    img = Image.open(imageSet + '/' + line.split()[0])
    img_mean += np.array(img).transpose(2,0,1)
    nImages += 1
img_mean = img_mean/nImages
img_mean = img_mean[[2,1,0],:,:]
meanBlob = io.array_to_blobproto(np.expand_dims(img_mean,0))
toSave = open(destination,'wb')
toSave.write(meanBlob.SerializeToString())
toSave.close()