def build_cache_step(self, overwrite=False): """Build a step for generating cache DB file. If self.db_path exists and not overwritting, build an empty step. Overwise, build a step as follows. Pipe original reader to the _DatasetWriter, so that dataset field blobs are populated. Then save these blobs into a file. Args: overwrite: bool. If true, ignore the existing file and build a new one overwritting the existing one anyway. Returns: build_cache_step: ExecutionStep. The step to be run for building a cache DB file. """ if os.path.exists(self.db_path) and not overwrite: # cache already exists, no need to rebuild it return core.execution_step('build_step', []) init_net = core.Net('init') self._init_field_blobs_as_empty(init_net) with Cluster(), core.NameScope(self.name), TaskGroup() as copy_tg: pipe(self.original_reader, self.ds.writer(), num_threads=16) copy_step = copy_tg.to_task().get_step() save_net = core.Net('save') self._save_field_blobs_to_db_file(save_net) return core.execution_step('build_cache', [init_net, copy_step, save_net])
def run_with(self, builder): with Cluster(): with Job() as job: outputs = build_pipeline(node_id=0) output_fetcher = Task(step=core.Net('empty'), outputs=outputs) def fetch_total(session): session.run(output_fetcher) return output_fetcher.outputs()[0].fetch() session, checkpoint = builder() compiled_job = job.compile(LocalSession) num_epochs = JobRunner(compiled_job, checkpoint)(session) self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1]) for initial_epoch in range(1, num_epochs + 1): session, checkpoint = builder() JobRunner( compiled_job, checkpoint, resume_from_epoch=initial_epoch)(session) self.assertEquals(fetch_total(session), EXPECTED_TOTALS[-1]) for epoch in range(1, num_epochs + 1): session.run(checkpoint.load(epoch)) self.assertEquals(fetch_total(session), EXPECTED_TOTALS[epoch - 1])
def build_cache(self, cache_path, overwrite=False): if not self.has_cache() or overwrite: self.cache_path = cache_path if self.has_cache() and not overwrite: # cache already exists, no need to rebuild it return core.execution_step('build_step', []) init_net = core.Net('init') self._init_dataset(init_net) with Cluster(), core.NameScope(self.name), TaskGroup() as copy_tg: pipe(self.original_reader, self.ds.writer(), num_threads=16) copy_step = copy_tg.to_task().get_step() save_net = core.Net('save') self._save_to_file(save_net) return core.execution_step('build_cache', [init_net, copy_step, save_net])
def test_upload_checkpoint(self): try: tmpdir = tempfile.mkdtemp() upload_dir = os.path.join(tmpdir, "upload") os.mkdir(upload_dir) num_nodes = 3 # The uploaded files do not exist yet. for node_id in range(num_nodes): node_name = 'trainer_%d' % node_id upload_path = os.path.join(upload_dir, node_name) self.assertFalse(os.path.exists(upload_path)) # Create and run the job runner. for node_id in range(3): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) compiled_job = job.compile(LocalSession) local_upload_builder = UploadToLocalFile(upload_dir) job_runner = JobRunner( compiled_job, checkpoint, upload_task_group_builder=local_upload_builder) num_epochs = job_runner(session) self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) # The uploaded files should exist now. for node_id in range(num_nodes): node_name = 'trainer_%d' % node_id upload_path = os.path.join(upload_dir, node_name) self.assertTrue(os.path.exists(upload_path)) finally: shutil.rmtree(tmpdir)
def test_ckpt_save_failure(self): num_nodes = 3 # The goal of this test is to ensure that the job runs # successfully even if saving a checkpoint fails. # Hence tmpdir is a non existent directory to emulate a failure # while saving checkpoints tmpdir = "/tmp/path_does_not_exist/" # Check the saving checkpoint failure does not cause job failure workspace.ResetWorkspace() for node_id in range(num_nodes): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) num_epochs = job_runner(session) # make sure all epochs are executed even though saving the checkpoint failed # Saving checkpoint failure should not cause job failure self.assertEquals(num_epochs, len(EXPECTED_TOTALS))
def test_ckpt_name_and_load_model_from_ckpts(self): try: num_nodes = 3 tmpdir = tempfile.mkdtemp() # First, check if the checkpoint name generation mechanism is # correct. checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: for node_id in range(num_nodes): build_pipeline(node_id) compiled_job = job.compile(LocalSession) checkpoint.init(compiled_job.nodes_to_checkpoint()) for node_id in range(num_nodes): epoch = 5 node_name = 'trainer_%d' % node_id expected_db_name = tmpdir + '/' + node_name + '.5' self.assertEquals( checkpoint.get_ckpt_db_name(node_name, epoch), expected_db_name) shutil.rmtree(tmpdir) # Next, check mechanism to load model from checkpoints. tmpdir = tempfile.mkdtemp() workspace.ResetWorkspace() for node_id in range(num_nodes): ws = workspace.C.Workspace() session = LocalSession(ws) checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) num_epochs = job_runner(session) self.assertEquals(num_epochs, len(EXPECTED_TOTALS)) # There are 12 global blobs after finishing up the job runner. # (only blobs on init_group are checkpointed) self.assertEquals(len(ws.blobs), 12) ws = workspace.C.Workspace() session = LocalSession(ws) self.assertEquals(len(ws.blobs), 0) model_blob_names = ['trainer_1/task_2/GivenTensorInt64Fill:0', 'trainer_2/task_2/GivenTensorInt64Fill:0'] checkpoint = MultiNodeCheckpointManager(tmpdir, 'minidb') with Cluster(): with Job() as job: for node_id in range(num_nodes): build_pipeline(node_id) compiled_job = job.compile(LocalSession) job_runner = JobRunner(compiled_job, checkpoint) job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=1, session=session) # Check that we can successfully load from checkpoints of epochs # 1 to 4, but not epoch 5. for epoch in range(1, 5): self.assertTrue( job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=epoch, session=session)) # Check that all the model blobs are loaded. for blob_name in model_blob_names: self.assertTrue(ws.has_blob(blob_name)) self.assertEquals( ws.fetch_blob(blob_name), np.array([EXPECTED_TOTALS[epoch - 1]])) self.assertFalse( job_runner.load_blobs_from_checkpoints( blob_names=model_blob_names, epoch=5, session=session)) finally: shutil.rmtree(tmpdir)
def _compile_task_group(cls, task_group, setup_net_list=None): with Cluster(): task = task_group.to_task() plan = core.Plan('task_group_plan') plan.AddStep(task.get_step()) return (plan, task.output_list(), task.workspace_type)