示例#1
0
def executor_test_settings(func):
    if hu.is_sandcastle() or hu.is_travis():
        return settings(
            max_examples=CI_MAX_EXAMPLES,
            timeout=CI_TIMEOUT
        )(func)
    else:
        return func
示例#2
0
def executor_test_settings(func):
    if hu.is_sandcastle() or hu.is_travis():
        return hu.settings(
            max_examples=CI_MAX_EXAMPLES,
            deadline=CI_TIMEOUT * 1000  # deadline is in ms
        )(func)
    else:
        return func
示例#3
0
def executor_test_model_names():
    if not hu.is_travis():
        return conv_model_generators().keys()
    else:
        return ["MLP"]
示例#4
0
def executor_test_model_names():
    if hu.is_sandcastle() or hu.is_travis():
        return ["MLP"]
    else:
        return conv_model_generators().keys()
示例#5
0
import unittest

EXECUTORS = ["dag", "async_dag"]
ITERATIONS = 2
CI_MAX_EXAMPLES = 2
CI_TIMEOUT = 600


def test_settings(func):
    if hu.is_sandcastle() or hu.is_travis():
        return settings(max_examples=CI_MAX_EXAMPLES, timeout=CI_TIMEOUT)(func)
    else:
        return func


@unittest.skipIf(hu.is_travis(), "Disabled in Travis")
class ExecutorCPUConvNetTest(ExecutorTestBase):
    @given(executor=st.sampled_from(EXECUTORS),
           model_name=st.sampled_from(conv_model_generators().keys()),
           batch_size=st.sampled_from([8]),
           num_workers=st.sampled_from([8]))
    @test_settings
    def test_executor(self, executor, model_name, batch_size, num_workers):
        model = build_conv_model(model_name, batch_size)
        model.Proto().num_workers = num_workers

        def run_model():
            iterations = ITERATIONS
            if model_name == "MLP":
                iterations = 1  # avoid numeric instability with MLP gradients
            workspace.RunNet(model.net, iterations)
示例#6
0
def executor_test_model_names():
    if hu.is_sandcastle() or hu.is_travis():
        return ["MLP"]
    else:
        return conv_model_generators().keys()