def cnn_module(bottom, num_out):

    conv1 = conv_bn_relu_layer(bottom, 64)
    conv2 = conv_bn_relu_layer(conv1, 64)
    pool1 = L.Pooling(conv2,
                      pooling_param=dict(kernel_size=3,
                                         stride=2,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    conv3 = conv_bn_relu_layer(pool1, 64)
    conv4 = conv_bn_relu_layer(conv3, 64)
    pool2 = L.Pooling(conv4,
                      pooling_param=dict(kernel_size=3,
                                         stride=2,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    conv5 = conv_bn_relu_layer(pool2, 64)
    conv6 = conv_bn_relu_layer(conv5, 64)

    conv6_upsample = L.Interp(conv6, interp_param=dict(zoom_factor=4))
    conv6_upsample_crop = L.Crop(conv6_upsample, conv2)

    conv4_upsample = L.Interp(conv4, interp_param=dict(zoom_factor=2))
    conv4_upsample_crop = L.Crop(conv4_upsample, conv2)

    conv_concat = L.Concat(bottom, conv2, conv4_upsample_crop,
                           conv6_upsample_crop)

    conv7 = conv_relu_layer(conv_concat, num_out)

    conv_comb = L.Concat(bottom, conv7)

    return conv_comb
示例#2
0
def edge_path(n, bottom):
    n.res5c_1, n.res5c_1_bn, n.res5c_1_scale, n.res5c_1_relu = \
        _conv_bn_scale_relu(bottom, nout=16, bias_term=False, kernel_size=1,
                            stride=1, pad=0, weight_filler={"type": "msra"})

    n.res5c_up1, n.res5c_up1_bn, n.res5c_up1_scale, n.res5c_up1_relu = \
        _deconv_bn_scale_relu(n.res5c_1_relu, nout=16, kernel_size=8, stride=4, pad=0)

    crop_bottoms = [n.res5c_up1_relu, n.res2c_relu]
    n.res5c_crop1 = L.Crop(*crop_bottoms, crop_param={'axis': 2})  ## crop 1/4

    n.res5c_up2, n.res5c_up2_bn, n.res5c_up2_scale, n.res5c_up2_relu = \
        _deconv_bn_scale_relu(n.res5c_crop1, nout=16, kernel_size=8, stride=4, pad=0)

    crop_bottoms = [n.res5c_up2_relu, n.data]
    n.res5c_crop2 = L.Crop(*crop_bottoms,
                           crop_param={'axis':
                                       2})  ## crop 1 -> from res backbonb

    n.unet1a_conv1_edge, n.unet1a_bn_conv1_edge, n.unet1a_scale_conv1_edge, n.unet1a_conv1_relu_edge = \
        _conv_bn_scale_relu(n.data, nout=8, bias_term=False, kernel_size=3,
                            stride=1, pad=1, weight_filler={"type": "msra"})

    n.unet1a_conv2_edge, n.unet1a_bn_conv2_edge, n.unet1a_scale_conv2_edge, n.unet1a_conv2_relu_edge = \
        _conv_bn_scale_relu(n.unet1a_conv1_relu_edge, nout=4, bias_term=False, kernel_size=3,
                            stride=1, pad=1, weight_filler={"type": "msra"})

    n.unet1a_conv3_edge, n.unet1a_bn_conv3_edge, n.unet1a_scale_conv3_edge, n.unet1a_conv3_relu_edge = \
        _conv_bn_scale_relu(n.unet1a_conv2_relu_edge, nout=16, bias_term=False, kernel_size=3,
                            stride=1, pad=1, weight_filler={"type": "msra"})  ## 1 -> from data directly
示例#3
0
def decoder_path(n, bottom):
    n.unet3a_deconv_up, n.unet3a_bn3a_deconv, n.unet3a_scale3a_deconv, n.unet3a_deconv_relu = \
        _deconv_bn_scale_relu(bottom, nout=256, kernel_size=7, stride=4, pad=0)

    crop_bottoms = [n.unet3a_deconv_relu, n.res2c_relu]
    n.unet3a_crop = L.Crop(*crop_bottoms, crop_param={
        'axis': 2,
        'offset': 1
    })  ## crop 1/4

    concat_layers = [n.unet3a_crop, n.res2c_relu]
    n.unet3a_concat = caffe.layers.Concat(
        *concat_layers, concat_param=dict(concat_dim=1))  ## concat with res2c

    _resnet_block('6a', n, n.unet3a_concat, 128)
    _resnet_block('6b', n, n.res6a_relu, 4, branch1=True,
                  initial_stride=1)  ## res 6

    n.unet1a_deconv_up, n.unet1a_bn1a_deconv, n.unet1a_scale1a_deconv, n.unet1a_deconv_relu = \
        _deconv_bn_scale_relu(n.res6b_relu, nout=16, kernel_size=7, stride=4, pad=0)  ## deconv

    crop_bottoms = [n.unet1a_deconv_relu, n.data]
    n.unet1a_crop = L.Crop(*crop_bottoms, crop_param={
        'axis': 2,
        'offset': 1
    })  ## crop 1 -> occlusion cue
def gradient_x(bottom):
    dummy_data = L.DummyData(dummy_data_param=dict(
        shape=[dict(dim=[1, 1, 100, 99])]))
    crop_1 = L.Crop(bottom, dummy_data, crop_param=dict(offset=[0, 1]))
    crop_2 = L.Crop(bottom, dummy_data, crop_param=dict(offset=[0, 0]))
    diff = L.Eltwise(crop_1,
                     crop_2,
                     eltwise_param=dict(operation=P.Eltwise.SUM,
                                        coeff=[1.0, -1.0]))
    gradient_x = L.AbsVal(diff)
    return gradient_x
示例#5
0
def ori_path(n, bottom):
    _aspp_block(n, bottom)  ## aspp module

    n.aspp_up1, n.aspp_up1_bn, n.aspp_up1_scale, n.aspp_up1_relu = \
        _deconv_bn_scale_relu(n.aspp_concat, nout=32, kernel_size=8, stride=4, pad=0)

    crop_bottoms = [n.aspp_up1_relu, n.res2c_relu]
    n.aspp_crop1 = L.Crop(*crop_bottoms, crop_param={'axis': 2})  ## crop 1/4

    n.aspp_up2, n.aspp_up2_bn, n.aspp_up2_scale, n.aspp_up2_relu = \
        _deconv_bn_scale_relu(n.aspp_crop1, nout=16, kernel_size=8, stride=4, pad=0)

    crop_bottoms = [n.aspp_up2_relu, n.data]
    n.aspp_crop2 = L.Crop(*crop_bottoms, crop_param={'axis': 2})  ## crop 1
示例#6
0
def deconv_crop_layer(bottom, bottom2,num_out, size_kerbel,size_stride,num_offset):
    deconv1 = L.Deconvolution(bottom,
                              convolution_param = dict(num_output = num_out, kernel_size = size_kerbel, stride = size_stride),
                                                       param = [{'lr_mult':0,'decay_mult':1},{'lr_mult':0, 'decay_mult':0}])
    feature_dsn = L.Crop(deconv1,bottom2,
                          crop_param = dict(axis = 2, offset = num_offset))

    return feature_dsn
 def test_crop(self):
     n = caffe.NetSpec()
     n.input1 = L.Input(shape=make_shape([6, 4, 64, 64]))
     n.reference1 = L.Input(shape=make_shape([1, 1, 32, 32]))
     n.crop1 = L.Crop(n.input1, n.reference1, axis=2, offset=[16, 16])
     n.conv1 = L.Convolution(n.crop1,
                             num_output=10,
                             kernel_size=5,
                             weight_filler=make_weight_filler(),
                             bias_filler=make_bias_filler())
     self._test_model(*self._netspec_to_model(n, 'crop'))
示例#8
0
 def test_crop_of_crop(self):
     """
     Map coordinates through Crop layer:
     crop an already-cropped output to the input and check change in offset.
     """
     n = coord_net_spec()
     offset = random.randint(0, 10)
     ax, a, b = coord_map_from_to(n.deconv, n.data)
     n.crop = L.Crop(n.deconv, n.data, axis=2, offset=offset)
     ax_crop, a_crop, b_crop = coord_map_from_to(n.crop, n.data)
     self.assertEquals(ax, ax_crop)
     self.assertEquals(a, a_crop)
     self.assertEquals(b + offset, b_crop)
示例#9
0
def make_cunet():
    netoffset = 28
    ch = 3
    input_size = 256 + netoffset * 2
    assert (input_size % 4 == 0)

    data = L.Input(name="input",
                   shape=dict(dim=[1, ch, input_size, input_size]))
    u1 = unet1(data, ch=ch, deconv=False)
    u2 = unet2(u1, ch=ch, deconv=False)
    crop = L.Crop(u1, u2, crop_param=dict(axis=2, offset=20))
    cadd = L.Eltwise(crop, u2, operation=P.Eltwise.SUM)
    return to_proto(cadd)
示例#10
0
def test_crop():
    # type: ()->caffe.NetSpec

    n = caffe.NetSpec()
    n.input1 = L.Input(shape=make_shape([6, 4, 64, 64]))
    n.reference1 = L.Input(shape=make_shape([1, 1, 32, 32]))
    n.crop1 = L.Crop(n.input1, n.reference1, axis=2, offset=[16, 16])
    n.conv1 = L.Convolution(n.crop1,
                            num_output=10,
                            kernel_size=5,
                            weight_filler=make_weight_filler(),
                            bias_filler=make_bias_filler())
    return n
示例#11
0
def unet_branch(bottom, insert_f, i, o, depad):
    pool = L.Convolution(bottom, kernel_size=2, stride=2, num_output=i, pad=0)
    relu1 = L.ReLU(pool, in_place=True, negative_slope=0.1)
    feat = insert_f(relu1)
    unpool = L.Deconvolution(feat,
                             convolution_param=dict(num_output=o,
                                                    kernel_size=2,
                                                    pad=0,
                                                    stride=2))
    relu2 = L.ReLU(unpool, in_place=True, negative_slope=0.1)
    crop = L.Crop(bottom, relu2, crop_param=dict(axis=2, offset=depad))
    cadd = L.Eltwise(crop, relu2, operation=P.Eltwise.SUM)
    return cadd
示例#12
0
def crop(top_from, top_to):
    """
    Define a Crop layer to crop a top (from) to another top (to) by
    determining the coordinate mapping between the two and net spec'ing
    the axis and shift parameters of the crop.
    """
    ax, a, b = coord_map_from_to(top_from, top_to)
    assert (a == 1).all(), 'scale mismatch on crop (a = {})'.format(a)
    assert (b <= 0).all(), 'cannot crop negative offset (b = {})'.format(b)
    assert (np.round(b) == b).all(), 'cannot crop noninteger offset ' \
        '(b = {})'.format(b)
    return L.Crop(top_from, top_to,
                  crop_param=dict(axis=ax + 1,  # +1 for first cropping dim.
                                  offset=list(-np.round(b).astype(int))))
示例#13
0
def BuildNet(sport, depth, split, version):
    n = BuildBaseNet(sport, depth, split)
    last = n.conv8
    # zu wenig parameter
    if version == 'fixedfixedlearned':
        n.upsample1 = upsample('upsample1', last, depth, 4, 'upsample_weight')
        n.upsample2 = upsample('upsample2', n.upsample1, depth, 4,
                               'upsample_weight')
        n.deconv = deconv('deconv', n.upsample2, depth, 1, 0.01, 0)
        last = n.deconv
    # doesnt fit memory
    elif version == 'fixedlearnedlearned':
        n.upsample1 = upsample('upsample1', last, depth, 4, 'upsample_weight')
        n.deconv1 = deconv('deconv1', n.upsample1, depth, 4, 0.01, 0)
        n.deconv2 = deconv('deconv2', n.deconv1, depth, 4, 0.01, 0)
        last = n.deconv2
    # sinnlos glaub ich
    elif version == 'learnedmiddle':
        n.deconv1 = deconv('deconv1', last, depth, 4, 0.01, 0)
        n.deconv2 = deconv('deconv2', n.deconv1, depth, 4, 0.01, 0)
        n.deconv3 = deconv('deconv3', n.deconv2, depth, 2, 0.01, 0)
        last = n.deconv3
    elif version == 'learnedsmall':
        n.deconv1 = deconv('deconv1', last, depth, 4, 0.01, 0)
        n.deconv2 = deconv('deconv2', n.deconv1, depth, 4, 0.01, 0)
        last = n.deconv2
    # doesnt fit memory
    elif version == 'learnedbig':
        n.deconv1 = deconv('deconv1', last, depth, 4, 0.01, 0)
        n.deconv2 = deconv('deconv2', n.deconv1, depth, 4, 0.01, 0)
        n.deconv3 = deconv('deconv3', n.deconv2, depth, 4, 0.01, 0)
        last = n.deconv3
    elif version == 'fixedlearned':
        n.upsample = upsample('upsample', last, depth, 2, 'upsample_weight')
        n.deconv1 = deconv('deconv', n.upsample, depth, 8, 0.01, 0)
        last = n.deconv1
    else:
        print 'NO KNOWN VERSION YOU FOUL'
        return

    if split == 'train' or split == 'test':
        n.crop = L.Crop(last, n.label, axis=2, offset=0)
        n.softmax = L.SoftmaxWithLoss(n.crop,
                                      n.label,
                                      loss_param=dict(ignore_label=-1,
                                                      normalize=False))
    if split == 'deploy':
        #n.crop = L.Crop(last, n.data, axis=2, offset=0)
        pass
    return n.to_proto()
示例#14
0
def cnn_module(bottom, num_out):

    conv1 = conv_bn_relu_layer(bottom, 64)
    conv2 = conv_bn_relu_layer(conv1, 64)
    pool1 = L.Pooling(conv2, pooling_param=dict(kernel_size=3, stride=2, pad=1, pool=P.Pooling.MAX))

    conv3 = conv_bn_relu_layer(pool1, 64)
    conv4 = conv_bn_relu_layer(conv3, 64)
    pool2 = L.Pooling(conv4, pooling_param=dict(kernel_size=3, stride=2, pad=1, pool=P.Pooling.MAX))

    conv5 = conv_bn_relu_layer(pool2, 64)
    conv6 = conv_bn_relu_layer(conv5, 64)

    conv6_upsample = L.Interp(conv6, interp_param=dict(zoom_factor=4))
    conv6_upsample_crop = L.Crop(conv6_upsample, conv2)

    conv4_upsample = L.Interp(conv4, interp_param=dict(zoom_factor=2))
    conv4_upsample_crop = L.Crop(conv4_upsample, conv2)

    conv_concat = L.Concat(bottom, conv2, conv4_upsample_crop, conv6_upsample_crop)

    # the feature layer of del
    conv_dim = conv_relu_feature_layer(conv_concat, 256)

    conv_dsp = L.Convolution(conv_dim,
                    convolution_param=dict(num_output= 64, kernel_size=1, stride=1, pad=0,
                                            weight_filler=dict(type='xavier', std=0.01),
                                            bias_filler=dict(type='constant', value=0)),
                    param=[{'lr_mult': 1, 'decay_mult': 1}, {'lr_mult': 2, 'decay_mult': 0}])


    # the layer of ssn
    conv7 = conv_relu_layer(conv_concat, num_out)
    conv_comb = L.Concat(bottom, conv7)

    return conv_comb, conv_dsp
def upconv_concat(bottom, ks, stride, nout, pad, crop_offset, cat):
    upconv = L.Deconvolution(bottom,
                             convolution_param=dict(num_output=nout,
                                                    kernel_size=ks,
                                                    stride=stride,
                                                    pad=pad,
                                                    weight_filler=dict(
                                                        type='constant',
                                                        value=1)),
                             param=[{
                                 'lr_mult': 1,
                                 'decay_mult': 1
                             }, {
                                 'lr_mult': 2,
                                 'decay_mult': 0
                             }])
    crop_cat = L.Crop(cat, upconv, axis=2, offset=crop_offset)
    return upconv, L.Concat(upconv, crop_cat)  # channel up to nout *2
示例#16
0
def FCN(images_lmdb, labels_lmdb, batch_size, include_acc=False):
    # net definition
    n.data = L.Data(source=images_lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=1,
                    transform_param=dict(crop_size=0, mean_value=[77], mirror=False))
    n.label = L.Data(source=labels_lmdb, backend=P.Data.LMDB, batch_size=batch_size, ntop=1)
    n.conv1, n.relu1 = conv_relu(n.data, ks=5, nout=100, stride=2, pad=50, bias_value=0.1)
    n.pool1 = max_pool(n.relu1, ks=2, stride=2)
    n.conv2, n.relu2 = conv_relu(n.pool1, ks=5, nout=200, stride=2, bias_value=0.1)
    n.pool2 = max_pool(n.relu2, ks=2, stride=2)
    n.conv3, n.relu3 = conv_relu(n.pool2, ks=3, nout=300, stride=1, bias_value=0.1)
    n.conv4, n.relu4 = conv_relu(n.relu3, ks=3, nout=300, stride=1, bias_value=0.1)
    n.drop = L.Dropout(n.relu4, dropout_ratio=0.1, in_place=True)
    n.score_classes, _= conv_relu(n.drop, ks=1, nout=2, weight_std=0.01, bias_value=0.1)
    n.upscore = L.Deconvolution(n.score_classes)
    n.score = L.Crop(n.upscore,n.data)
    n.loss = L.SoftmaxWithLoss(n.score, n.label, loss_param=dict(normalize=True))

    if include_acc:
        n.accuracy = L.Accuracy(n.score, n.label)
        return n.to_proto()
    else:
        return n.to_proto()
示例#17
0
def net(split):
    n = caffe.NetSpec()
    loss_param = dict(normalize=False)
    if split == 'train':
        data_params = dict(mean=(104.00699, 116.66877, 122.67892))
        # 图像与标签

        data_params['root'] = './datasets/CTW1500_Total_TCB'
        data_params['source'] = "CTW1500_Total_TCB.lst"

        data_params['shuffle'] = True
        data_params['ignore_label'] = -1
        n.data, n.label = L.Python(module='pylayer_old', layer='ImageLabelmapDataLayer', ntop=2, \
        param_str=str(data_params))
        if data_params.has_key('ignore_label'):
            loss_param['ignore_label'] = int(data_params['ignore_label'])
    elif split == 'test':
        n.data = L.Input(name='data',
                         input_param=dict(shape=dict(dim=[1, 3, 500, 500])))
    else:
        raise Exception("Invalid phase")

# The first conv stage
    n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=1)
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64)
    # # ===================== prepare lstm inputs =====================
    n.pool1 = max_pool(n.relu1_2)

    # The second conv stage
    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128)
    n.pool2 = max_pool(n.relu2_2)

    # The third conv stage
    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256)
    n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256)

    n.conv3_dilation1 = conv_dilation01(n.conv3_3, mult=[100, 1, 200, 0])
    n.conv3_dilation2 = conv_dilation03(n.conv3_3, mult=[100, 1, 200, 0])
    n.conv3_dilation3 = conv_dilation05(n.conv3_3, mult=[100, 1, 200, 0])
    n.conv3_dilation4 = conv_dilation07(n.conv3_3, mult=[100, 1, 200, 0])
    n.concat_conv33 = L.Concat(n.conv3_dilation1,
                               n.conv3_dilation2,
                               n.conv3_dilation3,
                               n.conv3_dilation4,
                               concat_param=dict({'concat_dim': 1}))

    # # ===================== prepare lstm inputs =====================
    n.im2col_conv33 = L.Im2col(n.concat_conv33,
                               convolution_param=dict(kernel_size=3, pad=1))
    n.im2col_transpose_conv33 = L.Transpose(
        n.im2col_conv33, transpose_param=dict(dim=[3, 2, 0, 1]))
    n.lstm_input_conv33 = L.Reshape(n.im2col_transpose_conv33,
                                    reshape_param=dict(shape=dict(dim=-1),
                                                       axis=1,
                                                       num_axes=2))
    n.lstm_conv33 = L.Lstm(n.lstm_input_conv33,
                           lstm_param=dict(num_output=128,
                                           weight_filler=dict(type='gaussian',
                                                              std=0.01),
                                           bias_filler=dict(type='constant'),
                                           clipping_threshold=1))
    # ===================== rlstm ===================
    n.rlstm_input_conv33 = L.Reverse(n.lstm_input_conv33,
                                     name='lstm_reverse1_conv33',
                                     reverse_param=dict(axis=0))
    n.rlstm_output_conv33 = L.Lstm(n.rlstm_input_conv33,
                                   name='rlstm_conv33',
                                   lstm_param=dict(num_output=128))
    n.rlstm_conv33 = L.Reverse(n.rlstm_output_conv33,
                               name='lstm_reverse2_conv33',
                               reverse_param=dict(axis=0))
    # ===================== merge lstm_conv33 and rlstm_conv33
    n.merge_lstm_rlstm_conv33 = L.Concat(n.lstm_conv33,
                                         n.rlstm_conv33,
                                         concat_param=dict(axis=2))
    n.lstm_output_reshape_conv33 = L.Reshape(n.merge_lstm_rlstm_conv33,
                                             reshape_param=dict(
                                                 shape=dict(dim=[-1, 1]),
                                                 axis=1,
                                                 num_axes=1))
    # transpose size of output as (N, C, H, W)
    n.lstm_output_conv33 = L.Transpose(n.lstm_output_reshape_conv33,
                                       transpose_param=dict(dim=[2, 3, 1, 0]))
    n.pool3 = max_pool(n.relu3_3)

    # The fourth conv stage
    n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512)
    n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512)
    n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512)

    n.conv4_dilation1 = conv_dilation1(n.conv4_3, mult=[100, 1, 200, 0])
    n.conv4_dilation2 = conv_dilation3(n.conv4_3, mult=[100, 1, 200, 0])
    n.conv4_dilation3 = conv_dilation5(n.conv4_3, mult=[100, 1, 200, 0])
    n.conv4_dilation4 = conv_dilation7(n.conv4_3, mult=[100, 1, 200, 0])
    n.concat_conv43 = L.Concat(n.conv4_dilation1,
                               n.conv4_dilation2,
                               n.conv4_dilation3,
                               n.conv4_dilation4,
                               concat_param=dict({'concat_dim': 1}))

    # # ===================== prepare lstm inputs =====================
    n.im2col_conv43 = L.Im2col(n.concat_conv43,
                               convolution_param=dict(kernel_size=3, pad=1))
    n.im2col_transpose_conv43 = L.Transpose(
        n.im2col_conv43, transpose_param=dict(dim=[3, 2, 0, 1]))
    n.lstm_input_conv43 = L.Reshape(n.im2col_transpose_conv43,
                                    reshape_param=dict(shape=dict(dim=-1),
                                                       axis=1,
                                                       num_axes=2))
    n.lstm_conv43 = L.Lstm(n.lstm_input_conv43,
                           lstm_param=dict(num_output=256,
                                           weight_filler=dict(type='gaussian',
                                                              std=0.01),
                                           bias_filler=dict(type='constant'),
                                           clipping_threshold=1))
    # ===================== rlstm ===================
    n.rlstm_input_conv43 = L.Reverse(n.lstm_input_conv43,
                                     name='lstm_reverse1_conv43',
                                     reverse_param=dict(axis=0))
    n.rlstm_output_conv43 = L.Lstm(n.rlstm_input_conv43,
                                   name='rlstm_conv43',
                                   lstm_param=dict(num_output=256))
    n.rlstm_conv43 = L.Reverse(n.rlstm_output_conv43,
                               name='lstm_reverse2_conv43',
                               reverse_param=dict(axis=0))
    # ===================== merge lstm_conv43 and rlstm_conv43
    n.merge_lstm_rlstm_conv43 = L.Concat(n.lstm_conv43,
                                         n.rlstm_conv43,
                                         concat_param=dict(axis=2))
    n.lstm_output_reshape_conv43 = L.Reshape(n.merge_lstm_rlstm_conv43,
                                             reshape_param=dict(
                                                 shape=dict(dim=[-1, 1]),
                                                 axis=1,
                                                 num_axes=1))
    # transpose size of output as (N, C, H, W)
    n.lstm_output_conv43 = L.Transpose(n.lstm_output_reshape_conv43,
                                       transpose_param=dict(dim=[2, 3, 1, 0]))
    n.pool4 = max_pool(n.relu4_3)

    n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512)
    n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512)
    n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512)

    n.conv5_dilation1 = conv_dilation1(n.conv5_3, mult=[100, 1, 200, 0])
    n.conv5_dilation2 = conv_dilation3(n.conv5_3, mult=[100, 1, 200, 0])
    n.conv5_dilation3 = conv_dilation5(n.conv5_3, mult=[100, 1, 200, 0])
    n.conv5_dilation4 = conv_dilation7(n.conv5_3, mult=[100, 1, 200, 0])
    n.concat_conv53 = L.Concat(n.conv5_dilation1,
                               n.conv5_dilation2,
                               n.conv5_dilation3,
                               n.conv5_dilation4,
                               concat_param=dict({'concat_dim': 1}))

    # The fiveth conv stage
    # ===================== prepare lstm inputs =====================
    n.im2col_conv53 = L.Im2col(n.concat_conv53,
                               convolution_param=dict(kernel_size=3, pad=1))
    n.im2col_transpose_conv53 = L.Transpose(
        n.im2col_conv53, transpose_param=dict(dim=[3, 2, 0, 1]))
    n.lstm_input_conv53 = L.Reshape(n.im2col_transpose_conv53,
                                    reshape_param=dict(shape=dict(dim=-1),
                                                       axis=1,
                                                       num_axes=2))
    n.lstm_conv53 = L.Lstm(n.lstm_input_conv53,
                           lstm_param=dict(num_output=256,
                                           weight_filler=dict(type='gaussian',
                                                              std=0.01),
                                           bias_filler=dict(type='constant'),
                                           clipping_threshold=1))
    # ===================== rlstm ===================
    n.rlstm_input_conv53 = L.Reverse(n.lstm_input_conv53,
                                     name='lstm_reverse1_conv53',
                                     reverse_param=dict(axis=0))
    n.rlstm_output_conv53 = L.Lstm(n.rlstm_input_conv53,
                                   name='rlstm_conv53',
                                   lstm_param=dict(num_output=256))
    n.rlstm_conv53 = L.Reverse(n.rlstm_output_conv53,
                               name='lstm_reverse2_conv53',
                               reverse_param=dict(axis=0))
    # ===================== merge lstm_conv53 and rlstm_conv53
    n.merge_lstm_rlstm_conv53 = L.Concat(n.lstm_conv53,
                                         n.rlstm_conv53,
                                         concat_param=dict(axis=2))
    n.lstm_output_reshape_conv53 = L.Reshape(n.merge_lstm_rlstm_conv53,
                                             reshape_param=dict(
                                                 shape=dict(dim=[-1, 1]),
                                                 axis=1,
                                                 num_axes=1))
    # transpose size of output as (N, C, H, W)
    n.lstm_output_conv53 = L.Transpose(n.lstm_output_reshape_conv53,
                                       transpose_param=dict(dim=[2, 3, 1, 0]))

    # # DSN3
    n.score_dsn3 = conv1x1(n.lstm_output_conv33,
                           lr=[0.01, 1, 0.02, 0],
                           wf=dict(type='gaussian', std=0.01))
    n.score_dsn3_up = upsample(n.score_dsn3, stride=4)
    n.upscore_dsn3 = L.Crop(n.score_dsn3_up, n.data)

    if split == 'train':
        n.loss3 = L.BalanceCrossEntropyLoss(n.upscore_dsn3,
                                            n.label,
                                            loss_param=loss_param)
    if split == 'test':
        n.sigmoid_dsn3 = L.Sigmoid(n.upscore_dsn3)

# # DSN4
    n.score_dsn4 = conv1x1(n.lstm_output_conv43,
                           lr=[0.01, 1, 0.02, 0],
                           wf=dict(type='gaussian', std=0.01))
    n.score_dsn4_up = upsample(n.score_dsn4, stride=8)
    n.upscore_dsn4 = L.Crop(n.score_dsn4_up, n.data)

    if split == 'train':
        n.loss4 = L.BalanceCrossEntropyLoss(n.upscore_dsn4,
                                            n.label,
                                            loss_param=loss_param)
    if split == 'test':
        n.sigmoid_dsn4 = L.Sigmoid(n.upscore_dsn4)

# DSN5
    n.score_dsn5 = conv1x1(n.lstm_output_conv53,
                           lr=[0.01, 1, 0.02, 0],
                           wf=dict(type='gaussian', std=0.01))
    n.score_dsn5_up = upsample(n.score_dsn5, stride=16)
    n.upscore_dsn5 = L.Crop(n.score_dsn5_up, n.data)

    if split == 'train':
        n.loss5 = L.BalanceCrossEntropyLoss(n.upscore_dsn5,
                                            n.label,
                                            loss_param=loss_param)
    if split == 'test':
        n.sigmoid_dsn5 = L.Sigmoid(n.upscore_dsn5)


# ############### concatenation and pass through attention model #########
    n.concat_upscore = L.Concat(n.upscore_dsn3,
                                n.upscore_dsn4,
                                n.upscore_dsn5,
                                name='concat',
                                concat_param=dict({'concat_dim': 1}))

    n.upscore_fuse = L.Convolution(n.concat_upscore,
                                   name='new-score-weighting',
                                   num_output=1,
                                   kernel_size=1,
                                   param=[
                                       dict(lr_mult=0.001, decay_mult=1),
                                       dict(lr_mult=0.002, decay_mult=0)
                                   ],
                                   weight_filler=dict(type='constant',
                                                      value=0.2),
                                   engine=1)
    if split == 'test':
        n.sigmoid_fuse = L.Sigmoid(n.upscore_fuse)
    if split == 'train':
        n.loss_fuse = L.BalanceCrossEntropyLoss(n.upscore_fuse,
                                                n.label,
                                                loss_param=loss_param)
    return n.to_proto()
def create_UNet(data_lmdb, label_lmdb, batch_size, mean_file, phase):

    n = caffe.NetSpec()

    n.data = L.Data(source=data_lmdb,
                    backend=P.Data.LMDB,
                    batch_size=batch_size,
                    ntop=1,
                    transform_param=dict(mean_file=mean_file),
                    include=dict(phase=phase))
    n.label = L.Data(source=label_lmdb,
                     backend=P.Data.LMDB,
                     batch_size=batch_size,
                     ntop=1,
                     transform_param=dict(mean_value=0),
                     include=dict(phase=phase))

    # encoder => level 1
    n.conv1_1, n.relu1_1 = conv_relu(
        n.data, 3, 1, 64, 0,
        True)  # conv_relu(bottom, kernel_size, stride, nout, pad):
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 3, 1, 64, 0, True)
    n.pool1 = L.Pooling(n.relu1_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)

    # encoder => level 2
    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 3, 1, 128, 0, True)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 3, 1, 128, 0, True)
    n.pool2 = L.Pooling(n.relu2_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)

    # encoder => level 3
    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 3, 1, 256, 0, True)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 3, 1, 256, 0, True)
    n.pool3 = L.Pooling(n.relu3_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)

    # encoder => level 4
    n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 3, 1, 512, 0, True)
    n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 3, 1, 512, 0, True)
    n.pool4 = L.Pooling(n.relu4_2, pool=P.Pooling.MAX, kernel_size=2, stride=2)

    # encoder => level 5
    n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 3, 1, 1024, 0, True)
    n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 3, 1, 1024, 0, True)

    # (bottom, ks, stride, nout, pad, crop_offset, cat)
    n.upconv1, n.concat1 = upconv_concat(n.relu5_2, 2, 2, 512, 0, 4, n.relu4_2)

    # decoder => level 1
    n.conv6_1, n.relu6_1 = conv_relu(n.concat1, 3, 1, 512, 0, True)
    n.conv6_2, n.relu6_2 = conv_relu(n.relu6_1, 3, 1, 512, 0, True)
    n.upconv2, n.concat2 = upconv_concat(n.relu6_2, 2, 2, 256, 0, 16,
                                         n.relu3_2)

    # decoder => level 2
    n.conv7_1, n.relu7_1 = conv_relu(n.concat2, 3, 1, 256, 0, True)
    n.conv7_2, n.relu7_2 = conv_relu(n.relu7_1, 3, 1, 256, 0, True)
    n.upconv3, n.concat3 = upconv_concat(n.relu7_2, 2, 2, 128, 0, 40,
                                         n.relu2_2)

    # decoder => level 3
    n.conv8_1, n.relu8_1 = conv_relu(n.concat3, 3, 1, 128, 0, True)
    n.conv8_2, n.relu8_2 = conv_relu(n.relu8_1, 3, 1, 128, 0, True)
    n.upconv4, n.concat4 = upconv_concat(n.relu8_2, 2, 2, 64, 0, 88, n.relu1_2)

    # decoder => level 4
    n.conv9_1, n.relu9_1 = conv_relu(n.concat4, 3, 1, 64, 0, True)
    n.conv9_2, n.relu9_2 = conv_relu(n.relu9_1, 3, 1, 64, 0, True)
    n.score = L.Convolution(n.relu9_2, kernel_size=1, num_output=3, pad=0)

    n.labelcrop = L.Crop(n.label,
                         n.score,
                         crop_param={
                             'axis': 2,
                             'offset': 92
                         })
    n.loss = L.SoftmaxWithLoss(n.score,
                               n.labelcrop,
                               loss_param={'ignore_label': 3},
                               propagate_down=[True, False])
    n.argmax = L.ArgMax(n.score,
                        argmax_param={'axis': 1},
                        include=dict(phase=caffe.TEST))
    n.acc, accuracy_by_class = L.Accuracy(n.score,
                                          n.labelcrop,
                                          accuracy_param={'axis': 1},
                                          include=dict(phase=caffe.TEST),
                                          ntop=2)
    # n.confmat = L.Python(n.argmax, n.labelcrop, python_param={'module':'python_confmat','layer':'PythonConfMat', 'param_str': '{"test_iter":3780}'}, include=dict(phase=caffe.TEST))
    return n.to_proto()
示例#19
0
def convert(keras_model, caffe_net_file, caffe_params_file):
    caffe_net = caffe.NetSpec()
    net_params = dict()
    outputs = dict()
    shape = ()
    input_str = ''

    for layer in keras_model.layers:
        name = layer.name
        print(
            'processing' + name +
            "================================================================================"
        )
        layer_type = type(layer).__name__
        config = layer.get_config()
        blobs = layer.get_weights()
        blobs_num = len(blobs)

        top2 = 'qinxiao'
        if type(layer.output) == list:
            # raise Exception('Layers with multiply outputs are not supported')
            top = layer.output[0].name
        else:
            top = layer.output.name

        if type(layer.input) != list:
            bottom = layer.input.name

        # data
        if layer_type == 'InputLayer' or not hasattr(caffe_net, 'data'):
            input_name = 'data'
            caffe_net[input_name] = L.Layer()
            input_shape = config['batch_input_shape']
            input_str = 'input: {}\ninput_dim: {}\ninput_dim: {}\ninput_dim: {}\ninput_dim: {}'.format(
                '"' + input_name + '"', 1, input_shape[3], input_shape[1],
                input_shape[2])
            outputs[layer.input.name] = input_name
            if layer_type == 'InputLayer':
                continue
        # conv
        if layer_type == 'Conv2D' or layer_type == 'Convolution2D':
            strides = config['strides']
            kernel_size = config['kernel_size']
            dilation = config['dilation_rate']
            kwargs = {'num_output': config['filters']}

            if dilation[0] == dilation[1]:
                kwargs['dilation'] = dilation[0]
            if kernel_size[0] == kernel_size[1]:
                kwargs['kernel_size'] = kernel_size[0]
            else:
                kwargs['kernel_h'] = kernel_size[0]
                kwargs['kernel_w'] = kernel_size[1]

            if strides[0] == strides[1]:
                kwargs['stride'] = strides[0]
            else:
                kwargs['stride_h'] = strides[0]
                kwargs['stride_w'] = strides[1]

            if not config['use_bias']:
                kwargs['bias_term'] = False
                # kwargs['param']=[dict(lr_mult=0)]
            else:
                # kwargs['param']=[dict(lr_mult=0), dict(lr_mult=0)]
                pass

            set_padding(config, layer.input_shape, kwargs)

            caffe_net[name] = L.Convolution(caffe_net[outputs[bottom]],
                                            **kwargs)

            blobs[0] = np.array(blobs[0]).transpose(3, 2, 0, 1)
            net_params[name] = blobs

            if config['activation'] == 'relu':
                name_s = name + 's'
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)
            elif config['activation'] == 'sigmoid':
                name_s = name + 's'
                caffe_net[name_s] = L.Sigmoid(caffe_net[name], in_place=True)
            elif config['activation'] == 'tanh':
                caffe_net[name_s] = L.TanH(caffe_net[name], in_place=True)
            elif config['activation'] == 'linear':
                pass
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])
        elif layer_type == 'Conv2DTranspose':

            # Stride
            if layer.strides is None:
                strides = (1, 1)
            else:
                strides = layer.strides
            use_bias = config['use_bias']
            param = dict(bias_term=use_bias)

            # Padding
            if layer.padding == 'same':  # Calculate the padding for 'same'
                padding = [layer.kernel_size[0] / 2, layer.kernel_size[1] / 2]
            else:
                padding = [0, 0]  # If padding is valid(aka no padding)

            param['pad'] = padding[0]
            if strides[0] == 2:
                param['pad'] = 0
            param['kernel_size'] = layer.kernel_size[0]
            param['stride'] = strides[0]
            param['num_output'] = layer.filters

            # if strides[0] == strides[1]:
            #     kwargs['stride'] = strides[0]
            # else:
            #     kwargs['stride_h'] = strides[0]
            #     kwargs['stride_w'] = strides[1]
            caffe_net[name] = L.Deconvolution(caffe_net[outputs[bottom]],
                                              convolution_param=param)

            # caffe_net[name] = L.Deconvolution(caffe_net[outputs[bottom]], **kwargs)

            blobs[0] = np.array(blobs[0]).transpose(3, 2, 0, 1)
            net_params[name] = blobs

            if config['activation'] == 'relu':
                name_s = name + 's'
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)
            elif config['activation'] == 'sigmoid':
                name_s = name + 's'
                caffe_net[name_s] = L.Sigmoid(caffe_net[name], in_place=True)
            elif config['activation'] == 'tanh':
                caffe_net[name_s] = L.TanH(caffe_net[name], in_place=True)
            elif config['activation'] == 'linear':
                pass
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

            if name == 'Deconv_2':
                name_crop = name + '_crop'
                caffe_net.data1 = L.Input(shape=dict(dim=[1, 512, 90, 90]))
                caffe_net[name_crop] = L.Crop(caffe_net[name],
                                              caffe_net.data1,
                                              axis=1,
                                              offset=0)
            if name == 'Deconv_3':
                name_crop = name + '_crop'
                caffe_net.data2 = L.Input(shape=dict(dim=[1, 256, 180, 180]))
                caffe_net[name_crop] = L.Crop(caffe_net[name],
                                              caffe_net.data2,
                                              axis=1,
                                              offset=0)
        elif layer_type == 'BatchNormalization':
            param = dict()
            variance = np.array(blobs[-1])
            mean = np.array(blobs[-2])
            # print('blobs'+str(blobs_num))
            # print(blobs)

            # print('config')
            # print(config)
            if config['scale']:
                gamma = np.array(blobs[0])
                sparam = [dict(lr_mult=1), dict(lr_mult=1)]
            else:
                gamma = np.ones(mean.shape, dtype=np.float32)
                # sparam = [dict(lr_mult=0, decay_mult=0), dict(lr_mult=1, decay_mult=1)]
                sparam = [dict(lr_mult=0), dict(lr_mult=1)]
                # sparam = [dict(lr_mult=0), dict(lr_mult=0)]

            if config['center']:
                beta = np.array(blobs[-3])
                param['bias_term'] = True
            else:
                beta = np.zeros(mean.shape, dtype=np.float32)
                param['bias_term'] = False

            # caffe_net[name] = L.BatchNorm(caffe_net[outputs[bottom]], moving_average_fraction=layer.momentum, eps=layer.epsilon)
            caffe_net[name] = L.BatchNorm(
                caffe_net[outputs[bottom]],
                moving_average_fraction=layer.momentum,
                eps=layer.epsilon)

            # param = [dict(lr_mult=1, decay_mult=1), dict(lr_mult=1, decay_mult=1), dict(lr_mult=0, decay_mult=0)])
            # param = [dict(lr_mult=1), dict(lr_mult=1), dict(lr_mult=0)])

            net_params[name] = (mean, variance, np.array(1.0))

            name_s = name + '_scale'

            caffe_net[name_s] = L.Scale(
                caffe_net[name],
                in_place=True,
                param=sparam,
                scale_param={'bias_term': config['center']})

            net_params[name_s] = (gamma, beta)
        elif layer_type == 'Activation':
            if config['activation'] == 'relu':
                # caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]], in_place=True)
                if len(layer.input.consumers()) > 1:
                    caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]])
                else:
                    caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]],
                                             in_place=True)
            elif config['activation'] == 'tanh':
                if len(layer.input.consumers()) > 1:
                    caffe_net[name] = L.TanH(caffe_net[outputs[bottom]])
                else:
                    caffe_net[name] = L.TanH(caffe_net[outputs[bottom]],
                                             in_place=True)
            elif config['activation'] == 'relu6':
                caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]])
            elif config['activation'] == 'softmax':
                caffe_net[name] = L.Softmax(caffe_net[outputs[bottom]],
                                            in_place=True)
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

        elif layer_type == 'range':
            kwargs = {}
            kwargs['pool'] = P.Pooling.MAX
            # config['padding']='same'
            pool_size = (3, 3)
            strides = (2, 2)
            config['pool_size'] = pool_size
            config['strides'] = strides
            if pool_size[0] != pool_size[1]:
                raise Exception('Unsupported pool_size')

            if strides[0] != strides[1]:
                raise Exception('Unsupported strides')
            caffe_net[name] = L.Pooling(caffe_net[outputs[bottom]],
                                        kernel_size=pool_size[0],
                                        stride=strides[0],
                                        **kwargs)

        elif layer_type == 'MaxUnpooling2D':
            kwargs = {}
            kwargs['unpool'] = P.Pooling.MAX
            # config['padding']='same'
            unpool_size = (3, 3)
            strides = (2, 2)
            config['unpool_size'] = pool_size
            config['strides'] = strides
            if unpool_size[0] != unpool_size[1]:
                raise Exception('Unsupported pool_size')

            if strides[0] != strides[1]:
                raise Exception('Unsupported strides')
            caffe_net[name] = L.Unpooling(caffe_net[outputs[bottom]],
                                          unpool=P.Unpooling.MAX,
                                          kernel_size=3,
                                          unpool_h=360,
                                          unpool_w=360)

        elif layer_type == 'Add':
            layers = []
            for i in layer.input:
                layers.append(caffe_net[outputs[i.name]])
            caffe_net[name] = L.Eltwise(*layers)
        else:
            raise Exception('Unsupported layer type: ' + layer_type)
        outputs[top] = name
        if name == 'Deconv_2':
            outputs[top] = name + '_crop'
        if name == 'Deconv_3':
            outputs[top] = name + '_crop'
    net_proto = input_str + '\n' + 'layer {' + 'layer {'.join(
        str(caffe_net.to_proto()).split('layer {')[2:])

    f = open(caffe_net_file, 'w')
    f.write(net_proto)
    print("prototxt is done!")
    f.close()

    caffe_model = caffe.Net(caffe_net_file, caffe.TEST)

    for layer in caffe_model.params.keys():
        if 'up_sampling2d' in layer:
            continue
        for n in range(0, len(caffe_model.params[layer])):
            print('layer:', layer)
            print("n:", n)
            print((caffe_model.params[layer][n].data[...]).shape)
            print((net_params[layer][n]).shape)
            caffe_model.params[layer][n].data[...] = net_params[layer][n]

    caffe_model.save(caffe_params_file)
示例#20
0
def simple_net(split,
               initialize_fc8=False,
               cur_shape=None,
               next_shape=None,
               batch_size=1,
               num_threads=1,
               max_queue_size=5):

    #Get crop layer parameters
    tmp_net = caffe.NetSpec()
    tmp_net.im, tmp_net.label = L.MemoryData(batch_size=1,
                                             channels=3,
                                             height=244,
                                             width=244,
                                             ntop=2)
    conv_vgg(tmp_net,
             tmp_net.im,
             suffix='',
             last_layer_pad=0,
             first_layer_pad=100)
    tmp_net.fc6, tmp_net.relu6 = conv_relu(tmp_net.conv5_3,
                                           4096,
                                           ks=7,
                                           dilation=4)
    tmp_net.fc7, tmp_net.relu7 = conv_relu(tmp_net.relu6, 4096, ks=1, pad=0)
    tmp_net.fc8 = L.Convolution(tmp_net.relu7, kernel_size=1, num_output=2)
    tmp_net.upscore = L.Deconvolution(tmp_net.fc8,
                                      convolution_param=dict(kernel_size=16,
                                                             stride=8,
                                                             num_output=2))

    ax, a, b = coord_map_from_to(tmp_net.upscore, tmp_net.im)
    assert (a == 1).all(), 'scale mismatch on crop (a = {})'.format(a)
    assert (b <= 0).all(), 'cannot crop negative offset (b = {})'.format(b)
    assert (np.round(b) == b
            ).all(), 'cannot crop noninteger offset (b = {})'.format(b)
    #

    #Create network
    n = caffe.NetSpec()

    if split == 'train':
        pydata_params = dict(batch_size=batch_size,
                             im_shape=tuple(next_shape),
                             num_threads=num_threads,
                             max_queue_size=max_queue_size)
        n.cur_im, n.masked_im, n.next_im, n.label = L.Python(
            module='coco_transformed_datalayers_prefetch',
            layer='CocoTransformedDataLayerPrefetch',
            ntop=4,
            param_str=str(pydata_params))
    elif split == 'val':
        pydata_params = dict(batch_size=batch_size,
                             im_shape=tuple(next_shape),
                             num_threads=num_threads,
                             max_queue_size=max_queue_size)
        n.cur_im, n.masked_im, n.next_im, n.label = L.Python(
            module='coco_transformed_datalayers_prefetch',
            layer='CocoTransformedDataLayerPrefetch',
            ntop=4,
            param_str=str(pydata_params))
    elif split == 'deploy':
        n.cur_im, n.label_1 = L.MemoryData(batch_size=1,
                                           channels=3,
                                           height=244,
                                           width=244,
                                           ntop=2)
        n.masked_im, n.label_2 = L.MemoryData(batch_size=1,
                                              channels=3,
                                              height=244,
                                              width=244,
                                              ntop=2)
        n.next_im, n.label_3 = L.MemoryData(batch_size=1,
                                            channels=3,
                                            height=244,
                                            width=244,
                                            ntop=2)
    else:
        raise Exception

    if cur_shape is None or next_shape is None:
        concat_pad = np.zeros((2, ))
    else:
        concat_pad = (next_shape - cur_shape) / 2.0 / 8.0
    if not all(concat_pad == np.round(concat_pad)):
        raise Exception

    conv_vgg(n,
             n.cur_im,
             suffix='c',
             last_layer_pad=concat_pad,
             first_layer_pad=100)
    conv_vgg(n,
             n.masked_im,
             suffix='m',
             last_layer_pad=concat_pad,
             first_layer_pad=100)
    conv_vgg(n, n.next_im, suffix='n', last_layer_pad=0, first_layer_pad=100)

    # concatination
    n.concat1 = L.Concat(n.relu5_3c, n.relu5_3m, n.relu5_3n)

    # fully conv
    n.fc6, n.relu6 = conv_relu(n.concat1, 4096, ks=7, dilation=4)
    if split == 'train':
        n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
        n.fc7, n.relu7 = conv_relu(n.drop6, 4096, ks=1, pad=0)
        n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)
        n.fc8 = L.Convolution(n.drop7,
                              kernel_size=1,
                              param=[
                                  dict(lr_mult=1, decay_mult=1),
                                  dict(lr_mult=2, decay_mult=0)
                              ],
                              num_output=2)
    else:
        n.fc7, n.relu7 = conv_relu(n.relu6, 4096, ks=1, pad=0)
        if initialize_fc8:
            n.fc8 = L.Convolution(n.relu7,
                                  kernel_size=1,
                                  param=[
                                      dict(lr_mult=1, decay_mult=1),
                                      dict(lr_mult=2, decay_mult=0)
                                  ],
                                  weight_filler=dict(type='gaussian', std=.01),
                                  num_output=2)
        else:
            n.fc8 = L.Convolution(n.relu7,
                                  kernel_size=1,
                                  param=[
                                      dict(lr_mult=1, decay_mult=1),
                                      dict(lr_mult=2, decay_mult=0)
                                  ],
                                  num_output=2)

    n.upscore = L.Deconvolution(n.fc8,
                                convolution_param=dict(
                                    kernel_size=16,
                                    stride=8,
                                    num_output=2,
                                    group=2,
                                    weight_filler=dict(type='bilinear'),
                                    bias_term=False),
                                param=dict(lr_mult=0, decay_mult=0))

    n.score = L.Crop(
        n.upscore,
        n.next_im,
        crop_param=dict(
            axis=ax + 1,  # +1 for first cropping dim.
            offset=list(-np.round(b).astype(int))))

    if split != 'deploy':
        n.loss = L.SoftmaxWithLoss(n.score,
                                   n.label,
                                   loss_param=dict(ignore_label=255))
    else:
        n.prop = L.Softmax(n.score)
    return n
示例#21
0
def custom_net(hdf5, batch_size):
    # define your own net!
    n = caffe.NetSpec()

    #keep this data layer for all networks
    #HDF5 DATA LAYER
    n.data, n.label = L.HDF5Data(batch_size=batch_size, source=hdf5, ntop=2)

    #    n.conv_d0a_b = L.Convolution(n.data,kernel_size=3,num_output=64,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d0b = L.ReLU(n.conv_d0a_b)
    #    n.conv_d0b_c = L.Convolution(n.relu_d0b,kernel_size=3,num_output=64,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d0c = L.ReLU(n.conv_d0b_c)
    #    n.pool_d0c_1a = L.Pooling(n.relu_d0c, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv_d0a_b, n.relu_d0b = conv_relu(n.data, 64)
    n.conv_d0b_c, n.relu_d0c = conv_relu(n.relu_d0b, 64)
    n.pool_d0c_1a = max_pool(n.relu_d0c)

    #    n.conv_d1a_b = L.Convolution(n.pool_d0c_1a,kernel_size=3,num_output=128,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d1b = L.ReLU(n.conv_d1a_b)
    #    n.conv_d1b_c = L.Convolution(n.relu_d1b,kernel_size=3,num_output=128,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d1c = L.ReLU(n.conv_d1b_c)
    #    n.pool_d1c_2a = L.Pooling(n.relu_d1c, kernel_size=2, stride=2, pool=P.Pooling.MAX)
    n.conv_d1a_b, n.relu_d1b = conv_relu(n.pool_d0c_1a, 128)
    n.conv_d1b_c, n.relu_d1c = conv_relu(n.relu_d1b, 128)
    n.pool_d1c_2a = max_pool(n.relu_d1c)

    #    n.conv_d2a_b = L.Convolution(n.pool_d1c_2a,kernel_size=3,num_output=256,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d2b = L.ReLU(n.conv_d2a_b)
    #    n.conv_d2b_c = L.Convolution(n.relu_d2b,kernel_size=3,num_output=256,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d2c = L.ReLU(n.conv_d2b_c)
    #    n.pool_d2c_3a = L.Pooling(n.relu_d2c, kernel_size=2,stride = 2,pool = P.Pooling.MAX)
    n.conv_d2a_b, n.relu_d2b = conv_relu(n.pool_d1c_2a, 256)
    n.conv_d2b_c, n.relu_d2c = conv_relu(n.relu_d2b, 256)
    n.pool_d2c_3a = max_pool(n.relu_d2c)

    #    n.conv_d3a_b = L.Convolution(n.pool_d2c_3a,kernel_size=3,num_output=512,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d3b = L.ReLU(n.conv_d3a_b)
    #    n.conv_d3b_c = L.Convolution(n.relu_d3b,kernel_size=3,num_output=512,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d3c = L.ReLU(n.conv_d3b_c)
    #    n.dropout_d3c = L.Dropout(n.relu_d3c,dropout_ratio=0.5)
    #    n.pool_d3c_4a = L.Pooling(n.relu_d3c, kernel_size=2,stride = 2,pool = P.Pooling.MAX)
    n.conv_d3a_b, n.relu_d3b = conv_relu(n.pool_d2c_3a, 512)
    n.conv_d3b_c, n.relu_d3c = conv_relu(n.relu_d3b, 512)
    n.dropout_d3c = L.Dropout(n.relu_d3c, dropout_ratio=0.5)
    n.pool_d3c_4a = max_pool(n.dropout_d3c)

    #    n.conv_d4a_b = L.Convolution(n.pool_d3c_4a,kernel_size=3,num_output=1024,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d4b = L.ReLU(n.conv_d4a_b)
    #    n.conv_d4b_c = L.Convolution(n.relu_d4b,kernel_size=3,num_output=1024,pad=0,weight_filler=dict(type='xavier'))
    #    n.relu_d4c = L.ReLU(n.conv_d4b_c)
    #    n.dropout_d4c = L.Dropout(n.relu_d4c,dropout_ratio=0.5)
    #    #n.upconv_d4c_u3a = L.DeConvolution(n.dropout_d4c,num_output = 512, pad=0, kernel_size=2,stride=2,weight_filler=dict(type='xavier'))
    #    n.upconv_d4c_u3a = L.Deconvolution(n.dropout_d4c)
    #    n.relu_u3a = L.ReLU(n.upconv_d4c_u3a)
    n.conv_d4a_b, n.relu_d4b = conv_relu(n.pool_d3c_4a, 1024)
    n.conv_d4b_c, n.relu_d4c = conv_relu(n.relu_d4b, 1024)
    n.dropout_d4c = L.Dropout(n.relu_d4c, dropout_ratio=0.5)
    n.upconv_d4c_u3a, n.relu_u3a = deconv_relu(n.dropout_d4c, 512)

    #    n.crop_d3c_d3cc = L.Crop(n.relu_d3c,n.relu_u3a)
    #    n.concat_d3cc_u3a_b = L.Concat(n.relu_u3a,n.crop_d3c_d3cc)
    #    n.conv_u3b_c = L.Convolution(n.concat_d3cc_u3a_b,num_output=512,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u3c = L.ReLU(n.conv_u3b_c)
    #    n.conv_u3c_d = L.Convolution(n.relu_u3c, num_output=512,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u3d = L.ReLU(n.conv_u3c_d)
    #    #n.upconv_u3d_u2a = L.Deconvolution(n.relu_u3d, num_output=256,pad =0,kernel_size=2,stride=2,weight_filler=dict(type='xavier'))
    #    n.upconv_u3d_u2a = L.Deconvolution(n.relu_u3d)
    #    n.relu_u2a = L.ReLU(n.upconv_u3d_u2a)
    n.crop_d3c_d3cc = L.Crop(n.relu_d3c, n.relu_u3a)
    n.concat_d3cc_u3a_b = L.Concat(n.relu_u3a, n.crop_d3c_d3cc)
    n.conv_u3b_c, n.relu_u3c = conv_relu(n.concat_d3cc_u3a_b, 512)
    n.conv_u3c_d, n.relu_u3d = conv_relu(n.relu_u3c, 512)
    n.upconv_u3d_u2a, n.relu_u2a = deconv_relu(n.relu_u3d, 256)

    #    n.crop_d2c_d2cc = L.Crop(n.relu_d2c,n.relu_u2a)
    #    n.concat_d2cc_u2a_b = L.Concat(n.relu_u2a,n.crop_d2c_d2cc)
    #    n.conv_u2b_c = L.Convolution(n.concat_d2cc_u2a_b,num_output=256,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u2c = L.ReLU(n.conv_u2b_c)
    #    n.conv_u2c_d = L.Convolution(n.relu_u2c, num_output=256,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u2d = L.ReLU(n.conv_u2c_d)
    #    #n.upconv_u2d_u1a = L.Deconvolution(n.relu_u2d, num_output=128,pad =0,kernel_size=2,stride=2,weight_filler=dict(type='xavier'))
    #    n.upconv_u2d_u1a = L.Deconvolution(n.relu_u2d)
    #    n.relu_u1a = L.ReLU(n.upconv_u2d_u1a)
    n.crop_d2c_d2cc = L.Crop(n.relu_d2c, n.relu_u2a)
    n.concat_d2cc_u2a_b = L.Concat(n.relu_u2a, n.crop_d2c_d2cc)
    n.conv_u2b_c, n.relu_u2c = conv_relu(n.concat_d2cc_u2a_b, 256)
    n.conv_u2c_d, n.relu_u2d = conv_relu(n.relu_u2c, 256)
    n.upconv_u2d_u1a, n.relu_u1a = deconv_relu(n.relu_u2d, 128)

    #    n.crop_d1c_d1cc = L.Crop(n.relu_d1c,n.relu_u1a)
    #    n.concat_d1cc_u1a_b = L.Concat(n.relu_u1a,n.crop_d1c_d1cc)
    #    n.conv_u1b_c = L.Convolution(n.concat_d1cc_u1a_b,num_output=128,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u1c = L.ReLU(n.conv_u1b_c)
    #    n.conv_u1c_d = L.Convolution(n.relu_u1c, num_output=128,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u1d = L.ReLU(n.conv_u1c_d)
    #    #n.upconv_u1d_u0a = L.Deconvolution(n.relu_u1d, num_output=64,pad =0,kernel_size=2,stride=2,weight_filler=dict(type='xavier'))
    #    n.upconv_u1d_u0a = L.Deconvolution(n.relu_u1d)
    #    n.relu_u0a = L.ReLU(n.upconv_u1d_u0a)
    n.crop_d1c_d1cc = L.Crop(n.relu_d1c, n.relu_u1a)
    n.concat_d1cc_u1a_b = L.Concat(n.relu_u1a, n.crop_d1c_d1cc)
    n.conv_u1b_c, n.relu_u1c = conv_relu(n.concat_d1cc_u1a_b, 128)
    n.conv_u1c_d, n.relu_u1d = conv_relu(n.relu_u1c, 128)
    n.upconv_u1d_u0a, n.relu_u0a = deconv_relu(n.relu_u1d, 128)

    #    n.crop_d0c_d0cc = L.Crop(n.relu_d0c,n.relu_u0a)
    #    n.concat_d0cc_u0a_b = L.Concat(n.relu_u0a,n.crop_d0c_d0cc)
    #    n.conv_u0b_c = L.Convolution(n.concat_d0cc_u0a_b,num_output=64,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u0c = L.ReLU(n.conv_u0b_c)
    #    n.conv_u0c_d = L.Convolution(n.relu_u0c, num_output=64,pad=0,kernel_size=3,weight_filler=dict(type='xavier'))
    #    n.relu_u0d = L.ReLU(n.conv_u0c_d)
    n.crop_d0c_d0cc = L.Crop(n.relu_d0c, n.relu_u0a)
    n.concat_d0cc_u0a_b = L.Concat(n.relu_u0a, n.crop_d0c_d0cc)
    n.conv_u0b_c, n.relu_u0c = conv_relu(n.concat_d0cc_u0a_b, 64)
    n.conv_u0c_d, n.relu_u0d = conv_relu(n.relu_u0c, 64)

    n.conv_u0d_score = L.Convolution(
        n.relu_u0d,
        num_output=2,
        pad=0,
        kernel_size=1,
        weight_filler=dict(type='xavier'),
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)])

    # keep this loss layer for all networks
    n.loss = L.SoftmaxWithLoss(n.conv_u0d_score,
                               n.label,
                               loss_param=dict(ignore_label=2))

    return n.to_proto()
示例#22
0
def unet_2d_bn(dim_data,
               dim_label,
               num_class,
               ignore_label=255,
               phase="train"):
    net = caffe.NetSpec()
    ############ d0 ############
    net.data = L.Input(input_param=dict(shape=dict(dim=dim_data)))
    if phase == "train":
        net.label = L.Input(input_param=dict(shape=dict(dim=dim_label)))
        net.label_weight = L.Input(input_param=dict(shape=dict(dim=dim_label)))
    net.d0b_conv, net.d0b_bn, net.d0b_scale, net.d0b_relu = conv_bn_scale_relu(
        net.data, 64, pad=1, kernel_size=3, stride=1, phase=phase)
    net.d0c_conv, net.d0c_bn, net.d0c_scale, net.d0c_relu = conv_bn_scale_relu(
        net.d0b_relu, 64, pad=1, kernel_size=3, stride=1, phase=phase)
    ############ d1 ############
    net.d1a_pool = max_pool(net.d0c_relu, pad=0, kernel_size=2, stride=2)
    net.d1b_conv, net.d1b_bn, net.d1b_scale, net.d1b_relu = conv_bn_scale_relu(
        net.d1a_pool, 128, pad=1, kernel_size=3, stride=1, phase=phase)
    net.d1c_conv, net.d1c_bn, net.d1c_scale, net.d1c_relu = conv_bn_scale_relu(
        net.d1b_relu, 128, pad=1, kernel_size=3, stride=1, phase=phase)
    ############ d2 ############
    net.d2a_pool = max_pool(net.d1c_relu, pad=0, kernel_size=2, stride=2)
    net.d2b_conv, net.d2b_bn, net.d2b_scale, net.d2b_relu = conv_bn_scale_relu(
        net.d2a_pool, 256, pad=1, kernel_size=3, stride=1, phase=phase)
    net.d2c_conv, net.d2c_bn, net.d2c_scale, net.d2c_relu = conv_bn_scale_relu(
        net.d2b_relu, 256, pad=1, kernel_size=3, stride=1, phase=phase)
    ############ d3 ############
    net.d3a_pool = max_pool(net.d2c_relu, pad=0, kernel_size=2, stride=2)
    net.d3b_conv, net.d3b_bn, net.d3b_scale, net.d3b_relu = conv_bn_scale_relu(
        net.d3a_pool, 512, pad=1, kernel_size=3, stride=1, phase=phase)
    net.d3c_conv, net.d3c_bn, net.d3c_scale, net.d3c_relu = conv_bn_scale_relu(
        net.d3b_relu, 512, pad=1, kernel_size=3, stride=1, phase=phase)
    ############ d4 ############
    net.d4a_pool = max_pool(net.d3c_relu, pad=0, kernel_size=2, stride=2)
    net.d4b_conv, net.d4b_bn, net.d4b_scale, net.d4b_relu = conv_bn_scale_relu(
        net.d4a_pool, 1024, pad=1, kernel_size=3, stride=1, phase=phase)
    net.d4c_conv, net.d4c_bn, net.d4c_scale, net.d4c_relu = conv_bn_scale_relu(
        net.d4b_relu, 1024, pad=1, kernel_size=3, stride=1, phase=phase)

    ############ u3 ############
    ### a ### First Deconvolution
    net.u3a_dconv, net.u3a_bn, net.u3a_scale, net.u3a_relu = deconv_bn_scale_relu(
        net.d4c_relu, 512, pad=0, kernel_size=2, stride=2, phase=phase)
    ### b ### Crop and Concat
    net.u3b_crop = L.Crop(net.u3a_relu, net.d3c_relu, axis=2, offset=0)
    #net.u3b_crop = crop(net.u3a_relu, net.d3c_relu)
    net.u3b_concat = L.Concat(net.u3b_crop, net.d3c_relu, axis=1)
    ### c ###
    net.u3c_conv, net.u3c_bn, net.u3c_scale, net.u3c_relu = conv_bn_scale_relu(
        net.u3b_concat, 512, pad=1, kernel_size=3, stride=1, phase=phase)
    ### d ###
    net.u3d_conv, net.u3d_bn, net.u3d_scale, net.u3d_relu = conv_bn_scale_relu(
        net.u3c_relu, 512, pad=1, kernel_size=3, stride=1, phase=phase)

    ############ u2 ############
    ### a ### Second Deconvolution
    net.u2a_dconv, net.u2a_bn, net.u2a_scale, net.u2a_relu = deconv_bn_scale_relu(
        net.u3d_relu, 256, pad=0, kernel_size=2, stride=2, phase=phase)
    ### b ### Crop and Concat
    net.u2b_crop = L.Crop(net.u2a_relu, net.d2c_relu, axis=2, offset=0)
    #net.u2b_crop = crop(net.u2a_relu, net.d2c_relu)
    net.u2b_concat = L.Concat(net.u2b_crop, net.d2c_relu, axis=1)
    ### c ###
    net.u2c_conv, net.u2c_bn, net.u2c_scale, net.u2c_relu = conv_bn_scale_relu(
        net.u2b_concat, 256, pad=1, kernel_size=3, stride=1, phase=phase)
    ### d ###
    net.u2d_conv, net.u2d_bn, net.u2d_scale, net.u2d_relu = conv_bn_scale_relu(
        net.u2c_relu, 256, pad=1, kernel_size=3, stride=1, phase=phase)

    ############ u1 ############
    ### a ### Third Deconvolution
    net.u1a_dconv, net.u1a_bn, net.u1a_scale, net.u1a_relu = deconv_bn_scale_relu(
        net.u2d_relu, 128, pad=0, kernel_size=2, stride=2, phase=phase)
    ### b ### Crop and Concat
    net.u1b_crop = L.Crop(net.u1a_relu, net.d1c_relu, axis=2, offset=0)
    #net.u1b_crop = crop(net.u1a_relu, net.d1c_relu)
    net.u1b_concat = L.Concat(net.u1b_crop, net.d1c_relu, axis=1)
    ### c ###
    net.u1c_conv, net.u1c_bn, net.u1c_scale, net.u1c_relu = conv_bn_scale_relu(
        net.u1b_concat, 128, pad=1, kernel_size=3, stride=1, phase=phase)
    ### d ###
    net.u1d_conv, net.u1d_bn, net.u1d_scale, net.u1d_relu = conv_bn_scale_relu(
        net.u1c_relu, 128, pad=1, kernel_size=3, stride=1, phase=phase)

    ############ u0 ############
    ### a ### Fourth Deconvolution
    net.u0a_dconv, net.u0a_bn, net.u0a_scale, net.u0a_relu = deconv_bn_scale_relu(
        net.u1d_relu, 64, pad=0, kernel_size=2, stride=2, phase=phase)
    ### b ### Crop and Concat
    net.u0b_crop = L.Crop(net.u0a_relu, net.d0c_relu, axis=2, offset=0)
    #net.u0b_crop = crop(net.u0a_relu, net.d0c_relu)
    net.u0b_concat = L.Concat(net.u0b_crop, net.d0c_relu, axis=1)
    ### c ###
    net.u0c_conv, net.u0c_bn, net.u0c_scale, net.u0c_relu = conv_bn_scale_relu(
        net.u0b_concat, 64, pad=1, kernel_size=3, stride=1, phase=phase)
    ### d ###
    net.u0d_conv, net.u0d_bn, net.u0d_scale, net.u0d_relu = conv_bn_scale_relu(
        net.u0c_relu, 64, pad=1, kernel_size=3, stride=1, phase=phase)

    ############ Score ############
    net.score = L.Convolution(
        net.u0d_relu,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=num_class,
        pad=0,
        kernel_size=1,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)

    ############ Loss ############
    if phase == "train":
        net.loss = L.WeightedSoftmaxWithLoss(
            net.score,
            net.label,
            net.label_weight,
            phase=0,
            loss_weight=1,
            loss_param=dict(ignore_label=ignore_label))

    return net.to_proto()
示例#23
0
def construct_fcn(image_lmdb, contour_lmdb, batch_size=1, include_acc=False):
    net = caffe.NetSpec()

    # args for convlution layers
    weight_filler = dict(type='gaussian', mean=0.0, std=0.01)
    bias_filler = dict(type='constant', value=0.1)
    param = [dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)]

    net.data = L.Data(source=image_lmdb,
                      backend=P.Data.LMDB,
                      batch_size=batch_size,
                      ntop=1,
                      transform_param=dict(crop_size=0,
                                           mean_value=[77],
                                           mirror=False))
    net.label = L.Data(source=contour_lmdb,
                       backend=P.Data.LMDB,
                       batch_size=batch_size,
                       ntop=1)
    # conv-relu-pool 1
    net.conv1 = L.Convolution(net.data,
                              kernel_size=5,
                              stride=2,
                              num_output=100,
                              pad=50,
                              group=1,
                              weight_filler=weight_filler,
                              bias_filler=bias_filler,
                              param=param)
    net.relu1 = L.ReLU(net.conv1, in_place=True)
    net.pool1 = L.Pooling(net.relu1,
                          pool=P.Pooling.MAX,
                          kernel_size=2,
                          stride=2)
    # conv-relu-pool 2
    net.conv2 = L.Convolution(net.pool1,
                              kernel_size=5,
                              stride=2,
                              num_output=200,
                              pad=0,
                              group=1,
                              weight_filler=weight_filler,
                              bias_filler=bias_filler,
                              param=param)
    net.relu2 = L.ReLU(net.conv2, in_place=True)
    net.pool2 = L.Pooling(net.relu2,
                          pool=P.Pooling.MAX,
                          kernel_size=2,
                          stride=2)
    net.conv3 = L.Convolution(net.pool2,
                              kernel_size=3,
                              stride=1,
                              num_output=300,
                              pad=0,
                              group=1,
                              weight_filler=weight_filler,
                              bias_filler=bias_filler,
                              param=param)
    net.relu3 = L.ReLU(net.conv3, in_place=True)
    net.conv4 = L.Convolution(net.relu3,
                              kernel_size=3,
                              stride=1,
                              num_output=300,
                              pad=0,
                              group=1,
                              weight_filler=weight_filler,
                              bias_filler=bias_filler,
                              param=param)
    net.relu4 = L.ReLU(net.conv4, in_place=True)
    net.drop = L.Dropout(net.relu4, dropout_ratio=0.1, in_place=True)
    net.score_classes = L.Convolution(net.drop,
                                      kernel_size=1,
                                      stride=1,
                                      num_output=2,
                                      pad=0,
                                      group=1,
                                      weight_filler=weight_filler,
                                      bias_filler=bias_filler,
                                      param=param)
    net.upscore = L.Deconvolution(net.score_classes)
    net.score = L.Crop(net.upscore, net.data)
    net.loss = L.SoftmaxWithLoss(net.score,
                                 net.label,
                                 loss_param=dict(normalize=True))
    if include_acc:
        net.accuracy = L.Accuracy(net.score, net.label)

    return net.to_proto()
示例#24
0
def jsonToPrototxt(net, net_name):
    # assumption: a layer can accept only one input blob
    # the data layer produces two blobs: data and label
    # the loss layer requires two blobs: <someData> and label
    # the label blob is hardcoded.
    # layers name have to be unique

    # custom DFS of the network
    input_dim = None

    def get_iterable(x):
        if isinstance(x, collections.Iterable):
            return x
        else:
            return (x, )

    stack = []
    layersProcessed = {}
    processOrder = []
    blobNames = {}
    for layerId in net:
        layersProcessed[layerId] = False
        blobNames[layerId] = {
            'bottom': [],
            'top': [],
        }
    blobId = 0

    def isProcessPossible(layerId):
        inputs = net[layerId]['connection']['input']
        for layerId in inputs:
            if layersProcessed[layerId] is False:
                return False
        return True

    # finding the data layer
    for layerId in net:
        if (net[layerId]['info']['type'] == 'Data'
                or net[layerId]['info']['type'] == 'Input'
                or net[layerId]['info']['type'] == 'HDF5Data'):
            stack.append(layerId)

    def changeTopBlobName(layerId, newName):
        blobNames[layerId]['top'] = newName

    while len(stack):

        i = len(stack) - 1

        while isProcessPossible(stack[i]) is False:
            i = i - 1

        layerId = stack[i]
        stack.remove(stack[i])

        inputs = net[layerId]['connection']['input']
        if len(inputs) > 0:
            if len(inputs) == 2 and (net[inputs[0]]['info']['phase'] is not None) \
                    and (net[inputs[1]]['info']['phase']):
                commonBlobName = blobNames[inputs[0]]['top']
                changeTopBlobName(inputs[1], commonBlobName)
                blobNames[layerId]['bottom'] = commonBlobName
            else:
                inputBlobNames = []
                for inputId in inputs:
                    inputBlobNames.extend(blobNames[inputId]['top'])
                blobNames[layerId]['bottom'] = inputBlobNames

        blobNames[layerId]['top'] = ['blob' + str(blobId)]
        blobId = blobId + 1

        for outputId in net[layerId]['connection']['output']:
            if outputId not in stack:
                stack.append(outputId)

        layersProcessed[layerId] = True
        processOrder.append(layerId)

    ns_train = caffe.NetSpec()
    ns_test = caffe.NetSpec()

    for layerId in processOrder:

        layer = net[layerId]
        layerParams = layer['params']
        layerType = layer['info']['type']
        layerPhase = layer['info']['phase']

        if (layerType == 'Data' or layerType == 'Input'):

            # This is temporary
            # Has to be improved later
            # If we have data layer then it is converted to input layer with some default dimensions
            '''
            data_param = {}
            if layerParams['source'] != '':
                data_param['source'] = layerParams['source']
                # hardcoding mnsit dataset -change this later
                if layerPhase is not None:
                    if int(layerPhase) == 0:
                        data_param['source'] = 'examples/mnist/mnist_train_lmdb'
                    elif int(layerPhase) == 1:
                        data_param['source'] = 'examples/mnist/mnist_test_lmdb'
            if layerParams['batch_size'] != '':
                data_param['batch_size'] = int(float(layerParams['batch_size']))
            if layerParams['backend'] != '':
                backend = layerParams['backend']
                if(backend == 'LEVELDB'):
                    backend = 0
                elif(backend == 'LMDB'):
                    backend = 1
                data_param['backend'] = backend
            transform_param = {}
            if layerParams['scale'] != '':
                transform_param['scale'] = float(layerParams['scale'])
            if layerPhase is not None:
                caffeLayer = get_iterable(L.Data(
                    ntop=1,
                    transform_param=transform_param,
                    data_param=data_param,
                    include={
                        'phase': int(layerPhase)
                    }))
                if int(layerPhase) == 0:
                    #for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                        ns_train[key] = value
                elif int(layerPhase) == 1:
                    #for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                        ns_test[key] = value
            else:
                for ns in (ns_train,ns_test):
                    caffeLayer = get_iterable(L.Data(
                        ntop=2,
                        transform_param=transform_param,
                        data_param=data_param))
                    #for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                        ns[key] = value
            '''

            if 'dim' not in layerParams:
                layerParams['dim'] = '10,3,224,224'

            input_dim = layerParams['dim']

            if layerPhase is not None:
                caffeLayer = get_iterable(
                    L.Input(input_param={
                        'shape': {
                            'dim': map(int, layerParams['dim'].split(','))
                        }
                    },
                            include={'phase': int(layerPhase)}))
                if int(layerPhase) == 0:
                    # for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns_train[key] = value
                elif int(layerPhase) == 1:
                    # for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns_test[key] = value
            else:
                for ns in (ns_train, ns_test):
                    caffeLayer = get_iterable(
                        L.Input(
                            input_param={
                                'shape': {
                                    'dim': map(int, layerParams['dim'].split(
                                        ','))
                                }
                            }))
                    # for key, value in zip(blobNames[layerId]['top'] + ['label'], caffeLayer):
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns[key] = value

        elif (layerType == 'Crop'):
            crop_param = {}

            if layerParams['axis'] != '':
                crop_param['axis'] = int(float(layerParams['axis']))
            if layerParams['offset'] != '':
                crop_param['offset'] = int(float(layerParams['offset']))

            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Crop(*[ns[x] for x in blobNames[layerId]['bottom']],
                           crop_param=crop_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Convolution'):

            convolution_param = {}
            if layerParams['kernel_h'] != '':
                convolution_param['kernel_h'] = int(
                    float(layerParams['kernel_h']))
            if layerParams['kernel_w'] != '':
                convolution_param['kernel_w'] = int(
                    float(layerParams['kernel_w']))
            if layerParams['stride_h'] != '':
                convolution_param['stride_h'] = int(
                    float(layerParams['stride_h']))
            if layerParams['stride_w'] != '':
                convolution_param['stride_w'] = int(
                    float(layerParams['stride_w']))
            if layerParams['num_output'] != '':
                convolution_param['num_output'] = int(
                    float(layerParams['num_output']))
            if layerParams['pad_h'] != '':
                convolution_param['pad_h'] = int(float(layerParams['pad_h']))
            if layerParams['pad_w'] != '':
                convolution_param['pad_w'] = int(float(layerParams['pad_w']))
            if layerParams['weight_filler'] != '':
                convolution_param['weight_filler'] = {}
                convolution_param['weight_filler']['type'] = layerParams[
                    'weight_filler']
            if layerParams['bias_filler'] != '':
                convolution_param['bias_filler'] = {}
                convolution_param['bias_filler']['type'] = layerParams[
                    'bias_filler']

            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Convolution(
                        *[ns[x] for x in blobNames[layerId]['bottom']],
                        convolution_param=convolution_param,
                        param=[{
                            'lr_mult': 1
                        }, {
                            'lr_mult': 2
                        }]))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Deconvolution'):

            convolution_param = {}
            if layerParams['kernel_h'] != '':
                convolution_param['kernel_h'] = int(
                    float(layerParams['kernel_h']))
            if layerParams['kernel_w'] != '':
                convolution_param['kernel_w'] = int(
                    float(layerParams['kernel_w']))
            if layerParams['stride_h'] != '':
                convolution_param['stride_h'] = int(
                    float(layerParams['stride_h']))
            if layerParams['stride_w'] != '':
                convolution_param['stride_w'] = int(
                    float(layerParams['stride_w']))
            if layerParams['num_output'] != '':
                convolution_param['num_output'] = int(
                    float(layerParams['num_output']))
            if layerParams['pad_h'] != '':
                convolution_param['pad_h'] = int(float(layerParams['pad_h']))
            if layerParams['pad_w'] != '':
                convolution_param['pad_w'] = int(float(layerParams['pad_w']))
            if layerParams['weight_filler'] != '':
                convolution_param['weight_filler'] = {}
                convolution_param['weight_filler']['type'] = layerParams[
                    'weight_filler']
            if layerParams['bias_filler'] != '':
                convolution_param['bias_filler'] = {}
                convolution_param['bias_filler']['type'] = layerParams[
                    'bias_filler']

            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Deconvolution(
                        *[ns[x] for x in blobNames[layerId]['bottom']],
                        convolution_param=convolution_param,
                        param=[{
                            'lr_mult': 1
                        }, {
                            'lr_mult': 2
                        }]))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'ReLU'):
            inplace = layerParams['inplace']
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.ReLU(*[ns[x] for x in blobNames[layerId]['bottom']],
                           in_place=inplace))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Pooling'):

            pooling_param = {}
            if layerParams['kernel_h'] != '':
                pooling_param['kernel_h'] = int(float(layerParams['kernel_h']))
            if layerParams['kernel_w'] != '':
                pooling_param['kernel_w'] = int(float(layerParams['kernel_w']))
            if layerParams['stride_h'] != '':
                pooling_param['stride_h'] = int(float(layerParams['stride_h']))
            if layerParams['stride_w'] != '':
                pooling_param['stride_w'] = int(float(layerParams['stride_w']))
            if layerParams['pad_h'] != '':
                pooling_param['pad_h'] = int(float(layerParams['pad_h']))
            if layerParams['pad_w'] != '':
                pooling_param['pad_w'] = int(float(layerParams['pad_w']))
            if layerParams['pool'] != '':
                pool = layerParams['pool']
                if (pool == 'MAX'):
                    pool = 0
                elif (pool == 'AVE'):
                    pool = 1
                elif (pool == 'STOCHASTIC'):
                    pool = 2
                pooling_param['pool'] = pool

            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Pooling(*[ns[x] for x in blobNames[layerId]['bottom']],
                              pooling_param=pooling_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'InnerProduct'):

            inner_product_param = {}
            if layerParams['num_output'] != '':
                inner_product_param['num_output'] = int(
                    float(layerParams['num_output']))
            if layerParams['weight_filler'] != '':
                inner_product_param['weight_filler'] = {}
                inner_product_param['weight_filler']['type'] = layerParams[
                    'weight_filler']
            if layerParams['bias_filler'] != '':
                inner_product_param['bias_filler'] = {}
                inner_product_param['bias_filler']['type'] = layerParams[
                    'bias_filler']

            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.InnerProduct(
                        *[ns[x] for x in blobNames[layerId]['bottom']],
                        inner_product_param=inner_product_param,
                        param=[{
                            'lr_mult': 1
                        }, {
                            'lr_mult': 2
                        }]))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'SoftmaxWithLoss'):
            pass
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.SoftmaxWithLoss(  # try L['SoftmaxWithLoss']
                        *([ns[x] for x in blobNames[layerId]['bottom']])))
                # *([ns[x] for x in blobNames[layerId]['bottom']] + [ns.label])))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Accuracy'):
            pass

            if layerPhase is not None:
                caffeLayer = get_iterable(
                    L.Accuracy(
                        *([ns[x] for x in blobNames[layerId]['bottom']]),
                        # *([ns[x] for x in blobNames[layerId]['bottom']] + [ns.label]),
                        include={'phase': int(layerPhase)}))
                if int(layerPhase) == 0:
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns_train[key] = value
                elif int(layerPhase) == 1:
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns_test[key] = value
            else:
                for ns in (ns_train, ns_test):
                    caffeLayer = get_iterable(
                        L.Accuracy(
                            *([ns[x] for x in blobNames[layerId]['bottom']])))
                    # *([ns[x] for x in blobNames[layerId]['bottom']] + [ns.label])))
                    for key, value in zip(blobNames[layerId]['top'],
                                          caffeLayer):
                        ns[key] = value

        elif (layerType == 'Dropout'):
            # inplace dropout? caffe-tensorflow do not work
            inplace = layerParams['inplace']
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Dropout(*[ns[x] for x in blobNames[layerId]['bottom']],
                              in_place=inplace))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'LRN'):
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.LRN(*[ns[x] for x in blobNames[layerId]['bottom']]))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Concat'):
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Concat(*[ns[x] for x in blobNames[layerId]['bottom']],
                             ntop=len(blobNames[layerId]['top'])))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Eltwise'):
            eltwise_param = {}
            if layerParams['operation'] != '':
                elt = layerParams['operation']
                if (elt == 'PROD'):
                    elt = 0
                elif (elt == 'SUM'):
                    elt = 1
                elif (elt == 'MAX'):
                    elt = 2
            else:
                elt = 1  # Default is sum
            eltwise_param['operation'] = elt
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Eltwise(*[ns[x] for x in blobNames[layerId]['bottom']],
                              eltwise_param=eltwise_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Softmax'):
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Softmax(*([ns[x]
                                 for x in blobNames[layerId]['bottom']])))
                # *([ns[x] for x in blobNames[layerId]['bottom']] + [ns.label])))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Embed'):
            for ns in (ns_train, ns_test):
                print ns.tops
                caffeLayer = get_iterable(
                    L.Embed(*[ns[x] for x in blobNames[layerId]['bottom']],
                            param=[{
                                'lr_mult': 1,
                                'decay_mult': 1
                            }, {
                                'lr_mult': 2,
                                'decay_mult': 0
                            }]))
                # *([ns[x] for x in blobNames[layerId]['bottom']] + [ns.label])))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'LSTM'):
            recurrent_param = {}
            if layerParams['num_output'] != '':
                recurrent_param['num_output'] = int(layerParams['num_output'])
            if layerParams['weight_filler'] != '':
                recurrent_param['weight_filler'] = {
                    'type': layerParams['weight_filler']
                }
            if layerParams['bias_filler'] != '':
                recurrent_param['bias_filler'] = {
                    'type': layerParams['bias_filler']
                }
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.LSTM(*[ns[x] for x in blobNames[layerId]['bottom']],
                           recurrent_param=recurrent_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Reshape'):
            reshape_param = {
                'shape': {
                    'dim': map(int, layerParams['dim'].split(','))
                }
            }
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Reshape(*[ns[x] for x in blobNames[layerId]['bottom']],
                              reshape_param=reshape_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'HDF5Data'):
            layerPhase = layer['info']['phase']
            hdf5_data_param = {}
            if layerParams['source'] != '':
                hdf5_data_param['source'] = layerParams['source']
            if layerParams['batch_size'] != '':
                hdf5_data_param['batch_size'] = layerParams['batch_size']
            for ns in (ns_train, ns_test):
                if layerPhase is not None:
                    caffeLayer = get_iterable(
                        L.HDF5Data(
                            *[ns[x] for x in blobNames[layerId]['bottom']],
                            hdf5_data_param=hdf5_data_param,
                            include={'phase': int(layerPhase)}))
                else:
                    caffeLayer = get_iterable(
                        L.HDF5Data(
                            *[ns[x] for x in blobNames[layerId]['bottom']],
                            hdf5_data_param=hdf5_data_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'BatchNorm'):
            batch_norm_param = {}
            if layerParams['use_global_stats'] != '':
                batch_norm_param['use_global_stats'] = layerParams[
                    'use_global_stats']
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.BatchNorm(*[ns[x] for x in blobNames[layerId]['bottom']],
                                batch_norm_param=batch_norm_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

        elif (layerType == 'Scale'):
            scale_param = {}
            if layerParams['bias_term'] != '':
                scale_param['bias_term'] = layerParams['bias_term']
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Scale(*[ns[x] for x in blobNames[layerId]['bottom']],
                            scale_param=scale_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value
        elif (layerType == 'Eltwise'):
            eltwise_param = {}
            if layerParams['operation'] != '':
                eltwise_param['operation'] = int(layerParams['operation'])
            for ns in (ns_train, ns_test):
                caffeLayer = get_iterable(
                    L.Eltwise(*[ns[x] for x in blobNames[layerId]['bottom']],
                              eltwise_param=eltwise_param))
                for key, value in zip(blobNames[layerId]['top'], caffeLayer):
                    ns[key] = value

    train = 'name: "' + net_name + '"\n' + str(ns_train.to_proto())
    test = str(ns_test.to_proto())

    # merge the train and test prototxt to get a single train_test prototxt
    testIndex = [m.start() for m in re.finditer('layer', test)]

    previousIndex = -1
    for i in range(len(testIndex)):
        if i < len(testIndex) - 1:
            layer = test[testIndex[i]:testIndex[i + 1]]
        else:
            layer = test[testIndex[i]:]
        a = train.find(layer)
        if a != -1:
            l = test[testIndex[previousIndex + 1]:testIndex[i]]
            train = train[0:a] + l + train[a:]
            previousIndex = i
    if previousIndex < len(testIndex) - 1:
        l = test[testIndex[previousIndex + 1]:]
        train = train + l

    prototxt = train

    return prototxt, input_dim
示例#25
0
def net(split):
  n = caffe.NetSpec()
  loss_param = dict(normalize=False)
  if split=='train':
    data_params = dict(mean=(104.00699, 116.66877, 122.67892))
    # 图像与标签
    data_params['root'] = './datasets/Total_Text_WSR'
    data_params['source'] = "Total_Text_WSR.lst"

    data_params['shuffle'] = True
    data_params['ignore_label'] = -1
    n.data, n.label = L.Python(module='pylayer_old', layer='ImageLabelmapDataLayer', ntop=2, \
    param_str=str(data_params))
    if data_params.has_key('ignore_label'):
      loss_param['ignore_label'] = int(data_params['ignore_label'])
  elif split == 'test':
    n.data = L.Input(name = 'data', input_param=dict(shape=dict(dim=[1,3,500,500])))
  else:
    raise Exception("Invalid phase")


#第一个卷积阶段
  n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=1)
  n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1, 64)
  n.pool1 = max_pool(n.relu1_2)

#第二个卷积阶段 
  n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
  n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1, 128)
  n.pool2 = max_pool(n.relu2_2)

#第三个卷积阶段
  n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
  n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1, 256)
  n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2, 256)

# 第三个卷积阶段最后一个卷积层,接一个MCFE模块, Channel: 64, kernel: 3*3
  n.conv3_dilation1 = conv_dilation01(n.conv3_3, mult=[100,1,200,0])
  n.conv3_dilation2 = conv_dilation03(n.conv3_3, mult=[100,1,200,0])
  n.conv3_dilation3 = conv_dilation05(n.conv3_3, mult=[100,1,200,0])
  n.conv3_dilation4 = conv_dilation07(n.conv3_3, mult=[100,1,200,0])  
# 在Channel维度上进行拼接 
  n.concat_conv33 = L.Concat(n.conv3_dilation1,
                      n.conv3_dilation2,
                      n.conv3_dilation3,
                      n.conv3_dilation4, 
                      concat_param=dict({'concat_dim':1}))

# MCFE模块后接BLSTM module
# # ===================== prepare lstm inputs =====================
  n.im2col_conv33 = L.Im2col(n.concat_conv33, convolution_param=dict(kernel_size=3, pad=1))
  n.im2col_transpose_conv33 = L.Transpose(n.im2col_conv33, transpose_param =dict(dim=[3,2,0,1]))  
  n.lstm_input_conv33 = L.Reshape(n.im2col_transpose_conv33, reshape_param =dict(shape=dict(dim=-1), axis=1, num_axes=2))

# 前向LSTM  
  n.lstm_conv33 = L.Lstm(n.lstm_input_conv33,lstm_param =dict(num_output=128,weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), clipping_threshold=1))
#后向LSTM
  n.rlstm_input_conv33 = L.Reverse(n.lstm_input_conv33, name='lstm_reverse1_conv33', reverse_param =dict(axis=0))
  n.rlstm_output_conv33= L.Lstm(n.rlstm_input_conv33, name='rlstm_conv33', lstm_param =dict(num_output=128))
  n.rlstm_conv33 = L.Reverse(n.rlstm_output_conv33, name='lstm_reverse2_conv33', reverse_param =dict(axis=0))

# lstm_conv33 和 rlstm_conv33经过Concat拼接,n*c*(h1+h2+...+hk)*w
  n.merge_lstm_rlstm_conv33 = L.Concat(n.lstm_conv33, n.rlstm_conv33, concat_param=dict(axis=2))
  n.lstm_output_reshape_conv33 = L.Reshape(n.merge_lstm_rlstm_conv33, reshape_param=dict(shape=dict(dim=[-1,1]), axis=1, num_axes=1))
# transpose size of output as (N, C, H, W)
  n.lstm_output_conv33 = L.Transpose(n.lstm_output_reshape_conv33,transpose_param=dict(dim=[2,3,1,0]))
  n.pool3 = max_pool(n.relu3_3)

# 第四个卷积阶段
  n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512)
  n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1, 512)
  n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2, 512)

# 第三个卷积阶段最后一个卷积层,接一个MCFE模块, Channel: 128, kernel: 3*3
  n.conv4_dilation1 = conv_dilation1(n.conv4_3, mult=[100,1,200,0])
  n.conv4_dilation2 = conv_dilation3(n.conv4_3, mult=[100,1,200,0])
  n.conv4_dilation3 = conv_dilation5(n.conv4_3, mult=[100,1,200,0])
  n.conv4_dilation4 = conv_dilation7(n.conv4_3, mult=[100,1,200,0])  
# 在Channel维度上进行拼接, n*(c1+c2+...+ck)*h*w 
  n.concat_conv43 = L.Concat(n.conv4_dilation1,
                      n.conv4_dilation2,
                      n.conv4_dilation3,
                      n.conv4_dilation4, 
                      concat_param=dict({'concat_dim':1}))

# BLSTM module
# # ===================== prepare lstm inputs =====================
  n.im2col_conv43 = L.Im2col(n.concat_conv43, convolution_param=dict(kernel_size=3, pad=1))
  n.im2col_transpose_conv43 = L.Transpose(n.im2col_conv43, transpose_param =dict(dim=[3,2,0,1]))
  n.lstm_input_conv43 = L.Reshape(n.im2col_transpose_conv43, reshape_param =dict(shape=dict(dim=-1), axis=1, num_axes=2))
# 前向LSTM  
  n.lstm_conv43 = L.Lstm(n.lstm_input_conv43,lstm_param =dict(num_output=256,weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), clipping_threshold=1))  
# 后向LSTM
  n.rlstm_input_conv43 = L.Reverse(n.lstm_input_conv43, name='lstm_reverse1_conv43', reverse_param =dict(axis=0))
  n.rlstm_output_conv43= L.Lstm(n.rlstm_input_conv43, name='rlstm_conv43', lstm_param =dict(num_output=256))
  n.rlstm_conv43 = L.Reverse(n.rlstm_output_conv43, name='lstm_reverse2_conv43', reverse_param =dict(axis=0))

#lstm_conv43 和 rlstm_conv43经Concat拼接,n*c*(h1+h2+...+hk)*w
  n.merge_lstm_rlstm_conv43 = L.Concat(n.lstm_conv43, n.rlstm_conv43, concat_param=dict(axis=2))
  n.lstm_output_reshape_conv43 = L.Reshape(n.merge_lstm_rlstm_conv43, reshape_param=dict(shape=dict(dim=[-1,1]), axis=1, num_axes=1))
# transpose size of output as (N, C, H, W)
  n.lstm_output_conv43 = L.Transpose(n.lstm_output_reshape_conv43,transpose_param=dict(dim=[2,3,1,0]))
  n.pool4 = max_pool(n.relu4_3)


# The fiveth conv stage 
  n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512)
  n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512)
  n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512)

# MCFE inception module, Channel: 128, kernel: 3*3
  n.conv5_dilation1 = conv_dilation1(n.conv5_3, mult=[100,1,200,0])
  n.conv5_dilation2 = conv_dilation3(n.conv5_3, mult=[100,1,200,0])
  n.conv5_dilation3 = conv_dilation5(n.conv5_3, mult=[100,1,200,0])
  n.conv5_dilation4 = conv_dilation7(n.conv5_3, mult=[100,1,200,0])  
  n.concat_conv53 = L.Concat(n.conv5_dilation1,
                      n.conv5_dilation2,
                      n.conv5_dilation3,
                      n.conv5_dilation4,
                      concat_param=dict({'concat_dim':1}))


#  BLSTM module
# ===================== prepare lstm inputs =====================
  n.im2col_conv53 = L.Im2col(n.concat_conv53, convolution_param=dict(kernel_size=3, pad=1))
  n.im2col_transpose_conv53 = L.Transpose(n.im2col_conv53, transpose_param =dict(dim=[3,2,0,1]))
  n.lstm_input_conv53 = L.Reshape(n.im2col_transpose_conv53, reshape_param =dict(shape=dict(dim=-1), axis=1, num_axes=2))

# 前向LSTM 
  n.lstm_conv53 = L.Lstm(n.lstm_input_conv53,lstm_param =dict(num_output=256,weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), clipping_threshold=1))

#后向LSTM
  n.rlstm_input_conv53 = L.Reverse(n.lstm_input_conv53, name='lstm_reverse1_conv53', reverse_param =dict(axis=0))
  n.rlstm_output_conv53= L.Lstm(n.rlstm_input_conv53, name='rlstm_conv53', lstm_param =dict(num_output=256))
  n.rlstm_conv53 = L.Reverse(n.rlstm_output_conv53, name='lstm_reverse2_conv53', reverse_param =dict(axis=0))  
# lstm_conv53和rlstm_conv53经过Concat拼接,n*c*(h1+h2+...+hk)*w
  n.merge_lstm_rlstm_conv53 = L.Concat(n.lstm_conv53, n.rlstm_conv53, concat_param=dict(axis=2))
  n.lstm_output_reshape_conv53 = L.Reshape(n.merge_lstm_rlstm_conv53, reshape_param=dict(shape=dict(dim=[-1,1]), axis=1, num_axes=1))
# transpose size of output as (N, C, H, W)
  n.lstm_output_conv53 = L.Transpose(n.lstm_output_reshape_conv53,transpose_param=dict(dim=[2,3,1,0]))


# 第三个阶段,BLSTM的输出,经过1x1的卷积降维,4x上采样,裁剪成与原图像大小相同
  n.score_dsn3 = conv1x1(n.lstm_output_conv33, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.01))
  n.score_dsn3_up = upsample(n.score_dsn3, stride=4)
  n.upscore_dsn3 = L.Crop(n.score_dsn3_up, n.data)

# BalanceCrossEntropyLoss
  if split=='train':
    n.loss3 = L.BalanceCrossEntropyLoss(n.upscore_dsn3, n.label, loss_param=loss_param)  
  if split=='test':
    n.sigmoid_dsn3 = L.Sigmoid(n.upscore_dsn3)  

#第四个阶段,BLSTM的输出,经过1x1的卷积降维,8x上采样,裁剪成与原图像大小相同
  n.score_dsn4 = conv1x1(n.lstm_output_conv43, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.01))
  n.score_dsn4_up = upsample(n.score_dsn4, stride=8)
  n.upscore_dsn4 = L.Crop(n.score_dsn4_up, n.data)

# BalanceCrossEntropyLoss
  if split=='train':
    n.loss4 = L.BalanceCrossEntropyLoss(n.upscore_dsn4, n.label, loss_param=loss_param)  
  if split=='test':
    n.sigmoid_dsn4 = L.Sigmoid(n.upscore_dsn4)

# 第五个阶段,BLSTM的输出,经过1x1的卷积降维,16x上采样,裁剪成与原图像大小相同
  n.score_dsn5 = conv1x1(n.lstm_output_conv53, lr=[0.01, 1, 0.02, 0], wf=dict(type='gaussian', std=0.01))
  n.score_dsn5_up = upsample(n.score_dsn5, stride=16)
  n.upscore_dsn5 = L.Crop(n.score_dsn5_up, n.data)

# BalanceCrossEntropyLoss
  if split=='train':
    n.loss5 = L.BalanceCrossEntropyLoss(n.upscore_dsn5, n.label, loss_param=loss_param)  
  if split=='test':
    n.sigmoid_dsn5 = L.Sigmoid(n.upscore_dsn5)    


# 将三个阶段的输出,在Channel维度上进行拼接,作为Attention模块的输入
  n.concat_upscore = L.Concat(n.upscore_dsn3,
                      n.upscore_dsn4,
                      n.upscore_dsn5,                      
                      name='concat', concat_param=dict({'concat_dim':1}))

  # upscore_dsn3,upscore_dsn4,upscore_dsn5经3X3的卷积, 降维
  n.output_mask_product03 = L.Convolution(n.upscore_dsn3,
                 num_output=1, kernel_size=3,pad=1,
                 param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)], weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), engine=1)
  n.output_mask_product04 = L.Convolution(n.upscore_dsn4,
                 num_output=1, kernel_size=3,pad=1,
                 param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)], weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), engine=1)
  n.output_mask_product05 = L.Convolution(n.upscore_dsn5,
                 num_output=1, kernel_size=3,pad=1,
                 param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)], weight_filler=dict(type='gaussian', std=0.01), bias_filler=dict(type='constant'), engine=1)


### Attention 模块
# 第一个卷积层num_output=512, kernel_size:3x3
  n.att_conv1_mask_512 =  L.Convolution(n.concat_upscore,
                 num_output=512, kernel_size=3,pad=1,
                 param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)], engine=1)
  n.relu_att_conv1 = L.ReLU(n.att_conv1_mask_512, in_place=True)
  n.drop_att_conv1_mask = L.Dropout(n.relu_att_conv1, dropout_ratio=0.5, in_place=True)  
# 第二个卷积层num_output=3, kernel_size:1x1  
  n.att_fc_mask_512 = L.Convolution(n.drop_att_conv1_mask,
                 num_output=3, kernel_size=1,
                 param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)], engine=1)
  n.attention = L.Softmax(n.att_fc_mask_512)
# 生成三个注意力权重
  n.attention3,n.attention4,n.attention5= L.Slice(n.attention, name='slice_attention', slice_param=dict(axis=1, slice_point=[1,2]), ntop=3)

# 注意力权重与feature map相乘,进行融合
  n.output_mask3 = L.Eltwise(n.attention3, n.output_mask_product03,operation=P.Eltwise.PROD)
  n.output_mask4 = L.Eltwise(n.attention4, n.output_mask_product04,operation=P.Eltwise.PROD)
  n.output_mask5 = L.Eltwise(n.attention5, n.output_mask_product05,operation=P.Eltwise.PROD)  

  n.output_fusion = L.Eltwise(n.output_mask3, n.output_mask4, n.output_mask5, operation=P.Eltwise.SUM)

#作为对比,不经过Attention模块, 将三个阶段的输出,在Channel维度上进行拼接,经1X1的卷积,输出
  n.upscore_fuse = L.Convolution(n.concat_upscore, name='new-score-weighting', 
                 num_output=1, kernel_size=1,
                 param=[dict(lr_mult=0.001, decay_mult=1), dict(lr_mult=0.002, decay_mult=0)],
                 weight_filler=dict(type='constant', value=0.2), engine=1)

  if split=='train':
    n.loss_fuse = L.BalanceCrossEntropyLoss(n.upscore_fuse, n.label, loss_param=loss_param)
    n.loss_output_fusion = L.BalanceCrossEntropyLoss(n.output_fusion, n.label, loss_param=loss_param) 
  if split=='test':
    n.sigmoid_fuse = L.Sigmoid(n.upscore_fuse)
    n.sigmoid_output_fusion= L.Sigmoid(n.output_fusion)
        
  return n.to_proto()
示例#26
0
def UNet3DBN(input_dims, class_nums, phase="TRAIN"):
    net = caffe.NetSpec()

    ############ d0 ############
    ### a ###
    net.data = L.Input(input_param=dict(shape=dict(dim=input_dims)))
    if phase == "TRAIN":
        net.label = L.Input(input_param=dict(shape=dict(dim=input_dims)))
        net.label_weight = L.Input(input_param=dict(shape=dict(
            dim=input_dims)))
    ### b ###
    net.d0b_conv = L.Convolution(
        net.data,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=32,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d0b_bn = L.BatchNorm(
            net.d0b_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d0b_bn = L.BatchNorm(net.d0b_conv, use_global_stats=1)
    net.d0b_scale = L.Scale(net.d0b_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d0b_relu = L.ReLU(net.d0b_scale, in_place=True, engine=1)
    ### c ###
    net.d0c_conv = L.Convolution(
        net.d0b_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=32,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d0c_bn = L.BatchNorm(
            net.d0c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d0c_bn = L.BatchNorm(net.d0c_conv, use_global_stats=1)
    net.d0c_scale = L.Scale(net.d0c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d0c_relu = L.ReLU(net.d0c_scale, in_place=True, engine=1)

    ############ d1 ############
    ### a ### First pooling
    net.d1a_pool = L.PoolingND(net.d0c_scale,
                               pool=0,
                               kernel_size=[2, 2, 1],
                               stride=[2, 2, 1],
                               engine=1)
    ### b ###
    net.d1b_conv = L.Convolution(
        net.d1a_pool,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=64,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d1b_bn = L.BatchNorm(
            net.d1b_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d1b_bn = L.BatchNorm(net.d1b_conv, use_global_stats=1)
    net.d1b_scale = L.Scale(net.d1b_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d1b_relu = L.ReLU(net.d1b_scale, in_place=True, engine=1)
    ### c ###
    net.d1c_conv = L.Convolution(
        net.d1b_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=64,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d1c_bn = L.BatchNorm(
            net.d1c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d1c_bn = L.BatchNorm(net.d1c_conv, use_global_stats=1)
    net.d1c_scale = L.Scale(net.d1c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d1c_relu = L.ReLU(net.d1c_scale, in_place=True, engine=1)

    ############ d2 ############
    ### a ###
    net.d2a_pool = L.PoolingND(net.d1c_scale,
                               pool=0,
                               kernel_size=2,
                               stride=2,
                               engine=1)
    ### b ###
    net.d2b_conv = L.Convolution(
        net.d2a_pool,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=128,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d2b_bn = L.BatchNorm(
            net.d2b_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d2b_bn = L.BatchNorm(net.d2b_conv, use_global_stats=1)
    net.d2b_scale = L.Scale(net.d2b_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d2b_relu = L.ReLU(net.d2b_scale, in_place=True, engine=1)
    ### c ###
    net.d2c_conv = L.Convolution(
        net.d2b_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=128,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d2c_bn = L.BatchNorm(
            net.d2c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d2c_bn = L.BatchNorm(net.d2c_conv, use_global_stats=1)
    net.d2c_scale = L.Scale(net.d2c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d2c_relu = L.ReLU(net.d2c_scale, in_place=True, engine=1)

    ############ d3 ############
    ### a ### Third Pooling
    net.d3a_pool = L.PoolingND(net.d2c_scale,
                               pool=0,
                               kernel_size=2,
                               stride=2,
                               engine=1)
    ### b ###
    net.d3b_conv = L.Convolution(
        net.d3a_pool,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=256,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d3b_bn = L.BatchNorm(
            net.d3b_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d3b_bn = L.BatchNorm(net.d3b_conv, use_global_stats=1)
    net.d3b_scale = L.Scale(net.d3b_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d3b_relu = L.ReLU(net.d3b_scale, in_place=True, engine=1)
    ### c ###
    net.d3c_conv = L.Convolution(
        net.d3b_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=256,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.d3c_bn = L.BatchNorm(
            net.d3c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.d3c_bn = L.BatchNorm(net.d3c_conv, use_global_stats=1)
    net.d3c_scale = L.Scale(net.d3c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.d3c_relu = L.ReLU(net.d3c_scale, in_place=True, engine=1)

    ############ u2 ############
    ### a ### First Deconvolution
    net.u2a_dconv = L.Deconvolution(net.d3c_scale,
                                    param=[dict(lr_mult=1, decay_mult=1)],
                                    convolution_param=dict(num_output=128,
                                                           pad=0,
                                                           kernel_size=2,
                                                           stride=2,
                                                           weight_filler=dict(
                                                               type='gaussian',
                                                               std=0.001),
                                                           bias_term=0,
                                                           engine=1))
    if phase == "TRAIN":
        net.u2a_bn = L.BatchNorm(
            net.u2a_dconv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u2a_bn = L.BatchNorm(net.u2a_dconv, use_global_stats=1)
    net.u2a_scale = L.Scale(net.u2a_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u2a_relu = L.ReLU(net.u2a_scale, in_place=True, engine=1)
    ### b ### Crop and Concat
    net.u2b_crop = L.Crop(net.u2a_scale, net.d2c_scale, axis=2, offset=0)
    net.u2b_concat = L.Concat(net.u2b_crop, net.d2c_scale, axis=1)
    ### c ###
    net.u2c_conv = L.Convolution(
        net.u2b_concat,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=128,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u2c_bn = L.BatchNorm(
            net.u2c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u2c_bn = L.BatchNorm(net.u2c_conv, use_global_stats=1)
    net.u2c_scale = L.Scale(net.u2c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u2c_relu = L.ReLU(net.u2c_scale, in_place=True, engine=1)
    ### d ###
    net.u2d_conv = L.Convolution(
        net.u2c_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=128,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u2d_bn = L.BatchNorm(
            net.u2d_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u2d_bn = L.BatchNorm(net.u2d_conv, use_global_stats=1)
    net.u2d_scale = L.Scale(net.u2d_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u2d_relu = L.ReLU(net.u2d_scale, in_place=True, engine=1)

    ############ u1 ############
    ### a ### Second Deconvolution
    net.u1a_dconv = L.Deconvolution(net.u2d_scale,
                                    param=[dict(lr_mult=1, decay_mult=1)],
                                    convolution_param=dict(num_output=64,
                                                           pad=0,
                                                           kernel_size=2,
                                                           stride=2,
                                                           weight_filler=dict(
                                                               type='gaussian',
                                                               std=0.001),
                                                           bias_term=0,
                                                           engine=1))
    if phase == "TRAIN":
        net.u1a_bn = L.BatchNorm(
            net.u1a_dconv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u1a_bn = L.BatchNorm(net.u1a_dconv, use_global_stats=1)
    net.u1a_scale = L.Scale(net.u1a_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u1a_relu = L.ReLU(net.u1a_scale, in_place=True, engine=1)
    ### b ### Crop and Concat
    net.u1b_crop = L.Crop(net.u1a_scale, net.d1c_scale, axis=2, offset=0)
    net.u1b_concat = L.Concat(net.u1b_crop, net.d1c_scale, axis=1)
    ### c ###
    net.u1c_conv = L.Convolution(
        net.u1b_concat,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=64,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u1c_bn = L.BatchNorm(
            net.u1c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u1c_bn = L.BatchNorm(net.u1c_conv, use_global_stats=1)
    net.u1c_scale = L.Scale(net.u1c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u1c_relu = L.ReLU(net.u1c_scale, in_place=True, engine=1)
    ### d ###
    net.u1d_conv = L.Convolution(
        net.u1c_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=64,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u1d_bn = L.BatchNorm(
            net.u1d_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u1d_bn = L.BatchNorm(net.u1d_conv, use_global_stats=1)
    net.u1d_scale = L.Scale(net.u1d_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u1d_relu = L.ReLU(net.u1d_scale, in_place=True, engine=1)

    ############ u0 ############
    ### a ### Third Deconvolution
    net.u0a_dconv = L.Deconvolution(net.u1d_scale,
                                    param=[dict(lr_mult=1, decay_mult=1)],
                                    convolution_param=dict(
                                        num_output=32,
                                        pad=0,
                                        kernel_size=[2, 2, 1],
                                        stride=[2, 2, 1],
                                        weight_filler=dict(type='gaussian',
                                                           std=0.001),
                                        bias_term=0,
                                        engine=1))
    if phase == "TRAIN":
        net.u0a_bn = L.BatchNorm(
            net.u0a_dconv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u0a_bn = L.BatchNorm(net.u0a_dconv, use_global_stats=1)
    net.u0a_scale = L.Scale(net.u0a_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u0a_relu = L.ReLU(net.u0a_scale, in_place=True, engine=1)

    ### b ### Crop and Concat
    net.u0b_crop = L.Crop(net.u0a_scale, net.d0c_scale, axis=2, offset=0)
    net.u0b_concat = L.Concat(net.u0b_crop, net.d0c_scale, axis=1)

    ### c ###
    net.u0c_conv = L.Convolution(
        net.u0b_concat,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=32,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u0c_bn = L.BatchNorm(
            net.u0c_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u0c_bn = L.BatchNorm(net.u0c_conv, use_global_stats=1)
    net.u0c_scale = L.Scale(net.u0c_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u0c_relu = L.ReLU(net.u0c_scale, in_place=True, engine=1)
    ### d ###
    net.u0d_conv = L.Convolution(
        net.u0c_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=32,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)
    if phase == "TRAIN":
        net.u0d_bn = L.BatchNorm(
            net.u0d_conv,
            use_global_stats=0,
            param=[dict(lr_mult=0),
                   dict(lr_mult=0),
                   dict(lr_mult=0)])
    else:
        net.u0d_bn = L.BatchNorm(net.u0d_conv, use_global_stats=1)
    net.u0d_scale = L.Scale(net.u0d_bn,
                            axis=1,
                            filler=dict(type='constant', value=1),
                            bias_term=1,
                            bias_filler=dict(type='constant', value=0))
    net.u0d_relu = L.ReLU(net.u0d_scale, in_place=True, engine=1)

    ############ Score ############
    net.u0d_score = L.Convolution(
        net.u0d_scale,
        param=[dict(lr_mult=1, decay_mult=1),
               dict(lr_mult=2, decay_mult=0)],
        num_output=class_nums,
        pad=1,
        kernel_size=3,
        stride=1,
        weight_filler=dict(type='gaussian', std=0.001),
        bias_filler=dict(type='constant', value=0),
        engine=1)

    ############ Loss ############
    if phase == "TRAIN":
        net.loss = L.WeightedSoftmaxWithLoss(net.u0d_score,
                                             net.label,
                                             net.label_weight,
                                             phase=0,
                                             loss_weight=1,
                                             loss_param=dict(ignore_label=255))

    return net.to_proto()
def convert(keras_model, caffe_net_file, caffe_params_file):

    caffe_net = caffe.NetSpec()

    net_params = dict()

    outputs = dict()
    shape = ()

    input_str = ''

    for layer in keras_model.layers:
        name = layer.name
        layer_type = type(layer).__name__

        config = layer.get_config()

        blobs = layer.get_weights()
        blobs_num = len(blobs)

        if type(layer.output) == list:
            raise Exception('Layers with multiply outputs are not supported')
        else:
            top = layer.output.name

        if type(layer.input) != list:
            bottom = layer.input.name

        if layer_type == 'InputLayer' or len(caffe_net.tops) == 0:

            input_name = 'data'
            caffe_net[input_name] = L.Layer()
            input_shape = config['batch_input_shape']
            input_str = 'input: {}\ninput_dim: {}\ninput_dim: {}\ninput_dim: {}\ninput_dim: {}'.format(
                '"' + input_name + '"', 1, input_shape[3], input_shape[1],
                input_shape[2])
            outputs[layer.input.name] = input_name
            if layer_type == 'InputLayer':
                continue

        if layer_type == 'Conv2D' or layer_type == 'Convolution2D':

            strides = config['strides']
            kernel_size = config['kernel_size']

            kwargs = {'num_output': config['filters']}

            if kernel_size[0] == kernel_size[1]:
                kwargs['kernel_size'] = kernel_size[0]
            else:
                kwargs['kernel_h'] = kernel_size[0]
                kwargs['kernel_w'] = kernel_size[1]

            if strides[0] == strides[1]:
                kwargs['stride'] = strides[0]
            else:
                kwargs['stride_h'] = strides[0]
                kwargs['stride_w'] = strides[1]

            if not config['use_bias']:
                kwargs['bias_term'] = False
                #kwargs['param']=[dict(lr_mult=0)]
            else:
                #kwargs['param']=[dict(lr_mult=0), dict(lr_mult=0)]
                pass

            set_padding(config, layer.input_shape, kwargs)

            caffe_net[name] = L.Convolution(caffe_net[outputs[bottom]],
                                            **kwargs)

            blobs[0] = np.array(blobs[0]).transpose(3, 2, 0, 1)
            net_params[name] = blobs

            if config['activation'] == 'relu':
                name_s = name + 's'
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)
            elif config['activation'] == 'sigmoid':
                name_s = name + 's'
                caffe_net[name_s] = L.Sigmoid(caffe_net[name], in_place=True)
            elif config['activation'] == 'linear':
                #do nothing
                pass
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

        elif layer_type == 'Conv2DTranspose':

            stride = config['strides']
            kernel_size = config['kernel_size']
            channels = config['filters']
            group = config['group']

            w = layer.input_shape[1]
            h = layer.input_shape[2]

            out_w = math.ceil(w / float(stride[1]))
            pad_w = int((kernel_size[1] * out_w -
                         (kernel_size[1] - strides[1]) * (out_w - 1) - w) / 2)

            out_h = math.ceil(h / float(strides[0]))
            pad_h = int((kernel_size[0] * out_h -
                         (kernel_size[0] - strides[0]) * (out_h - 1) - h) / 2)

            if not config['use_bias']:
                bias_flag = False
            else:
                bias_flag = True

            if pad_w == 0:

                caffe_net[name] = L.Deconvolution(
                    caffe_net[outputs[bottom]],
                    convolution_param=dict(num_output=channels,
                                           group=channels,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           weight_filler=dict(type='bilinear'),
                                           bias_term=bias_flag),
                    param=dict(lr_mult=0, decay_mult=0))

            else:

                if pad_w == pad_h:
                    config_caffe['pad'] = pad_w
                else:
                    config_caffe['pad_h'] = pad_h
                    config_caffe['pad_w'] = pad_w

                caffe_net[name] = L.Deconvolution(
                    caffe_net[outputs[bottom]],
                    convolution_param=dict(num_output=channels,
                                           group=channels,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           pad=pad,
                                           weight_filler=dict(type='bilinear'),
                                           bias_term=bias_flag),
                    param=dict(lr_mult=0, decay_mult=0))

            blob = np.array(blobs[0]).transpose(2, 3, 0, 1)
            blob.shape = (1, ) + blob.shape
            net_params[name] = blob

            if config['activation'] == 'relu':
                name_s = name + 's'
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)
            elif config['activation'] == 'sigmoid':
                name_s = name + 's'
                caffe_net[name_s] = L.Sigmoid(caffe_net[name], in_place=True)
            elif config['activation'] == 'linear':
                #do nothing
                pass
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

        # 深度可分离卷积
        elif layer_type == 'DepthwiseConv2D':

            strides = config['strides']
            kernel_size = config['kernel_size']

            kwargs = {'num_output': layer.input_shape[3]}

            if kernel_size[0] == kernel_size[1]:
                kwargs['kernel_size'] = kernel_size[0]
            else:
                kwargs['kernel_h'] = kernel_size[0]
                kwargs['kernel_w'] = kernel_size[1]

            if strides[0] == strides[1]:
                kwargs['stride'] = strides[0]
            else:
                kwargs['stride_h'] = strides[0]
                kwargs['stride_w'] = strides[1]

            set_padding(config, layer.input_shape, kwargs)

            kwargs['group'] = layer.input_shape[3]

            kwargs['bias_term'] = False
            caffe_net[name] = L.Convolution(caffe_net[outputs[bottom]],
                                            **kwargs)
            blob = np.array(blobs[0]).transpose(2, 3, 0, 1)
            blob.shape = (1, ) + blob.shape
            net_params[name] = blob

            if config['activation'] == 'relu':
                name_s = name + 's'
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)
            elif config['activation'] == 'sigmoid':
                name_s = name + 's'
                caffe_net[name_s] = L.Sigmoid(caffe_net[name], in_place=True)
            elif config['activation'] == 'linear':
                #do nothing
                pass
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

        elif layer_type == 'SeparableConv2D':

            strides = config['strides']
            kernel_size = config['kernel_size']

            kwargs = {'num_output': layer.input_shape[3]}

            if kernel_size[0] == kernel_size[1]:
                kwargs['kernel_size'] = kernel_size[0]
            else:
                kwargs['kernel_h'] = kernel_size[0]
                kwargs['kernel_w'] = kernel_size[1]

            if strides[0] == strides[1]:
                kwargs['stride'] = strides[0]
            else:
                kwargs['stride_h'] = strides[0]
                kwargs['stride_w'] = strides[1]

            set_padding(config, layer.input_shape, kwargs)

            kwargs['group'] = layer.input_shape[3]

            kwargs['bias_term'] = False
            caffe_net[name] = L.Convolution(caffe_net[outputs[bottom]],
                                            **kwargs)
            blob = np.array(blobs[0]).transpose(2, 3, 0, 1)
            blob.shape = (1, ) + blob.shape
            net_params[name] = blob

            name2 = name + '_'
            kwargs = {
                'num_output': config['filters'],
                'kernel_size': 1,
                'bias_term': config['use_bias']
            }
            caffe_net[name2] = L.Convolution(caffe_net[name], **kwargs)

            if config['use_bias'] == True:
                blob2 = []
                blob2.append(np.array(blobs[1]).transpose(3, 2, 0, 1))
                blob2.append(np.array(blobs[2]))
                blob2[0].shape = (1, ) + blob2[0].shape
            else:
                blob2 = np.array(blobs[1]).transpose(3, 2, 0, 1)
                blob2.shape = (1, ) + blob2.shape

            net_params[name2] = blob2
            name = name2

        elif layer_type == 'BatchNormalization':

            param = dict()

            variance = np.array(blobs[-1])
            mean = np.array(blobs[-2])

            if config['scale']:
                gamma = np.array(blobs[0])
                sparam = [dict(lr_mult=1), dict(lr_mult=1)]
            else:
                gamma = np.ones(mean.shape, dtype=np.float32)
                #sparam=[dict(lr_mult=0, decay_mult=0), dict(lr_mult=1, decay_mult=1)]
                sparam = [dict(lr_mult=0), dict(lr_mult=1)]
                #sparam=[dict(lr_mult=0), dict(lr_mult=0)]

            if config['center']:
                beta = np.array(blobs[-3])
                param['bias_term'] = True
            else:
                beta = np.zeros(mean.shape, dtype=np.float32)
                param['bias_term'] = False

            caffe_net[name] = L.BatchNorm(caffe_net[outputs[bottom]],
                                          in_place=True)
            #param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=1, decay_mult=1), dict(lr_mult=0, decay_mult=0)])
            #param=[dict(lr_mult=1), dict(lr_mult=1), dict(lr_mult=0)])

            net_params[name] = (mean, variance, np.array(1.0))

            name_s = name + 's'

            caffe_net[name_s] = L.Scale(
                caffe_net[name],
                in_place=True,
                param=sparam,
                scale_param={'bias_term': config['center']})
            net_params[name_s] = (gamma, beta)

        elif layer_type == 'Dense':
            caffe_net[name] = L.InnerProduct(caffe_net[outputs[bottom]],
                                             num_output=config['units'],
                                             weight_filler=dict(type='xavier'))

            if config['use_bias']:
                weight = np.array(blobs[0]).transpose(1, 0)
                if type(layer._inbound_nodes[0].inbound_layers[0]
                        ).__name__ == 'Flatten':
                    flatten_shape = layer._inbound_nodes[0].inbound_layers[
                        0].input_shape
                    for i in range(weight.shape[0]):
                        weight[i] = np.array(weight[i].reshape(
                            flatten_shape[1],
                            flatten_shape[2], flatten_shape[3]).transpose(
                                2, 0, 1).reshape(weight.shape[1]))
                net_params[name] = (weight, np.array(blobs[1]))
            else:
                net_params[name] = (blobs[0])

            name_s = name + 's'
            if config['activation'] == 'softmax':
                caffe_net[name_s] = L.Softmax(caffe_net[name], in_place=True)
            elif config['activation'] == 'relu':
                caffe_net[name_s] = L.ReLU(caffe_net[name], in_place=True)

        elif layer_type == 'Activation':
            if config['activation'] == 'relu':
                #caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]], in_place=True)
                if len(layer.input.consumers()) > 1:
                    caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]])
                else:
                    caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]],
                                             in_place=True)
            elif config['activation'] == 'relu6':
                #TODO
                caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]])
            elif config['activation'] == 'softmax':
                caffe_net[name] = L.Softmax(caffe_net[outputs[bottom]],
                                            in_place=True)
            elif config['activation'] == 'sigmoid':
                # name_s = name+'s'
                caffe_net[name] = L.Sigmoid(caffe_net[outputs[bottom]],
                                            in_place=True)
            else:
                raise Exception('Unsupported activation ' +
                                config['activation'])

        elif layer_type == 'Cropping2D':
            shape = layer.output_shape
            ddata = L.DummyData(shape=dict(
                dim=[1, shape[3], shape[1], shape[2]]))
            layers = []
            layers.append(caffe_net[outputs[bottom]])
            layers.append(ddata)  #TODO
            caffe_net[name] = L.Crop(*layers)

        elif layer_type == 'Concatenate' or layer_type == 'Merge':
            layers = []
            for i in layer.input:
                layers.append(caffe_net[outputs[i.name]])
            caffe_net[name] = L.Concat(*layers, axis=1)

        elif layer_type == 'Add':
            layers = []
            for i in layer.input:
                layers.append(caffe_net[outputs[i.name]])
            caffe_net[name] = L.Eltwise(*layers)

        elif layer_type == 'Flatten':
            caffe_net[name] = L.Flatten(caffe_net[outputs[bottom]])

        elif layer_type == 'Reshape':
            shape = config['target_shape']
            if len(shape) == 3:
                #shape = (layer.input_shape[0], shape[2], shape[0], shape[1])
                shape = (1, shape[2], shape[0], shape[1])
            elif len(shape) == 1:
                #shape = (layer.input_shape[0], 1, 1, shape[0])
                shape = (1, 1, 1, shape[0])
            elif len(shape) == 2:
                shape = (0, shape[1], -1, 0)
            caffe_net[name] = L.Reshape(
                caffe_net[outputs[bottom]],
                reshape_param={'shape': {
                    'dim': list(shape)
                }})

        elif layer_type == 'MaxPooling2D' or layer_type == 'AveragePooling2D':

            kwargs = {}

            if layer_type == 'MaxPooling2D':
                kwargs['pool'] = P.Pooling.MAX
            else:
                kwargs['pool'] = P.Pooling.AVE

            pool_size = config['pool_size']
            strides = config['strides']

            if pool_size[0] != pool_size[1]:
                raise Exception('Unsupported pool_size')

            if strides[0] != strides[1]:
                raise Exception('Unsupported strides')

            set_padding(config, layer.input_shape, kwargs)

            caffe_net[name] = L.Pooling(caffe_net[outputs[bottom]],
                                        kernel_size=pool_size[0],
                                        stride=strides[0],
                                        **kwargs)

        elif layer_type == 'Dropout':
            caffe_net[name] = L.Dropout(
                caffe_net[outputs[bottom]],
                dropout_param=dict(dropout_ratio=config['rate']))

        elif layer_type == 'GlobalAveragePooling2D':
            caffe_net[name] = L.Pooling(
                caffe_net[outputs[bottom]],
                pool=P.Pooling.AVE,
                pooling_param=dict(global_pooling=True))

        elif layer_type == 'UpSampling2D':
            if config['size'][0] != config['size'][1]:
                raise Exception('Unsupported upsampling factor')
            factor = config['size'][0]
            kernel_size = 2 * factor - factor % 2
            stride = factor
            pad = int(math.ceil((factor - 1) / 2.0))
            channels = layer.input_shape[-1]
            caffe_net[name] = L.Deconvolution(
                caffe_net[outputs[bottom]],
                convolution_param=dict(num_output=channels,
                                       group=channels,
                                       kernel_size=kernel_size,
                                       stride=stride,
                                       pad=pad,
                                       weight_filler=dict(type='bilinear'),
                                       bias_term=False),
                param=dict(lr_mult=0, decay_mult=0))

        elif layer_type == 'LeakyReLU':
            caffe_net[name] = L.ReLU(caffe_net[outputs[bottom]],
                                     negative_slope=config['alpha'],
                                     in_place=True)

        # Caffe中没有ZeroPadding2D存在,因此需要避免这个Op的应用,即将Padding写进卷积/反卷积/Pooling等层中
        #elif layer_type=='ZeroPadding2D':
        # padding=config['padding']
        # caffe_net[name] = L.Pooling(caffe_net[outputs[bottom]], kernel_size=1,
        #     stride=1, pad_h=padding[0][0]+padding[0][1], pad_w=padding[1][0]+padding[1][1], pool=P.Pooling.AVE)

        else:
            raise Exception('Unsupported layer type: ' + layer_type)

        outputs[top] = name

    #replace empty layer with input blob
    net_proto = input_str + '\n' + 'layer {' + 'layer {'.join(
        str(caffe_net.to_proto()).split('layer {')[2:])

    f = open(caffe_net_file, 'w')
    f.write(net_proto)
    f.close()

    caffe_model = caffe.Net(caffe_net_file, caffe.TEST)

    for layer in caffe_model.params.keys():
        if 'up_sampling2d' in layer:
            continue
        for n in range(0, len(caffe_model.params[layer])):
            caffe_model.params[layer][n].data[...] = net_params[layer][n]

    caffe_model.save(caffe_params_file)
示例#28
0
def deeplab(padimg, img, spixel_indices):

    # Conv1
    conv1_1 = L.Convolution(padimg,
                            convolution_param=dict(num_output=64,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv1_1 = L.ReLU(conv1_1, in_place=True)
    conv1_2 = L.Convolution(conv1_1,
                            convolution_param=dict(num_output=64,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv1_2 = L.ReLU(conv1_2, in_place=True)
    pool1 = L.Pooling(conv1_2,
                      pooling_param=dict(kernel_size=3,
                                         stride=2,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    # Conv2
    conv2_1 = L.Convolution(pool1,
                            convolution_param=dict(num_output=128,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv2_1 = L.ReLU(conv2_1, in_place=True)
    conv2_2 = L.Convolution(conv2_1,
                            convolution_param=dict(num_output=128,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv2_2 = L.ReLU(conv2_2, in_place=True)
    pool2 = L.Pooling(conv2_2,
                      pooling_param=dict(kernel_size=3,
                                         stride=2,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    # Conv3
    conv3_1 = L.Convolution(pool2,
                            convolution_param=dict(num_output=256,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv3_1 = L.ReLU(conv3_1, in_place=True)
    conv3_2 = L.Convolution(conv3_1,
                            convolution_param=dict(num_output=256,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv3_2 = L.ReLU(conv3_2, in_place=True)
    conv3_3 = L.Convolution(conv3_2,
                            convolution_param=dict(num_output=256,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv3_3 = L.ReLU(conv3_3, in_place=True)
    pool3 = L.Pooling(conv3_3,
                      pooling_param=dict(kernel_size=3,
                                         stride=2,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    # Conv4
    conv4_1 = L.Convolution(pool3,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv4_1 = L.ReLU(conv4_1, in_place=True)
    conv4_2 = L.Convolution(conv4_1,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv4_2 = L.ReLU(conv4_2, in_place=True)
    conv4_3 = L.Convolution(conv4_2,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv4_3 = L.ReLU(conv4_3, in_place=True)
    pool4 = L.Pooling(conv4_3,
                      pooling_param=dict(kernel_size=3,
                                         stride=1,
                                         pad=1,
                                         pool=P.Pooling.MAX))

    # #Conv5
    conv5_1 = L.Convolution(pool4,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=2,
                                                   dilation=2,
                                                   engine=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv5_1 = L.ReLU(conv5_1, in_place=True)
    conv5_2 = L.Convolution(conv5_1,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=2,
                                                   dilation=2,
                                                   engine=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv5_2 = L.ReLU(conv5_2, in_place=True)
    conv5_3 = L.Convolution(conv5_2,
                            convolution_param=dict(num_output=512,
                                                   kernel_size=3,
                                                   stride=1,
                                                   pad=2,
                                                   dilation=2,
                                                   engine=1),
                            param=[{
                                'lr_mult': 0,
                                'decay_mult': 0
                            }, {
                                'lr_mult': 0,
                                'decay_mult': 0
                            }])
    conv5_3 = L.ReLU(conv5_3, in_place=True)
    pool5 = L.Pooling(conv5_3,
                      pooling_param=dict(kernel_size=3,
                                         stride=1,
                                         pad=1,
                                         pool=P.Pooling.MAX))
    pool5a = L.Pooling(pool5,
                       pooling_param=dict(kernel_size=3,
                                          stride=1,
                                          pad=1,
                                          pool=P.Pooling.MAX))

    #FC-6
    fc6 = L.Convolution(pool5a,
                        convolution_param=dict(num_output=1024,
                                               kernel_size=3,
                                               pad=12,
                                               dilation=12,
                                               engine=1),
                        param=[{
                            'lr_mult': 0,
                            'decay_mult': 0
                        }, {
                            'lr_mult': 0,
                            'decay_mult': 0
                        }])
    fc6 = L.ReLU(fc6, in_place=True)
    fc6 = L.Dropout(fc6, dropout_param=dict(dropout_ratio=0.5), in_place=True)

    #FC-7
    fc7 = L.Convolution(fc6,
                        convolution_param=dict(num_output=1024, kernel_size=1),
                        param=[{
                            'lr_mult': 0,
                            'decay_mult': 0
                        }, {
                            'lr_mult': 0,
                            'decay_mult': 0
                        }])
    fc7 = L.ReLU(fc7, in_place=True)
    fc7 = L.Dropout(fc7, dropout_param=dict(dropout_ratio=0.5), in_place=True)

    #FC-8
    fc8_deeplab = L.Convolution(
        fc7,
        convolution_param=dict(num_output=2,
                               kernel_size=1,
                               weight_filler=dict(type='gaussian', std=0.01),
                               bias_filler=dict(type='constant', value=0)),
        param=[{
            'lr_mult': 1,
            'decay_mult': 1
        }, {
            'lr_mult': 2,
            'decay_mult': 0
        }])

    #Interpolate
    fc8_interp = L.Interp(fc8_deeplab, interp_param=dict(zoom_factor=8))

    #Crop to match required dimensions
    fc8_crop = L.Crop(fc8_interp, img, crop_param=dict(axis=2, offset=[0, 0]))

    return fc8_crop
def cn_LF(split):
    n = caffe.NetSpec()
    pydata_params = dict(split=split, mean=(88.386, 99.768,107.622),
            seed=1337)
    if split == 'train':
        pydata_params['train_dir'] = '../data/train'
        pylayer = 'TrainDataLayer'
    else:
        pydata_params['val_dir'] = '../data/val'
        pylayer = 'ValDataLayer'
    n.data, n.label = L.Python(module='colorname_layers', layer=pylayer,
            ntop=2, param_str=str(pydata_params))
    
      
    # the base net
    
    n.LF_conv1_1=L.Convolution(n.data, kernel_size=3, stride=3, num_output=64,
        param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)],
        weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0))
    n.LF_relu1_1=L.ReLU(n.LF_conv1_1, in_place=True)
    n.LF_conv1_2=L.Convolution(n.LF_relu1_1, kernel_size=3, stride=3, num_output=64,
        param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)],
        weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0))
    n.LF_relu1_2=L.ReLU(n.LF_conv1_2, in_place=True)
    n.conv2, n.relu2 = conv_relu(n.LF_relu1_2, 64,param=[dict(lr_mult=10, decay_mult=1), dict(lr_mult=20, decay_mult=0)])
    n.drop2= L.Dropout(n.relu2,  dropout_ratio=0.1,in_place=True)
    n.conv1_2, n.relu1_2 = conv_relu(n.drop2, 64)
    n.drop1_2= L.Dropout(n.relu1_2,  dropout_ratio=0.1,in_place=True)
    n.pool1 = max_pool(n.drop1_2)
    
    n.conv2_1, n.relu2_1 = conv_relu(n.pool1, 128)
    n.drop2_1= L.Dropout(n.relu2_1,  dropout_ratio=0.1,in_place=True)
    n.conv2_2, n.relu2_2 = conv_relu(n.drop2_1, 128)
    n.drop2_2= L.Dropout(n.relu2_2,  dropout_ratio=0.1,in_place=True)

    n.pool2 = max_pool(n.drop2_2)

    n.conv3_1, n.relu3_1 = conv_relu(n.pool2, 256)
    n.drop3_1= L.Dropout(n.relu3_1,  dropout_ratio=0.2,in_place=True)
    n.conv3_2, n.relu3_2 = conv_relu(n.drop3_1, 256)
    
    n.drop3_2= L.Dropout(n.relu3_2,  dropout_ratio=0.2,in_place=True)
    
    n.conv3_3, n.relu3_3 = conv_relu(n.drop3_2, 256)
    n.drop3_3= L.Dropout(n.relu3_3,  dropout_ratio=0.2,in_place=True)
    n.pool3 = max_pool(n.drop3_3)

    n.conv4_1, n.relu4_1 = conv_relu(n.pool3, 512)
    n.drop4_1= L.Dropout(n.relu4_1,  dropout_ratio=0.2,in_place=True)
    
    n.conv4_2, n.relu4_2 = conv_relu(n.drop4_1, 512)
    n.drop4_2= L.Dropout(n.relu4_2,  dropout_ratio=0.2,in_place=True)
    
    n.conv4_3, n.relu4_3 = conv_relu(n.drop4_2, 512)
    n.drop4_3= L.Dropout(n.relu4_3,  dropout_ratio=0.2,in_place=True)
    
    n.pool4 = max_pool(n.drop4_3, stride=1)

    n.conv5_1, n.relu5_1 = conv_relu_dia(n.pool4, 512, pad=2,dilation=2)
    n.drop5_1= L.Dropout(n.relu5_1,  dropout_ratio=0.3,in_place=True)
    
    n.conv5_2, n.relu5_2 = conv_relu_dia(n.drop5_1, 512, pad=2, dilation=2)
    n.drop5_2= L.Dropout(n.relu5_2,  dropout_ratio=0.3,in_place=True)
    
    n.conv5_3, n.relu5_3 = conv_relu_dia(n.drop5_2, 512, pad=2, dilation=2)
    n.drop5_3= L.Dropout(n.relu5_3,  dropout_ratio=0.3,in_place=True)
    
    n.pool5 = max_pool(n.drop5_3, stride=1)

    
    #hole=6
    n.fc6_1, n.relu6_1 = conv_relu_dia(n.pool5, 1024, pad=6,dilation=6)
    n.drop6_1= L.Dropout(n.relu6_1,  dropout_ratio=0.5,in_place=True)
    n.fc7_1, n.relu7_1 = conv_relu(n.relu6_1, 1024, ks=1, pad=0)
    n.drop7_1= L.Dropout(n.relu7_1,  dropout_ratio=0.5,in_place=True)
    n.fc8_1=L.Convolution(n.drop7_1,kernel_size=1, num_output=2, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0),
                            param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    
    #hole=12
    n.fc6_2, n.relu6_2 = conv_relu_dia(n.pool5, 1024, pad=12,dilation=12)
    n.drop6_2= L.Dropout(n.relu6_2,  dropout_ratio=0.5,in_place=True)
    n.fc7_2, n.relu7_2 = conv_relu(n.relu6_2, 1024, ks=1, pad=0)
    n.drop7_2= L.Dropout(n.relu7_2,  dropout_ratio=0.5,in_place=True)
    n.fc8_2=L.Convolution(n.drop7_2,kernel_size=1, num_output=2, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0),
                            param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    
    #hole=18
    n.fc6_3, n.relu6_3 = conv_relu_dia(n.pool5, 1024, pad=18,dilation=18)
    n.drop6_3= L.Dropout(n.relu6_3,  dropout_ratio=0.5,in_place=True)
    n.fc7_3, n.relu7_3 = conv_relu(n.relu6_3, 1024, ks=1, pad=0)
    n.drop7_3= L.Dropout(n.relu7_3,  dropout_ratio=0.5,in_place=True)
    n.fc8_3=L.Convolution(n.drop7_3,kernel_size=1, num_output=2, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0),
                            param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    
    #hole=24
    n.fc6_4, n.relu6_4 = conv_relu_dia(n.pool5, 1024, pad=24,dilation=24)
    n.drop6_4= L.Dropout(n.relu6_4,  dropout_ratio=0.5,in_place=True)
    n.fc7_4, n.relu7_4 = conv_relu(n.relu6_4, 1024, ks=1, pad=0)
    n.drop7_4= L.Dropout(n.relu7_4,  dropout_ratio=0.5,in_place=True)
    n.fc8_4=L.Convolution(n.drop7_4,kernel_size=1, num_output=2, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant', value=0),
                            param=[dict(lr_mult=1, decay_mult=1), dict(lr_mult=2, decay_mult=0)])
    
    n.fc8= L.Eltwise(n.fc8_1, n.fc8_2,n.fc8_3,n.fc8_4,
                     operation=P.Eltwise.SUM)
    

    
    n.fc8_shrink=L.Interp(n.fc8,interp_param=dict(zoom_factor=8 ))
    n.socre=L.Crop(n.fc8_shrink,n.label);
#    
    n.loss = L.SoftmaxWithLoss(n.socre, n.label, loss_param=dict(ignore_label=255))
    
    return n.to_proto()
示例#30
0
def generate_model(split, config):
    n = caffe.NetSpec()
    dataset = config.dataset
    batch_size = config.N
    mode_str = str(dict(dataset=dataset, split=split, batch_size=batch_size))
    n.image1, n.image2, n.label, n.sample_weights, n.feat_crop = L.Python(
        module=config.data_provider,
        layer=config.data_provider_layer,
        param_str=mode_str,
        ntop=5)

    ################################
    # the base net (VGG-16) branch 1
    n.conv1_1, n.relu1_1 = conv_relu(n.image1,
                                     64,
                                     param_names=('conv1_1_w', 'conv1_1_b'),
                                     fix_param=True,
                                     finetune=False)
    n.conv1_2, n.relu1_2 = conv_relu(n.relu1_1,
                                     64,
                                     param_names=('conv1_2_w', 'conv1_2_b'),
                                     fix_param=True,
                                     finetune=False)
    n.pool1 = max_pool(n.relu1_2)

    n.conv2_1, n.relu2_1 = conv_relu(n.pool1,
                                     128,
                                     param_names=('conv2_1_w', 'conv2_1_b'),
                                     fix_param=True,
                                     finetune=False)
    n.conv2_2, n.relu2_2 = conv_relu(n.relu2_1,
                                     128,
                                     param_names=('conv2_2_w', 'conv2_2_b'),
                                     fix_param=True,
                                     finetune=False)
    n.pool2 = max_pool(n.relu2_2)

    n.conv3_1, n.relu3_1 = conv_relu(n.pool2,
                                     256,
                                     param_names=('conv3_1_w', 'conv3_1_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    n.conv3_2, n.relu3_2 = conv_relu(n.relu3_1,
                                     256,
                                     param_names=('conv3_2_w', 'conv3_2_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    n.conv3_3, n.relu3_3 = conv_relu(n.relu3_2,
                                     256,
                                     param_names=('conv3_3_w', 'conv3_3_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    n.pool3 = max_pool(n.relu3_3)
    # spatial L2 norm
    n.pool3_lrn = L.LRN(n.pool3, local_size=513, alpha=513, beta=0.5, k=1e-16)

    n.conv4_1, n.relu4_1 = conv_relu(n.pool3,
                                     512,
                                     param_names=('conv4_1_w', 'conv4_1_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    n.conv4_2, n.relu4_2 = conv_relu(n.relu4_1,
                                     512,
                                     param_names=('conv4_2_w', 'conv4_2_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    n.conv4_3, n.relu4_3 = conv_relu(n.relu4_2,
                                     512,
                                     param_names=('conv4_3_w', 'conv4_3_b'),
                                     fix_param=config.fix_vgg,
                                     finetune=config.finetune)
    # spatial L2 norm
    n.relu4_3_lrn = L.LRN(n.relu4_3,
                          local_size=1025,
                          alpha=1025,
                          beta=0.5,
                          k=1e-16)
    #n.pool4 = max_pool(n.relu4_3)

    #n.conv5_1, n.relu5_1 = conv_relu(n.pool4, 512,
    #                                 param_names=('conv5_1_w', 'conv5_1_b'),
    #                                 fix_param=config.fix_vgg,
    #                                 finetune=config.finetune)
    #n.conv5_2, n.relu5_2 = conv_relu(n.relu5_1, 512,
    #                                 param_names=('conv5_2_w', 'conv5_2_b'),
    #                                 fix_param=config.fix_vgg,
    #                                 finetune=config.finetune)
    #n.conv5_3, n.relu5_3 = conv_relu(n.relu5_2, 512,
    #                                 param_names=('conv5_3_w', 'conv5_3_b'),
    #                                 fix_param=config.fix_vgg,
    #                                 finetune=config.finetune)
    # upsampling feature map
    #n.relu5_3_upsampling = L.Deconvolution(n.relu5_3,
    #                                       convolution_param=dict(num_output=512,
    #                                                              group=512,
    #                                                              kernel_size=4,
    #                                                              stride=2,
    #                                                              pad=1,
    #                                                              bias_term=False,
    #                                                              weight_filler=dict(type='bilinear')),
    #                                       param=[dict(lr_mult=0, decay_mult=0)])
    # spatial L2 norm
    #n.relu5_3_lrn = L.LRN(n.relu5_3_upsampling, local_size=1025, alpha=1025, beta=0.5, k=1e-16)

    # concat all skip features
    #n.feat_all1 = n.relu4_3_lrn
    n.feat_all1 = L.Concat(n.pool3_lrn,
                           n.relu4_3_lrn,
                           concat_param=dict(axis=1))
    #n.feat_all1 = L.Concat(n.pool3_lrn, n.relu4_3_lrn, n.relu5_3_lrn, concat_param=dict(axis=1))
    n.feat_all1_crop = L.Crop(n.feat_all1,
                              n.feat_crop,
                              crop_param=dict(axis=2,
                                              offset=[
                                                  config.query_featmap_H // 3,
                                                  config.query_featmap_W // 3
                                              ]))

    ################################
    # the base net (VGG-16) branch 2
    n.conv1_1_p, n.relu1_1_p = conv_relu(n.image2,
                                         64,
                                         param_names=('conv1_1_w',
                                                      'conv1_1_b'),
                                         fix_param=True,
                                         finetune=False)
    n.conv1_2_p, n.relu1_2_p = conv_relu(n.relu1_1_p,
                                         64,
                                         param_names=('conv1_2_w',
                                                      'conv1_2_b'),
                                         fix_param=True,
                                         finetune=False)
    n.pool1_p = max_pool(n.relu1_2_p)

    n.conv2_1_p, n.relu2_1_p = conv_relu(n.pool1_p,
                                         128,
                                         param_names=('conv2_1_w',
                                                      'conv2_1_b'),
                                         fix_param=True,
                                         finetune=False)
    n.conv2_2_p, n.relu2_2_p = conv_relu(n.relu2_1_p,
                                         128,
                                         param_names=('conv2_2_w',
                                                      'conv2_2_b'),
                                         fix_param=True,
                                         finetune=False)
    n.pool2_p = max_pool(n.relu2_2_p)

    n.conv3_1_p, n.relu3_1_p = conv_relu(n.pool2_p,
                                         256,
                                         param_names=('conv3_1_w',
                                                      'conv3_1_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    n.conv3_2_p, n.relu3_2_p = conv_relu(n.relu3_1_p,
                                         256,
                                         param_names=('conv3_2_w',
                                                      'conv3_2_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    n.conv3_3_p, n.relu3_3_p = conv_relu(n.relu3_2_p,
                                         256,
                                         param_names=('conv3_3_w',
                                                      'conv3_3_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    n.pool3_p = max_pool(n.relu3_3_p)
    # spatial L2 norm
    n.pool3_lrn_p = L.LRN(n.pool3_p,
                          local_size=513,
                          alpha=513,
                          beta=0.5,
                          k=1e-16)

    n.conv4_1_p, n.relu4_1_p = conv_relu(n.pool3_p,
                                         512,
                                         param_names=('conv4_1_w',
                                                      'conv4_1_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    n.conv4_2_p, n.relu4_2_p = conv_relu(n.relu4_1_p,
                                         512,
                                         param_names=('conv4_2_w',
                                                      'conv4_2_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    n.conv4_3_p, n.relu4_3_p = conv_relu(n.relu4_2_p,
                                         512,
                                         param_names=('conv4_3_w',
                                                      'conv4_3_b'),
                                         fix_param=config.fix_vgg,
                                         finetune=config.finetune)
    # spatial L2 norm
    n.relu4_3_lrn_p = L.LRN(n.relu4_3_p,
                            local_size=1025,
                            alpha=1025,
                            beta=0.5,
                            k=1e-16)
    #n.pool4_p = max_pool(n.relu4_3_p)

    #n.conv5_1_p, n.relu5_1_p = conv_relu(n.pool4_p, 512,
    #                                     param_names=('conv5_1_w', 'conv5_1_b'),
    #                                     fix_param=config.fix_vgg,
    #                                     finetune=config.finetune)
    #n.conv5_2_p, n.relu5_2_p = conv_relu(n.relu5_1_p, 512,
    #                                     param_names=('conv5_2_w', 'conv5_2_b'),
    #                                     fix_param=config.fix_vgg,
    #                                     finetune=config.finetune)
    #n.conv5_3_p, n.relu5_3_p = conv_relu(n.relu5_2_p, 512,
    #                                     param_names=('conv5_3_w', 'conv5_3_b'),
    #                                     fix_param=config.fix_vgg,
    #                                     finetune=config.finetune)
    # upsampling feature map
    #n.relu5_3_upsampling_p = L.Deconvolution(n.relu5_3_p,
    #                                         convolution_param=dict(num_output=512,
    #                                                                group=512,
    #                                                                kernel_size=4,
    #                                                                stride=2,
    #                                                                pad=1,
    #                                                                bias_term=False,
    #                                                                weight_filler=dict(type='bilinear')),
    #                                         param=[dict(lr_mult=0, decay_mult=0)])
    # spatial L2 norm
    #n.relu5_3_lrn_p = L.LRN(n.relu5_3_upsampling_p, local_size=1025, alpha=1025, beta=0.5, k=1e-16)

    # concat all skip features
    #n.feat_all2 = n.relu4_3_lrn_p
    n.feat_all2 = L.Concat(n.pool3_lrn_p,
                           n.relu4_3_lrn_p,
                           concat_param=dict(axis=1))
    #n.feat_all2 = L.Concat(n.pool3_lrn_p, n.relu4_3_lrn_p, n.relu5_3_lrn_p, concat_param=dict(axis=1))

    # Dyn conv layer
    n.fcn_scores = L.DynamicConvolution(n.feat_all2,
                                        n.feat_all1_crop,
                                        convolution_param=dict(
                                            num_output=1,
                                            kernel_size=11,
                                            stride=1,
                                            pad=5,
                                            bias_term=False))

    # scale scores with zero mean 0.01196 -> 0.02677
    n.fcn_scaled_scores = L.Power(n.fcn_scores,
                                  power_param=dict(scale=0.01196,
                                                   shift=-1.0,
                                                   power=1))

    # Loss Layer
    n.loss = L.WeightedSigmoidCrossEntropyLoss(n.fcn_scaled_scores, n.label,
                                               n.sample_weights)

    return n.to_proto()