示例#1
0
def motion_correct_file(args, n_iter=0, max_iter=10):
    try:
        in_fn, file_index, template, mc_args, \
            subidx, apply_subidx, apply_ofn = args
        max_shifts, strides, overlaps, \
            max_deviation_rigid, shifts_opencv, border_nan = mc_args
        mc = MotionCorrect(in_fn,
                           dview=None,
                           max_shifts=max_shifts,
                           strides=strides,
                           overlaps=overlaps,
                           max_deviation_rigid=max_deviation_rigid,
                           shifts_opencv=shifts_opencv,
                           nonneg_movie=True,
                           splits_els=1,
                           splits_rig=1,
                           border_nan=border_nan,
                           subidx=subidx)
        mc.motion_correct(template=template, save_movie=False)
        if apply_subidx is not None:
            applied_mov = mc.apply_shifts_movie(in_fn, apply_subidx)
            applied_mov.save(apply_ofn)
        return (file_index, np.mean(mc.templates_rig, axis=0))
    except Exception as e:
        if n_iter < max_iter:
            print("Retrying %s due to %s" % (in_fn, e))
            return motion_correct_file(args, n_iter=n_iter + 1)
        else:
            return Exception("Failed max_iter: %s times" % max_iter)
示例#2
0
def caiman_motion_correct(fnames, opts):
    '''do the motion correction of the Caiman pipeline and save results.
    Parameters
    ----------
    fnames : string
        name of tiff movie
    opts : caiman object with the options for motion correction'''

    #%% start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # first we create a motion correction object with the parameters specified
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    mc.motion_correct(save_movie=True)
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0,
                               dview=dview)  # exclude borders
    cm.stop_server(dview=dview)
    def motion_correct_file(folder, dview):
        import caiman as cm
        from caiman.motion_correction import MotionCorrect
        from caiman.source_extraction.cnmf import params as params
        print(folder)

        mc_dict = {
            'fnames': [os.path.join(folder, 'movie_total.hdf5')],
            'fr': 7,
            'decay_time': 1.5,
            'dxy': [1.15, 1.15],
            'pw_rigid': False,
            'max_shifts': [5,5],
            'strides': None,
            'overlaps': None,
            'max_deviation_rigid': None,
            'border_nan': 'copy'
        }

        opts = params.CNMFParams(params_dict=mc_dict)
        mc = MotionCorrect(mc_dict['fnames'], dview=dview, **opts.get_group('motion'))
        mc.motion_correct(save_movie=True)
示例#4
0
    def motion_correct(self):
        """
        Do motion correction.

        """
        # Set up motion correction object and load parameters.
        mc = MotionCorrect(self.fnames,
                           dview=self.dview,
                           **self.opts.get_group('motion'))

        # Do motion correction.
        mc.motion_correct(save_movie=True)

        # Plot motion correction statistics.
        fname_mc = mc.fname_tot_els if self.opts.motion[
            'pw_rigid'] else mc.fname_tot_rig
        if self.opts.motion['pw_rigid']:
            self.bord_px = np.ceil(
                np.maximum(np.max(np.abs(mc.x_shifts_els)),
                           np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
        else:
            self.bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(
                np.int)
            plt.subplot(1, 2, 1)
            plt.imshow(mc.total_template_rig)  # % plot template
            plt.subplot(1, 2, 2)
            plt.plot(mc.shifts_rig)  # % plot rigid shifts
            plt.legend(['x shifts', 'y shifts'])
            plt.xlabel('frames')
            plt.ylabel('pixels')

        # Save memory map.
        self.bord_px = 0 if self.opts.motion[
            'border_nan'] is 'copy' else self.bord_px
        self.fname_new = cm.save_memmap(fname_mc,
                                        base_name='full',
                                        order='C',
                                        border_to_0=self.bord_px)
示例#5
0
def motion_corr(fnames, dview, opts, disp_movie, is_3d=False):
    """Perform motion correction"""
    # Create a motion correction object with the parameters specified. Note
    # that the file is not loaded in memory
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))

    # Run piecewise-rigid motion correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # Determine maximum shift to be used for trimming against NaNs
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0

    # Compare with original movie
    if disp_movie and not is_3d:
        m_els = cm.load(mc.fname_tot_els)
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                       axis=2).play(fr=60, gain=15, magnification=2,
                                    offset=0)  # press q to exit
    return mc, border_to_0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%% Select file(s) to be processed (download if not present)
    #    fnames = [os.path.join(caiman_datadir(), 'example_movies/sampled3dMovieRigid.nwb')]
    fnames = [
        os.path.join(caiman_datadir(), 'example_movies/sampled3dMovie2.nwb')
    ]
    # filename to be created or processed
    # dataset dependent parameters
    fr = 5  # imaging rate in frames per second
    decay_time = 0.4  # length of a typical transient in seconds

    starting_time = 0.
    #%% load the file and save it in the NWB format (if it doesn't exist already)
    if not os.path.exists(fnames[0]):
        #        fnames_orig = [os.path.join(caiman_datadir(), 'example_movies/sampled3dMovieRigid.h5')]  # filename to be processed
        fnames_orig = [
            os.path.join(caiman_datadir(), 'example_movies/sampled3dMovie2.h5')
        ]  # filename to be processed
        orig_movie = cm.load(fnames_orig, fr=fr, is3D=True)
        #       orig_movie = cm.load_movie_chain(fnames_orig,fr=fr,is3D=True)

        # save file in NWB format with various additional info
        orig_movie.save(fnames[0],
                        sess_desc='test',
                        identifier='demo 3d',
                        exp_desc='demo movie',
                        imaging_plane_description='multi plane',
                        emission_lambda=520.0,
                        indicator='none',
                        location='visual cortex',
                        starting_time=starting_time,
                        experimenter='NAOMi',
                        lab_name='Tank Lab',
                        institution='Princeton U',
                        experiment_description='Experiment Description',
                        session_id='Session 1',
                        var_name_hdf5='TwoPhotonSeries')
#%% First setup some parameters for data and motion correction

# motion correction parameters
    dxy = (1., 1., 5.)  # spatial resolution in x, y, and z in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (10., 10., 10.)  # maximum shift in um
    patch_motion_um = (50., 50., 30.
                       )  # patch size for non-rigid correction in um
    #    pw_rigid = False       # flag to select rigid vs pw_rigid motion correction
    niter_rig = 1
    pw_rigid = True  # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a / b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a / b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24, 4)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3
    is3D = True

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'niter_rig': niter_rig,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy',
        'var_name_hdf5': 'acquisition/TwoPhotonSeries',
        'is3D': is3D,
        'splits_els': 12,
        'splits_rig': 12
    }

    opts = params.CNMFParams(
        params_dict=mc_dict
    )  #NOTE: default adjustments of parameters are not set yet, manually setting them now

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True
    if display_images:
        m_orig = cm.load_movie_chain(fnames,
                                     var_name_hdf5=opts.data['var_name_hdf5'],
                                     is3D=True)
        T, h, w, z = m_orig.shape  # Time, plane, height, weight
        m_orig = np.reshape(np.transpose(m_orig, (3, 0, 1, 2)), (T * z, h, w))
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

# %% start a cluster for parallel processing
# NOTE: ignore dview right now for debugging purposes
#    c, dview, n_processes = cm.cluster.setup_cluster(
#        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
# first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames,
                       dview=None,
                       var_name_hdf5=opts.data['var_name_hdf5'],
                       **opts.get_group('motion'))
    #    mc = MotionCorrect(fnames, dview=dview, var_name_hdf5=opts.data['var_name_hdf5'], **opts.get_group('motion'))
    # note that the file is not loaded in memory

    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # %% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames,
                                     var_name_hdf5=opts.data['var_name_hdf5'],
                                     is3D=True)
        T, h, w, z = m_orig.shape  # Time, plane, height, weight
        m_orig = np.reshape(np.transpose(m_orig, (3, 0, 1, 2)), (T * z, h, w))

        m_els = cm.load(mc.mmap_file, is3D=True)
        m_els = np.reshape(np.transpose(m_els, (3, 0, 1, 2)), (T * z, h, w))

        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
示例#7
0
def run_volpy(fnames,
              options=None,
              do_motion_correction=True,
              do_memory_mapping=True,
              fr=400):
    #pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    file_dir = os.path.split(fnames)[0]
    path_ROIs = [file for file in os.listdir(file_dir) if 'ROIs_gt' in file]
    if len(path_ROIs) > 0:
        path_ROIs = path_ROIs[0]
    #path_ROIs = '/home/nel/NEL-LAB Dropbox/NEL/Datasets/voltage_lin/peyman_golshani/ROIs.hdf5'

#%% dataset dependent parameters
# dataset dependent parameters
    fr = fr  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    do_motion_correction = do_motion_correction
    if do_motion_correction:
        mc.motion_correct(save_movie=True)
    else:
        mc_list = [
            file for file in os.listdir(file_dir)
            if (os.path.splitext(os.path.split(fnames)[-1])[0] in file
                and '.mmap' in file)
        ]
        mc.mmap_file = [os.path.join(file_dir, mc_list[0])]
        print(f'reuse previously saved motion corrected file:{mc.mmap_file}')

# %% MEMORY MAPPING
    do_memory_mapping = do_memory_mapping
    if do_memory_mapping:
        border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
        # you can include the boundaries of the FOV if you used the 'copy' option
        # during motion correction, although be careful about the components near
        # the boundaries

        # memory map the file in order 'C'
        fname_new = cm.save_memmap_join(
            mc.mmap_file,
            base_name='memmap_' +
            os.path.splitext(os.path.split(fnames)[-1])[0],
            add_to_mov=border_to_0,
            dview=dview)  # exclude border
    else:
        mmap_list = [
            file for file in os.listdir(file_dir)
            if ('memmap_' +
                os.path.splitext(os.path.split(fnames)[-1])[0]) in file
        ]
        fname_new = os.path.join(file_dir, mmap_list[0])
        print(f'reuse previously saved memory mapping file:{fname_new}')

# %% SEGMENTATION
# create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when there is too much noise in the video
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_images = np.stack([img, img, img_corr], axis=0).astype(np.float32)
    # ! save summary image, it is used in GUI
    cm.movie(summary_images).save(fnames[:-5] + '_summary_images.tif')
    #plt.imshow(summary_images[0])
    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'gui_annotation',  # use gui to manually annotate neurons, but this is still under developing
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        #with h5py.File(path_ROIs, 'r') as fl:
        #    ROIs = fl['mov'][()]
        ROIs = np.load(os.path.join(file_dir, path_ROIs))

    elif method == 'gui_annotation':
        # run volpy_gui file in the caiman/source_extraction/volpy folder
        # load the summary images you have just saved
        # save the ROIs to the video folder
        path_ROIs = caiman_datadir() + '/example_movies/volpy/gui_roi.hdf5'
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'maskrcnn':  # Important!! make sure install keras before using mask rcnn
        weights_path = download_model('mask_rcnn')
        weights_path = '/home/nel/Code/NEL_LAB/Mask_RCNN/logs/neurons20200824T1032/mask_rcnn_neurons_0040.h5'
        ROIs = utils.mrcnn_inference(
            img=summary_images.transpose([1, 2, 0]),
            size_range=[5, 100],
            weights_path=weights_path,
            display_result=True
        )  # size parameter decides size range of masks to be selected
        #np.save(os.path.join(file_dir, 'ROIs'), ROIs)
# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    threshold_method = 'adaptive_threshold'  # 'simple' or 'adaptive_threshold'
    min_spikes = 30  # minimal spikes to be found
    threshold = 4  # threshold for finding spikes, increase threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.01  # ridge regression regularizer strength for background removement, larger value specifies stronger regularization
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # 'ridge' or 'NMF' for weight update
    n_iter = 2

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update,
        'n_iter': n_iter
    }

    opts.change_params(params_dict=opts_dict)

    if options is not None:
        print('using external options')
        opts.change_params(params_dict=options)
    else:
        print('not using external options')

#%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    display_images = False
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates,
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

#%% save the result in .npy format
    save_result = True
    if save_result:
        vpy.estimates['ROIs'] = ROIs
        save_name = f'volpy_{os.path.split(fnames)[1][:-5]}_{opts.volspike["threshold_method"]}_{opts.volspike["threshold"]}_{opts.volspike["weight_update"]}_bg_{opts.volspike["ridge_bg"]}'
        np.save(os.path.join(file_dir, save_name), vpy.estimates)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#8
0
def run_alignment(mouse, sessions, motion_correction_v, cropping_v, dview):
    """
    This is the main function for the alignment step. It applies methods
    from the CaImAn package used originally in motion correction
    to do alignment.

    """
    for session in sessions:
        # Update the database

        file_name = f"mouse_{mouse}_session_{session}_alignment"
        sql1 = "UPDATE Analysis SET alignment_main=? WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val1 = [file_name, mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql1, val1)

        # Determine the output .mmap file name
        output_mmap_file_path = os.environ[
            'DATA_DIR_LOCAL'] + f'data/interim/alignment/main/{file_name}.mmap'
        sql = "SELECT motion_correction_main  FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        input_mmap_file_list = []
        inter = []
        for x in result:
            inter += x
        for y in inter:
            input_mmap_file_list.append(y)

        sql = "SELECT motion_correction_cropping_points_x1 FROM Analysis WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        x_ = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            x_.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_x2 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=? "
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        _x = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            _x.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_y1 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        _y = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            _y.append(inter[j])

        sql = "SELECT motion_correction_cropping_points_y2 FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        y_ = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            y_.append(inter[j])

        new_x1 = max(x_)
        new_x2 = max(_x)
        new_y1 = max(y_)
        new_y2 = max(_y)
        m_list = []
        for i in range(len(input_mmap_file_list)):
            m = cm.load(input_mmap_file_list[i])
            m = m.crop(new_x1 - x_[i], new_x2 - _x[i], new_y1 - y_[i],
                       new_y2 - _y[i], 0, 0)
            m_list.append(m)

        # Concatenate them using the concat function
        m_concat = cm.concatenate(m_list, axis=0)
        fname = m_concat.save(output_mmap_file_path, order='C')

        # MOTION CORRECTING EACH INDIVIDUAL MOVIE WITH RESPECT TO A TEMPLATE MADE OF THE FIRST MOVIE
        logging.info(
            'Performing motion correction on all movies with respect to a template made of the first movie.'
        )
        t0 = datetime.datetime.today()
        # parameters alignment
        sql5 = "SELECT make_template_from_trial,gSig_filt,max_shifts,niter_rig,strides,overlaps,upsample_factor_grid,num_frames_split,max_deviation_rigid,shifts_opencv,use_conda,nonneg_movie, border_nan  FROM Analysis WHERE alignment_main=? "
        val5 = [
            file_name,
        ]
        cursor.execute(sql5, val5)
        myresult = cursor.fetchall()
        para = []
        aux = []
        for x in myresult:
            aux = x
        for y in aux:
            para.append(y)
        parameters = {
            'make_template_from_trial': para[0],
            'gSig_filt': (para[1], para[1]),
            'max_shifts': (para[2], para[2]),
            'niter_rig': para[3],
            'strides': (para[4], para[4]),
            'overlaps': (para[5], para[5]),
            'upsample_factor_grid': para[6],
            'num_frames_split': para[7],
            'max_deviation_rigid': para[8],
            'shifts_opencv': para[9],
            'use_cuda': para[10],
            'nonneg_movie': para[11],
            'border_nan': para[12]
        }
        # Create a template of the first movie
        template_index = parameters['make_template_from_trial']
        m0 = cm.load(input_mmap_file_list[1])
        [x1, x2, y1, y2] = [x_, _x, y_, _y]
        for i in range(len(input_mmap_file_list)):
            m0 = m0.crop(new_x1 - x_[i], new_x2 - _x[i], new_y1 - y_[i],
                         new_y2 - _y[i], 0, 0)
        m0_filt = cm.movie(
            np.array([
                high_pass_filter_space(m_, parameters['gSig_filt'])
                for m_ in m0
            ]))
        template0 = cm.motion_correction.bin_median(
            m0_filt.motion_correct(
                5, 5, template=None)[0])  # may be improved in the future

        # Setting the parameters
        opts = params.CNMFParams(params_dict=parameters)

        # Create a motion correction object
        mc = MotionCorrect(fname, dview=dview, **opts.get_group('motion'))

        # Perform non-rigid motion correction
        mc.motion_correct(template=template0, save_movie=True)

        # Cropping borders
        x_ = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 1].max()
                ) if np.array(mc.shifts_rig)[:, 1].max() > 0 else 0)
        _x = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 1].min()
                ) if np.array(mc.shifts_rig)[:, 1].min() < 0 else 0)
        y_ = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 0].max()
                ) if np.array(mc.shifts_rig)[:, 0].max() > 0 else 0)
        _y = math.ceil(
            abs(np.array(mc.shifts_rig)[:, 0].min()
                ) if np.array(mc.shifts_rig)[:, 0].min() < 0 else 0)

        # Load the motion corrected movie into memory
        movie = cm.load(mc.fname_tot_rig[0])
        # Crop all movies to those border pixels
        movie.crop(x_, _x, y_, _y, 0, 0)
        sql1 = "UPDATE Analysis SET alignment_x1=?, alignment_x2 =?, alignment_y1=?, alignment_y2=? WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val1 = [
            x_, _x, y_, _y, mouse, session, motion_correction_v, cropping_v
        ]
        cursor.execute(sql1, val1)

        # save motion corrected and cropped movie
        output_mmap_file_path_tot = movie.save(
            os.environ['DATA_DIR_LOCAL'] +
            f'data/interim/alignment/main/{file_name}.mmap',
            order='C')
        logging.info(
            f' Cropped and saved rigid movie as {output_mmap_file_path_tot}')
        # Remove the remaining non-cropped movie
        os.remove(mc.fname_tot_rig[0])

        # Create a timeline and store it
        sql = "SELECT trial FROM Analysis WHERE mouse = ? AND session=? AND motion_correction_v =? AND cropping_v=?"
        val = [mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql, val)
        result = cursor.fetchall()
        trial_index_list = []
        inter = []
        for i in result:
            inter += i
        for j in range(0, len(inter)):
            trial_index_list.append(inter[j])

        timeline = [[trial_index_list[0], 0]]
        timepoints = [0]
        for i in range(1, len(m_list)):
            m = m_list[i]
            timeline.append(
                [trial_index_list[i], timeline[i - 1][1] + m.shape[0]])
            timepoints.append(timepoints[i - 1] + m.shape[0])
            timeline_pkl_file_path = os.environ[
                'DATA_DIR'] + f'data/interim/alignment/meta/timeline/{file_name}.pkl'
            with open(timeline_pkl_file_path, 'wb') as f:
                pickle.dump(timeline, f)
        sql1 = "UPDATE Analysis SET alignment_timeline=? WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val1 = [
            timeline_pkl_file_path, mouse, session, motion_correction_v,
            cropping_v
        ]
        cursor.execute(sql1, val1)
        timepoints.append(movie.shape[0])

        dt = int((datetime.datetime.today() - t0).seconds /
                 60)  # timedelta in minutes
        sql1 = "UPDATE Analysis SET alignment_duration_concatenation=? WHERE mouse = ? AND session=?AND motion_correction_v =? AND cropping_v=? "
        val1 = [dt, mouse, session, motion_correction_v, cropping_v]
        cursor.execute(sql1, val1)
        logging.info(f' Performed concatenation. dt = {dt} min.')

        ## modify all motion correction file to the aligned version
        data_dir = os.environ[
            'DATA_DIR'] + 'data/interim/motion_correction/main/'
        for i in range(len(input_mmap_file_list)):
            aligned_movie = movie[timepoints[i]:timepoints[i + 1]]
            motion_correction_output_aligned = aligned_movie.save(
                data_dir + file_name + '_els' + '.mmap', order='C')
            sql1 = "UPDATE Analysis SET motion_correct_align=? WHERE motion_correction_meta=? AND motion_correction_v"
            val1 = [
                motion_correction_output_aligned, input_mmap_file_list[i],
                motion_correction_v
            ]
            cursor.execute(sql1, val1)

    database.commit()
    return
示例#9
0
def caimanAlign(fnames, frameRate=20):
    """
	fnames: list of file path
	"""

    startSeconds = time.time()

    opts = caimanOptions.createParams(fnames, frameRate=frameRate)

    #start a cluster for parallel processing (if a cluster already exists it will be closed and a new session will be opened)
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    #
    # create a motion correction object with the parameters specified.
    #Note that the file is not loaded in memory
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))

    # set mmap_file
    '''
	tmpPath, tmpExt = os.path.splitext(fnames[0])
	tmpPath += '.mmap'
	print('setting mc.mmap_file to tmpPath:', tmpPath)
	mc.mmap_file = tmpPath
	'''
    #print('mc.mmap_file:', mc.mmap_file)
    #
    # perform motion correction
    # We will perform piecewise rigid motion correction using the NoRMCorre algorithm.
    # This has already been selected by setting pw_rigid=True when defining the parameters object.
    print('  performing motion correction ... please wait ...', fnames[0])
    mc.motion_correct(save_movie=True)
    m_els = cm.load(mc.fname_tot_els)
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    print('  border_to_0:', border_to_0)
    # maximum shift to be used for trimming against NaNs

    #
    # memory mapping
    print('  memory mapping')
    print('    save_memmap mc.mmap_file:', mc.mmap_file)
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0,
                               dview=dview)  # exclude borders
    print('    mc.mmap_file:', mc.mmap_file)
    print('    fname_new:', fname_new)

    # make a copy of mmap file with a sane name
    # does not work, seems you can not 'copy' a mmap file like a normal file
    '''
	tmpSavePath, tmpExt = os.path.splitext(fnames[0])
	tmpSavePath += '.mmap' # need to be _aligned_ch1.tif
	shutil.copyfile(fname_new, tmpSavePath)
	'''

    # save a _mmap.txt file with the name of the memory map file
    '''
	tmpFile, tmpFilename = os.path.splitext(fnames[0])
	tmpFile += '_mmap.txt'
	with open(tmpFile, 'w') as myTmpFile:
		myTmpFile.write(fname_new)
	'''

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    #load frames in python format (T x X x Y)

    # save as .tif
    images_8bit = ((images - images.min()) / (images.ptp() / 255.0)).astype(
        np.uint8)  # map the data range to 0 - 255
    tmpSavePath, tmpExt = os.path.splitext(fnames[0])
    tmpSavePath += '_aligned.tif'  # need to be _aligned_ch1.tif
    print('    saving aligned .tif', images_8bit.shape, images_8bit.dtype,
          'tmpSavePath:', tmpSavePath)
    tifffile.imsave(tmpSavePath, images_8bit, bigtiff=True)

    # shut down the cluster
    if 'dview' in locals():
        cm.stop_server(dview=dview)

    # remove mmap file fname_new
    if os.path.isfile(fname_new):
        print('  removing mmap file:', fname_new)
        os.remove(fname_new)
    oneFile = mc.mmap_file[0]
    if os.path.isfile(oneFile):
        print('  removing mmap file mc.mmap_file[0]:', oneFile)
        os.remove(oneFile)

    # done
    stopSeconds = time.time()
    elapsedSeconds = round(stopSeconds - startSeconds, 3)
    elapsedMinutes = round(elapsedSeconds / 60, 3)
    print(f'  caimanAlign() done in {elapsedMinutes} minutes')
示例#10
0
def run_alignmnet(states_df, parameters, dview):
    '''
    This is the main function for the alignment step. It applies methods 
    from the CaImAn package used originally in motion correction
    to do alignment. 
    
    Args:
        df: pd.DataFrame
            A dataframe containing the analysis states you want to have aligned.
        parameters: dict
            The alignment parameters.
        dview: object
            The dview object
            
    Returns:
        df: pd.DataFrame
            A dataframe containing the aligned analysis states. 
    '''

    # Sort the dataframe correctly
    df = states_df.copy()
    df = df.sort_values(by=paths.multi_index_structure)

    # Determine the mouse and session of the dataset
    index = df.iloc[0].name
    mouse, session, *r = index
    #alignment_v = index[len(paths.data_structure) + step_index]
    alignment_v = len(df)
    alignment_index = (mouse, session, alignment_v)

    # Determine the output .mmap file name
    file_name = f'mouse_{mouse}_session_{session}_v{alignment_v}'
    output_mmap_file_path = f'data/interim/alignment/main/{file_name}.mmap'

    try:
        df.reset_index()[['trial', 'is_rest']].set_index(['trial', 'is_rest'],
                                                         verify_integrity=True)
    except ValueError:
        logging.error(
            'You passed multiple of the same trial in the dataframe df')
        return df

    output = {
        'meta': {
            'analysis': {
                'analyst': os.environ['ANALYST'],
                'date': datetime.datetime.today().strftime("%m-%d-%Y"),
                'time': datetime.datetime.today().strftime("%H:%M:%S")
            },
            'duration': {}
        }
    }

    # Get necessary parameters
    motion_correction_parameters_list = []
    motion_correction_output_list = []
    input_mmap_file_list = []
    trial_index_list = []
    for idx, row in df.iterrows():
        motion_correction_parameters_list.append(
            eval(row.loc['motion_correction_parameters']))
        motion_correction_output = eval(row.loc['motion_correction_output'])
        motion_correction_output_list.append(motion_correction_output)
        input_mmap_file_list.append(motion_correction_output['main'])
        trial_index_list.append(db.get_trial_name(idx[2], idx[3]))

    # MOTION CORRECTING EACH INDIVIDUAL MOVIE WITH RESPECT TO A TEMPLATE MADE OF THE FIRST MOVIE
    logging.info(
        f'{alignment_index} Performing motion correction on all movies with respect to a template made of \
    the first movie.')
    t0 = datetime.datetime.today()

    # Create a template of the first movie
    template_index = trial_index_list.index(
        parameters['make_template_from_trial'])
    m0 = cm.load(input_mmap_file_list[template_index])
    m0_filt = cm.movie(
        np.array([
            high_pass_filter_space(m_, parameters['gSig_filt']) for m_ in m0
        ]))
    template0 = cm.motion_correction.bin_median(
        m0_filt.motion_correct(
            5, 5, template=None)[0])  # may be improved in the future

    # Setting the parameters
    opts = params.CNMFParams(params_dict=parameters)

    # Create a motion correction object
    mc = MotionCorrect(input_mmap_file_list,
                       dview=dview,
                       **opts.get_group('motion'))

    # Perform non-rigid motion correction
    mc.motion_correct(template=template0, save_movie=True)

    # Cropping borders
    x_ = math.ceil(
        abs(np.array(mc.shifts_rig)[:, 1].max()
            ) if np.array(mc.shifts_rig)[:, 1].max() > 0 else 0)
    _x = math.ceil(
        abs(np.array(mc.shifts_rig)[:, 1].min()
            ) if np.array(mc.shifts_rig)[:, 1].min() < 0 else 0)
    y_ = math.ceil(
        abs(np.array(mc.shifts_rig)[:, 0].max()
            ) if np.array(mc.shifts_rig)[:, 0].max() > 0 else 0)
    _y = math.ceil(
        abs(np.array(mc.shifts_rig)[:, 0].min()
            ) if np.array(mc.shifts_rig)[:, 0].min() < 0 else 0)

    dt = int(
        (datetime.datetime.today() - t0).seconds / 60)  # timedelta in minutes
    output['meta']['duration']['motion_correction'] = dt
    logging.info(
        f'{alignment_index} Performed motion correction. dt = {dt} min.')

    # CONCATENATING ALL MOTION CORRECTED MOVIES
    logging.info(
        f'{alignment_index} Concatenating all motion corrected movies.')

    # Load all movies into memory
    m_list = [cm.load(fname) for fname in mc.fname_tot_rig]

    # Crop all movies to those border pixels
    for idx, m in enumerate(m_list):
        m_list[idx] = m.crop(x_, _x, y_, _y, 0, 0)
    output['meta']['cropping_points'] = [x_, _x, y_, _y]

    # Concatenate them using the concat function
    m_concat = cm.concatenate(m_list, axis=0)

    # Create a timeline and store it
    timeline = [[trial_index_list[0], 0]]
    for i in range(1, len(m_list)):
        m = m_list[i]
        timeline.append([trial_index_list[i], timeline[i - 1][1] + m.shape[0]])
#    timeline_pkl_file_path = f'data/interim/alignment/meta/timeline/{file_name}.pkl'
#    with open(timeline_pkl_file_path,'wb') as f:
#        pickle.dump(timeline,f)
#    output['meta']['timeline'] = timeline_pkl_file_path
    output['meta']['timeline'] = timeline

    # Save the concatenated movie
    output_mmap_file_path_tot = m_concat.save(output_mmap_file_path)
    output['main'] = output_mmap_file_path_tot

    #    # Delete the motion corrected movies
    #    for fname in mc.fname_tot_rig:
    #        os.remove(fname)

    dt = int(
        (datetime.datetime.today() - t0).seconds / 60)  # timedelta in minutes
    output['meta']['duration']['concatenation'] = dt
    logging.info(f'{alignment_index} Performed concatenation. dt = {dt} min.')

    for idx, row in df.iterrows():
        df.loc[idx, 'alignment_output'] = str(output)
        df.loc[idx, 'alignment_parameters'] = str(parameters)

    return df
示例#11
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

#%% Select file(s) to be processed (download if not present)
    fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fnames = [download_demo(fnames[0])]

#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 30             # imaging rate in frames per second
    decay_time = 0.4    # length of a typical transient in seconds
    dxy = (2., 2.)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

# %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

# %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

# %% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie,
                                      m_els.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 2                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 15
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 4                    # number of components per patch
    gSig = [4, 4]            # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'p': p,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub}

    opts.change_params(params_dict=opts_dict);
# %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0). If you want to have
    # deconvolution within each patch change params.patch['p_patch'] to a
    # nonzero value

    #opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

# %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

# %% plot contours of found components
    Cns = local_correlations_movie_offline(mc.mmap_file[0],
                                           remove_baseline=True, window=1000, stride=1000,
                                           winSize_baseline=100, quantil_min_baseline=10,
                                           dview=dview)
    Cn = Cns.max(axis=0)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')
#%% save results
    cnm.estimates.Cn = Cn
    cnm.save(fname_new[:-5]+'_init.hdf5')

# %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1 # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest})
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)
    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)

    # %% VIEW TRACES (accepted and rejected)

    if display_images:
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components)
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components_bad)
    #%% update object with selected components
    cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces
    cnm2.estimates.view_components(img=Cn)
    #%%
    cnm2.estimates.Cn = Cn
    cnm2.save(cnm2.mmap_file[:-4] + 'hdf5')
    #%% reconstruct denoised movie (press q to exit)
    if display_images:
        cnm2.estimates.play_movie(images, q_max=99.9, gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#12
0
class MakeMasks3D:
    """Not yet fully working so dont use!"""
    def __init__(self, tiff, channels, planes, x_start, x_end, mc_opts, use_green_ch=False,):
        self.tiff = tiff
        self.channels = channels
        self.planes = planes
        self.x_start = x_start
        self.x_end = x_end
        self.xslice = slice(x_start, x_end)
        self.mc_opts = mc_opts
        self.use_green_ch = use_green_ch
        if self.use_green_ch == True:
            self.channel2use = 0
        else:
            self.channel2use = 1

        if self.mc_opts:
            self.opts = params.CNMFParams(params_dict=mc_opts)
        
        self.file_list = []
        self.images = []
        self.motion_corrected_images = []
        self.masks = []
        self.coords = None
        self.corr_images = []
        
    def crop_tiffs(self):
        self.images = []
        self.file_list = []
        for plane in list(range(self.planes)):
            time_slice = slice(plane*self.channels+self.channel2use, -1, self.channels*self.planes)
            with ScanImageTiffReader(self.tiff) as reader:
                data = reader.data()
                data = data[time_slice, : , self.xslice]
            self.images.append(data)
            tif_name = self.tiff.split('.')[0] + '_template_plane' + str(plane) + '.tif'
            self.file_list.append(tif_name)
            tifffile.imsave(tif_name, data)
            
    def view_planes(self):
        fig, axes = plt.subplots(1, self.planes, constrained_layout=True)
        for i,ax in enumerate(axes):
            image = self.images[i].mean(axis=0)
            ax.imshow(image)
            ax.set_aspect('equal', 'box')
            ax.axis('off')
            ax.set_title(f'Plane {i}')
        fig.suptitle('Original')
            
    def view_corrected(self):
        fig, axes = plt.subplots(1, self.planes, constrained_layout=True)
        for i,ax in enumerate(axes):
            image = self.motion_corrected_images[i]
            ax.imshow(image)
            ax.set_aspect('equal', 'box')
            ax.axis('off')
            ax.set_title(f'Plane {i}')
        fig.suptitle('Corrected')
    
    def view_corr(self):
        self.corr_images = []
        fig, axes = plt.subplots(1, self.planes, constrained_layout=True)
        for i,ax in enumerate(axes):
            image = self.motion_corrected_images[i]
            corr_im = cm.local_correlations(image, swap_dim=False)
            self.corr_images.append(corr_im)
            ax.imshow(image)
            ax.set_aspect('equal', 'box')
            ax.axis('off')
            ax.set_title(f'Plane {i}')
        fig.suptitle('Correlation Image')
        
    def motion_correct_red(self):
        c, dview, n_processes = cm.cluster.setup_cluster(
            backend='local', n_processes=None, single_thread=False)
        
        self.motion_corrected_images = []
        for plane in list(range(self.planes)):
            print(f'Starting motion correction plane {plane}')
            self.mc = MotionCorrect(self.file_list[plane], dview=dview, **self.opts.get_group('motion'))
            self.mc.motion_correct()
            self.motion_corrected_images.append(self.mc.total_template_els)
        cm.stop_server(dview=dview)
            
    def extract_masks(self, radius=7):
        self.masks = []
        self.coords = []
        if len(self.motion_corrected_images) > 0:
            image_source = self.motion_corrected_images
        else:
            image_source = self.images
        for plane in range(self.planes):
            self.masks.append(cm.base.rois.extract_binary_masks_from_structural_channel(image_source[plane])[0])
            self.coords.append(cm.utils.visualization.get_contours(self.masks[plane], 
                                                                   image_source[plane].shape,
                                                                   thr=0.99,
                                                                   thr_method='max'))
        
    def run(self):
        self.crop_tiffs()
        self.motion_correct_red()
        self.extract_masks()
示例#13
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %% start the cluster
    try:
        cm.stop_server()  # stop it if it was running
    except ():
        pass

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local',
        n_processes=
        24,  # number of process to use, if you go out of memory try to reduce this one
        single_thread=False)

    # %% First setup some parameters for motion correction
    # dataset dependent parameters
    fnames = ['data_endoscope.tif']  # filename to be processed
    fnames = [download_demo(fnames[0])]  # download file if not already present
    filename_reorder = fnames
    fr = 10  # movie frame rate
    decay_time = 0.4  # length of a typical transient in seconds

    # motion correction parameters
    motion_correct = True  # flag for motion correction
    pw_rigid = False  # flag for pw-rigid motion correction

    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    #                      change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3
    border_nan = 'copy'

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = params.CNMFParams(params_dict=mc_dict)

    # %% MOTION CORRECTION
    #  The pw_rigid flag set above, determines where to use rigid or pw-rigid
    #  motion correction
    if motion_correct:
        # do motion correction rigid
        mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
        mc.motion_correct(save_movie=True)
        fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
        if pw_rigid:
            bord_px = np.ceil(
                np.maximum(np.max(np.abs(mc.x_shifts_els)),
                           np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
        else:
            bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)
            plt.subplot(1, 2, 1)
            plt.imshow(mc.total_template_rig)  # % plot template
            plt.subplot(1, 2, 2)
            plt.plot(mc.shifts_rig)  # % plot rigid shifts
            plt.legend(['x shifts', 'y shifts'])
            plt.xlabel('frames')
            plt.ylabel('pixels')

        bord_px = 0 if border_nan == 'copy' else bord_px
        fname_new = cm.save_memmap(fname_mc,
                                   base_name='memmap_',
                                   order='C',
                                   border_to_0=bord_px)
    else:  # if no motion correction just memory map the file
        fname_new = cm.save_memmap(filename_reorder,
                                   base_name='memmap_',
                                   order='C',
                                   border_to_0=0,
                                   dview=dview)

    # load memory mappable file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = Yr.T.reshape((T, ) + dims, order='F')

    # %% Parameters for source extraction and deconvolution (CNMF-E algorithm)

    p = 1  # order of the autoregressive system
    K = None  # upper bound on number of components per patch, in general None for 1p data
    gSig = (
        3, 3
    )  # gaussian width of a 2D gaussian kernel, which approximates a neuron
    gSiz = (13, 13)  # average diameter of a neuron, in general 4*gSig+1
    Ain = None  # possibility to seed with predetermined binary masks
    merge_thr = .7  # merging threshold, max correlation allowed
    rf = 40  # half-size of the patches in pixels. e.g., if rf=40, patches are 80x80
    stride_cnmf = 20  # amount of overlap between the patches in pixels
    #                     (keep it at least large as gSiz, i.e 4 times the neuron size gSig)
    tsub = 2  # downsampling factor in time for initialization,
    #                     increase if you have memory problems
    ssub = 1  # downsampling factor in space for initialization,
    #                     increase if you have memory problems
    #                     you can pass them here as boolean vectors
    low_rank_background = None  # None leaves background of each patch intact,
    #                     True performs global low-rank approximation if gnb>0
    gnb = 0  # number of background components (rank) if positive,
    #                     else exact ring model with following settings
    #                         gnb= 0: Return background as b and W
    #                         gnb=-1: Return full rank background B
    #                         gnb<-1: Don't return background
    nb_patch = 0  # number of background components (rank) per patch if gnb>0,
    #                     else it is set automatically
    min_corr = .8  # min peak value from correlation image
    min_pnr = 10  # min peak to noise ration from PNR image
    ssub_B = 2  # additional downsampling factor in space for background
    ring_size_factor = 1.4  # radius of ring is gSiz*ring_size_factor

    opts.change_params(
        params_dict={
            'dims': dims,
            'method_init': 'corr_pnr',  # use this for 1 photon
            'K': K,
            'gSig': gSig,
            'gSiz': gSiz,
            'merge_thr': merge_thr,
            'p': p,
            'tsub': tsub,
            'ssub': ssub,
            'rf': rf,
            'stride': stride_cnmf,
            'only_init': True,  # set it to True to run CNMF-E
            'nb': gnb,
            'nb_patch': nb_patch,
            'method_deconvolution': 'oasis',  # could use 'cvxpy' alternatively
            'low_rank_background': low_rank_background,
            'update_background_components':
            True,  # sometimes setting to False improve the results
            'min_corr': min_corr,
            'min_pnr': min_pnr,
            'normalize_init': False,  # just leave as is
            'center_psf': True,  # leave as is for 1 photon
            'ssub_B': ssub_B,
            'ring_size_factor': ring_size_factor,
            'del_duplicates':
            True,  # whether to remove duplicates from initialization
            'border_pix': bord_px
        })  # number of pixels to not consider in the borders)

    # %% compute some summary images (correlation and peak to noise)
    # change swap dim if output looks weird, it is a problem with tiffile
    cn_filter, pnr = cm.summary_images.correlation_pnr(images[::1],
                                                       gSig=gSig[0],
                                                       swap_dim=False)
    # if your images file is too long this computation will take unnecessarily
    # long time and consume a lot of memory. Consider changing images[::1] to
    # images[::5] or something similar to compute on a subset of the data

    # inspect the summary images and set the parameters
    inspect_correlation_pnr(cn_filter, pnr)
    # print parameters set above, modify them if necessary based on summary images
    print(min_corr)  # min correlation of peak (from correlation image)
    print(min_pnr)  # min peak to noise ratio

    # %% RUN CNMF ON PATCHES
    cnm = cnmf.CNMF(n_processes=n_processes, dview=dview, Ain=Ain, params=opts)
    cnm.fit(images)

    # %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #    cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #    cnm1.fit_file(motion_correct=True)

    # %% DISCARD LOW QUALITY COMPONENTS
    min_SNR = 2.5  # adaptive way to set threshold on the transient size
    r_values_min = 0.85  # threshold on space consistency (if you lower more components
    #                        will be accepted, potentially with worst quality)
    cnm.params.set('quality', {
        'min_SNR': min_SNR,
        'rval_thr': r_values_min,
        'use_cnn': False
    })
    cnm.estimates.evaluate_components(images, cnm.params, dview=dview)

    print(' ***** ')
    print('Number of total components: ', len(cnm.estimates.C))
    print('Number of accepted components: ', len(cnm.estimates.idx_components))

    # %% PLOT COMPONENTS
    cnm.dims = dims
    display_images = True  # Set to true to show movies and images
    if display_images:
        cnm.estimates.plot_contours(img=cn_filter,
                                    idx=cnm.estimates.idx_components)
        cnm.estimates.view_components(images, idx=cnm.estimates.idx_components)

# %% MOVIES
    display_images = False  # Set to true to show movies and images
    if display_images:
        # fully reconstructed movie
        cnm.estimates.play_movie(images,
                                 q_max=99.5,
                                 magnification=2,
                                 include_bck=True,
                                 gain_res=10,
                                 bpx=bord_px)
        # movie without background
        cnm.estimates.play_movie(images,
                                 q_max=99.9,
                                 magnification=2,
                                 include_bck=False,
                                 gain_res=4,
                                 bpx=bord_px)

# %% STOP SERVER
    cm.stop_server(dview=dview)
示例#14
0
def run(
    file_path,
    n_cpus,
    motion_correct: bool = True,
    mc_settings: dict = {},
    job_name: str = "job",
    output_directory: str = "",
):
    mkl = os.environ.get("MKL_NUM_THREADS")
    blas = os.environ.get("OPENBLAS_NUM_THREADS")
    vec = os.environ.get("VECLIB_MAXIMUM_THREADS")
    print(f"MKL: {mkl}")
    print(f"blas: {blas}")
    print(f"vec: {vec}")

    # we import the pipeline upon running so they aren't required for all installs
    import caiman as cm
    from caiman.motion_correction import MotionCorrect
    from caiman.source_extraction.cnmf import params as params

    # print the directory caiman is imported from
    caiman_path = os.path.abspath(cm.__file__)
    print(f"caiman path: {caiman_path}")
    sys.stdout.flush()

    # setup the logger
    logger_file = os.path.join(output_directory, "caiman.log")
    logging.basicConfig(
        format=LOGGER_FORMAT,
        filename=logger_file,
        filemode="w",
        level=logging.DEBUG,
    )

    # if indices to perform mcorr are set, format them
    if "indices" in mc_settings:
        indices = mc_settings["indices"]

        indices_formatted = ()
        for axis_slice in indices:
            start = axis_slice[0]
            stop = axis_slice[1]
            if len(axis_slice) == 3:
                step = axis_slice[2]
            else:
                step = 1
            indices_formatted += (slice(start, stop, step), )
        mc_settings["indices"] = indices_formatted
    # load and update the pipeline settings
    mc_parameters = DEFAULT_MCORR_SETTINGS
    for k, v in mc_settings.items():
        mc_parameters[k] = v

    opts = params.CNMFParams(params_dict=mc_parameters)

    # get the filenames
    if os.path.isfile(file_path):
        print(file_path)
        fnames = [file_path]
    else:
        file_pattern = os.path.join(file_path, "*.tif*")
        fnames = sorted(glob.glob(file_pattern))
    print(fnames)
    opts.set("data", {"fnames": fnames})

    if n_cpus > 1:
        print("starting server")
        # start the server
        n_proc = np.max([(n_cpus - 1), 1])
        c, dview, n_processes = cm.cluster.setup_cluster(backend="local",
                                                         n_processes=n_proc,
                                                         single_thread=False)
        sleep(30)
    else:
        print("multiprocessing disabled")
        dview = None
        n_processes = 1
    print(n_processes)
    print("starting motion correction")
    sys.stdout.flush()

    mc = MotionCorrect(fnames, dview=dview, **opts.get_group("motion"))
    mc.motion_correct(save_movie=True)
    pw_rigid = mc_parameters["pw_rigid"]
    fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
    if pw_rigid:
        bord_px = np.ceil(
            np.maximum(np.max(np.abs(mc.x_shifts_els)),
                       np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
    else:
        bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)

    border_nan = mc_parameters["border_nan"]
    bord_px = 0 if border_nan == "copy" else bord_px
    _ = cm.save_memmap(fname_mc,
                       base_name="memmap_",
                       order="C",
                       border_to_0=bord_px)

    # if motion correction was performed, save the file
    # we save as hdf5 for better reading performance
    # downstream
    if motion_correct:
        print("saving motion corrected file")
        results_filebase = os.path.join(output_directory, job_name)
        mcorr_fname = results_filebase + "_mcorr.hdf5"
        dataset_name = opts.data["var_name_hdf5"]
        # fnames = opts.data["fnames"]
        # memmap_files = []
        # for f in fnames:
        #     if isinstance(f, bytes):
        #         f = f.decode()
        #     base_file = os.path.splitext(f)[0]
        #     if pw_rigid:
        #         memmap_pattern = base_file + "*_els_*"
        #     else:
        #         memmap_pattern = base_file + "*_rig_*"
        #     memmap_files += sorted(glob.glob(memmap_pattern))

        if pw_rigid:
            memmap_files = mc.fname_tot_els
        else:
            memmap_files = mc.fname_tot_rig

        # get the frame shape
        mov = cm.load(memmap_files[0])
        frame_shape = mov.shape[-2::]

        write_hdf5_movie(
            movie_name=mcorr_fname,
            memmap_files=memmap_files,
            frame_shape=frame_shape,
            dataset_name=dataset_name,
            compression="gzip",
        )

    # save the parameters in the same dir as the results
    final_params = opts.to_dict()
    params_file = os.path.join(output_directory, "all_mcorr_parameters.pkl")
    with open(params_file, "wb") as fp:
        pickle.dump(final_params, fp)

    # deleting mcorr unused memmap files
    if pw_rigid:
        memmap_files = mc.fname_tot_els
    else:
        memmap_files = mc.fname_tot_rig
    print(f"deleting {memmap_files}")
    for f in memmap_files:
        os.remove(f)

    print("stopping server")
    cm.stop_server(dview=dview)
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %% Please download the .npz file manually to your file path. 
    url = 'https://www.dropbox.com/s/tuv1bx9w6wdywnm/demo_voltage_imaging.npz?dl=0'  
    
    # %% Load demo movie and ROIs
    file_path = '/home/nel/Code/Voltage_imaging/exampledata/403106_3min/demo_voltage_imaging.npz'
    m = np.load(file_path)
    mv = cm.movie(m.f.arr_0)
    ROIs = m.f.arr_1
    
    # %% Save the movie  
    fnames = '/home/nel/Code/Voltage_imaging/exampledata/403106_3min/demomovie_voltage_imaging.hdf5'
    mv.save(fnames)                                 # neglect the warning

    # %% Setup some parameters for data and motion correction
    # dataset parameters
    fr = 400                                        # sample rate of the movie
    index = list(range(ROIs.shape[0]))              # index of neurons
    weights = None                                  # reuse spatial weights by 
                                                    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    motion_correct = True                           # flag for motion correction
    pw_rigid = True                                 # flag for pw-rigid motion correction
    gSig_filt = (3, 3)                              # size of filter, in general gSig (see below),
                                                    # change this one if algorithm does not work
    max_shifts = (5, 5)                             # maximum allowed rigid shift
    strides = (48, 48)                              # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24)                             # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3                         # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs':ROIs,
        'weights':weights,              
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=mc_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=12, single_thread=False)

    # %%% MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mc_pw = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction 
    mc_pw.motion_correct(save_movie=True)

    # %% motion correction compared with original movie
    display_images = True

    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc_pw.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc_pw.min_mov * mc_pw.nonneg_movie,
                                      m_rig.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

    # %% movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        moviehandle1 = cm.concatenate([m_orig2.resize(1, 1, ds_ratio),
                                       m_rig2.resize(1, 1, ds_ratio)], axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2) 

   # %% change fnames to the new motion corrected one
    fname_new = mc_pw.mmap_file[0]  # memory map file name
    opts.change_params(params_dict={'fnames':fname_new})

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=12, single_thread=False)

    # %% process cells using volspike function
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit()

    # %% some visualization
    vpy.estimates['cellN']
    n = 0  # cell you are interested in

    plt.figure()
    plt.plot(vpy.estimates['trace'][n])
    plt.plot(vpy.estimates['spikeTimes'][n], np.max(vpy.estimates['trace'][n]) * 1 * np.ones(vpy.estimates['spikeTimes'][n].shape),
             color='g', marker='o', fillstyle='none', linestyle='none')
    plt.title('signal and spike times')
    plt.show()

    plt.figure()
    plt.imshow(vpy.estimates['spatialFilter'][n])
    plt.colorbar()
    plt.title('spatial filter')
    plt.show()

    # %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
def piecewise_rigid_registration(fnames,
                                 max_shifts=(6, 6),
                                 strides=(48, 48),
                                 overlaps=(24, 24),
                                 num_frames_split=100,
                                 max_deviation_rigid=3,
                                 pw_rigid=False,
                                 shifts_opencv=True,
                                 border_nan='copy',
                                 highPassFilter=False,
                                 sigma=7):
    '''Apply CaImAn piecewise rigid registration on raw imaging data

    :param fnames: full path filename for motion correction, possible extensions are tif, avi, npy
    :param max_shifts: maximum allowed rigid shift in pixels (view the movie to get a sense of motion)
    :param strides: create a new patch every x pixels for pw-rigid correction
    :param overlaps: overlap between pathes (size of patch strides+overlaps)
    :param num_frames_split: length in frames of each chunk of the movie (to be processed in parallel)
    :param max_deviation_rigid: maximum deviation allowed for patch with respect to rigid shifts
    :param pw_rigid: flag for performing rigid or piecewise rigid motion correction
    :param shifts_opencv: flag for correcting motion using bicubic interpolation (otherwise FFT interpolation is used)
    :param border_nan: replicate values along the boundary (if True, fill in with NaN)
    :param highPassFilter: whether applying high pass filter
    :param sigma: lowpass gaussian filter sigma value

    :return: motion corrected image in numpy
    '''

    fnames = [fnames]
    m_orig = cm.load_movie_chain(fnames)
    if 'dview' in locals():
        cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # create a motion correction object
    mc = MotionCorrect(fnames,
                       dview=dview,
                       max_shifts=max_shifts,
                       strides=strides,
                       overlaps=overlaps,
                       max_deviation_rigid=max_deviation_rigid,
                       shifts_opencv=shifts_opencv,
                       nonneg_movie=True,
                       border_nan=border_nan)

    # correct for rigid motion correction and save the file (in memory mapped form)
    mc.motion_correct(save_movie=True)

    # load motion corrected movie and apply piece-wise rigid registration
    m_rig = cm.load(mc.mmap_file)
    mc.pw_rigid = True  # turn the flag to True for pw-rigid motion correction
    mc.template = mc.mmap_file  # use the template obtained before to save in computation (optional)
    mc.motion_correct(save_movie=True, template=mc.total_template_rig)
    cm.stop_server(dview=dview)  # stop the server
    m_els = cm.load(mc.fname_tot_els)

    Y = np.array(m_els.tolist())
    if highPassFilter:
        Y = high_pass_filtering(Y, sigma)
    return Y
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo(
        'demo_voltage_imaging.hdf5',
        'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo(
        'demo_voltage_imaging_ROIs.hdf5',
        'volpy')  # file path to ROIs file (will download if not present)
    file_dir = os.path.split(fnames)[0]

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the movie press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=40, magnification=4)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    do_motion_correction = True
    if do_motion_correction:
        mc.motion_correct(save_movie=True)
    else:
        mc_list = [
            file for file in os.listdir(file_dir)
            if (os.path.splitext(os.path.split(fnames)[-1])[0] in file
                and '.mmap' in file)
        ]
        mc.mmap_file = [os.path.join(file_dir, mc_list[0])]
        print(f'reuse previously saved motion corrected file:{mc.mmap_file}')

# %% compare with original movie
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate(
            [m_orig.resize(1, 1, ds_ratio),
             m_rig.resize(1, 1, ds_ratio)],
            axis=2)
        moviehandle.play(fr=40, q_max=99.5, magnification=4)  # press q to exit

# %% MEMORY MAPPING
    do_memory_mapping = True
    if do_memory_mapping:
        border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
        # you can include the boundaries of the FOV if you used the 'copy' option
        # during motion correction, although be careful about the components near
        # the boundaries

        # memory map the file in order 'C'
        fname_new = cm.save_memmap_join(
            mc.mmap_file,
            base_name='memmap_' +
            os.path.splitext(os.path.split(fnames)[-1])[0],
            add_to_mov=border_to_0,
            dview=dview)  # exclude border
    else:
        mmap_list = [
            file for file in os.listdir(file_dir)
            if ('memmap_' +
                os.path.splitext(os.path.split(fnames)[-1])[0]) in file
        ]
        fname_new = os.path.join(file_dir, mmap_list[0])
        print(f'reuse previously saved memory mapping file:{fname_new}')

# %% SEGMENTATION
# create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when there is too much noise in the video
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_images = np.stack([img, img, img_corr], axis=0).astype(np.float32)
    # save summary images which are used in the VolPy GUI
    cm.movie(summary_images).save(fnames[:-5] + '_summary_images.tif')
    fig, axs = plt.subplots(1, 2)
    axs[0].imshow(summary_images[0])
    axs[1].imshow(summary_images[2])
    axs[0].set_title('mean image')
    axs[1].set_title('corr image')

    #%% methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotations need prepared annotated datasets in the same format as demo_voltage_imaging_ROIs.hdf5 
        'maskrcnn',  # Mask R-CNN is a convolutional neural network trained for detecting neurons in summary images
        'gui_annotation'
    ]  # use VolPy GUI to correct outputs of Mask R-CNN or annotate new datasets

    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'maskrcnn':  # Important!! Make sure install keras before using mask rcnn.
        weights_path = download_model(
            'mask_rcnn'
        )  # also make sure you have downloaded the new weight. The weight was updated on Dec 1st 2020.
        ROIs = utils.mrcnn_inference(
            img=summary_images.transpose([1, 2, 0]),
            size_range=[5, 22],
            weights_path=weights_path,
            display_result=True
        )  # size parameter decides size range of masks to be selected
        cm.movie(ROIs).save(fnames[:-5] + 'mrcnn_ROIs.hdf5')

    elif method == 'gui_annotation':
        # run volpy_gui.py file in the caiman/source_extraction/volpy folder
        gui_ROIs = caiman_datadir() + '/example_movies/volpy/gui_roi.hdf5'
        with h5py.File(gui_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    fig, axs = plt.subplots(1, 2)
    axs[0].imshow(summary_images[0])
    axs[1].imshow(ROIs.sum(0))
    axs[0].set_title('mean image')
    axs[1].set_title('masks')

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    visualize_ROI = False  # whether to visualize the region of interest inside the context region
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    clip = 100  # maximum number of spikes to form spike template
    threshold_method = 'adaptive_threshold'  # adaptive_threshold or simple
    min_spikes = 10  # minimal spikes to be found
    pnorm = 0.5  # a variable deciding the amount of spikes chosen for adaptive threshold method
    threshold = 3  # threshold for finding spikes only used in simple threshold method, Increase the threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.01  # ridge regression regularizer strength for background removement, larger value specifies stronger regularization
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # ridge or NMF for weight update
    n_iter = 2  # number of iterations alternating between estimating spike times and spatial filters

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'visualize_ROI': visualize_ROI,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'clip': clip,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'pnorm': pnorm,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update,
        'n_iter': n_iter
    }

    opts.change_params(params_dict=opts_dict)

    #%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    display_images = True
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates.copy(),
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

#%% save the result in .npy format
    save_result = True
    if save_result:
        vpy.estimates['ROIs'] = ROIs
        vpy.estimates['params'] = opts
        save_name = f'volpy_{os.path.split(fnames)[1][:-5]}_{threshold_method}'
        np.save(os.path.join(file_dir, save_name), vpy.estimates)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#18
0
def main():
#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 15.49             # imaging rate in frames per second
    decay_time = 0.9    # length of a typical transient in seconds
    dxy = (1.4, 1.4)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

# %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='_memmap_', order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

# %%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 3                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 20                  # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 3                    # number of components per patch
    gSig = [7, 7]            # expected half size of neurons in pixels
    method_init = 'greedy_roi'   # initialization method (if analyzing dendritic data using 'sparse_nmf')
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization
    s_min = -20                   # minimum signal amplitude needed in order for a transient to be considered as activity

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub,
                 's_min': s_min}

    opts.change_params(params_dict=opts_dict)

# %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)
    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

# %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)


# %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # Overall minimum signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.15 # neurons with cnn probability lower than this value are rejected
    min_size_neuro = 0.1*gSig[0]*np.pi**2
    max_size_neuro = 2.5*gSig[0]*np.pi**2

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest,
                               'min_size_neuro': min_size_neuro,
                               'max_size_neuro': max_size_neuro,})

    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    #%% update object with selected components
    cnm2.estimates.select_components(use_object=True)

    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)


    #cnm2.estimates.threshold_spatial_components(maxthr=0.85)
    #cnm2.estimates.remove_small_large_neurons(min_size_neuro=min_size_neuro, max_size_neuro=max_size_neuro)

    # %% Generate heat image of video and save data
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm2.estimates.Cn = Cn
    cnm2.save(cnm2.mmap_file[:-4] + 'hdf5')


    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)

    #Create denoised video as matrix
    denoised = cm.movie(cnm2.estimates.A.dot(cnm2.estimates.C) + \
                    cnm2.estimates.b.dot(cnm2.estimates.f)).reshape(dims + (-1,), order='F').transpose([2, 0, 1])

    #Normalizing denoised matrix to the [0,255] range prior to type conversion
    max_pixel = np.nanmax(denoised)
    norm_denoised = (denoised/max_pixel)*255

    #Type conversion so imageio doesn't get mad
    norm_denoised = np.uint8(norm_denoised)

    #Saving a denoised avi of the analyzed video
    sname = Path(args.in_file).stem + '.avi'
    imageio.mimwrite(sname, norm_denoised, fps=15.49)
示例#19
0
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo(
        'demo_voltage_imaging.hdf5',
        'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo(
        'demo_voltage_imaging_ROIs.hdf5',
        'volpy')  # file path to ROIs file (will download if not present)

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the movie press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=40, magnification=6)

# %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    mc.motion_correct(save_movie=True)

    # %% compare with original movie
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_rig.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=4)  # press q to exit

# %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview)  # exclude border

    # %% SEGMENTATION
    # create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)

    gaussian_blur = False  # Use gaussian blur when the quality of corr image(Cn) is bad
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=fr * 4,
                                          stride=fr * 4,
                                          winSize_baseline=fr,
                                          remove_baseline=True,
                                          gaussian_blur=gaussian_blur,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)

    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'quick_annotation',  # quick annotation annotates data with simple interface in python
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]

    elif method == 'quick_annotation':
        ROIs = utils.quick_annotation(img, min_radius=4, max_radius=8)

    elif method == 'maskrcnn':  # Important!! make sure install keras before using mask rcnn
        weights_path = download_model('mask_rcnn')
        ROIs = utils.mrcnn_inference(img=summary_image,
                                     weights_path=weights_path,
                                     display_result=True)

# %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False,
                                                     maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    context_size = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important!! Flip signal or not, True for Voltron indicator, False for others
    hp_freq_pb = 1 / 3  # parameter for high-pass filter to remove photobleaching
    threshold_method = 'simple'  # 'simple' or 'adaptive_threshold'
    min_spikes = 10  # minimal spikes to be found
    threshold = 3.5  # threshold for finding spikes, increase threshold to find less spikes
    do_plot = False  # plot detail of spikes, template for the last iteration
    ridge_bg = 0.001  # ridge regression regularizer strength for background removement
    sub_freq = 20  # frequency for subthreshold extraction
    weight_update = 'ridge'  # 'ridge' or 'NMF' for weight update

    opts_dict = {
        'fnames': fname_new,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'context_size': context_size,
        'flip_signal': flip_signal,
        'hp_freq_pb': hp_freq_pb,
        'threshold_method': threshold_method,
        'min_spikes': min_spikes,
        'threshold': threshold,
        'do_plot': do_plot,
        'ridge_bg': ridge_bg,
        'sub_freq': sub_freq,
        'weight_update': weight_update
    }

    opts.change_params(params_dict=opts_dict)

    #%% TRACE DENOISING AND SPIKE DETECTION
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%% visualization
    if display_images:
        print(np.where(
            vpy.estimates['locality'])[0])  # neurons that pass locality test
        idx = np.where(vpy.estimates['locality'] > 0)[0]
        utils.view_components(vpy.estimates, img_corr, idx)

#%% reconstructed movie
# note the negative spatial weights is cutoff
    if display_images:
        mv_all = utils.reconstructed_movie(vpy.estimates,
                                           fnames=mc.mmap_file,
                                           idx=idx,
                                           scope=(0, 1000),
                                           flip_signal=flip_signal)
        mv_all.play(fr=40)

# %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#20
0
def run_caiman_pipeline(movie, fr, fnames, savedir, usematlabroi):
    #%%

    cpu_num = 7
    cpu_num_spikepursuit = 2
    #gsig_filt_micron = (4, 4)
    #max_shifts_micron = (6,6)
    #strides_micron = (60,60)
    #overlaps_micron = (30, 30)

    gsig_filt_micron = (4, 4)
    max_shifts_micron = (6, 6)
    strides_micron = (30, 30)
    overlaps_micron = (15, 15)

    max_deviation_rigid_micron = 4

    pixel_size = movie['movie_pixel_size']

    ROIs = None  # Region of interests
    index = None  # index of neurons
    weights = None  # reuse spatial weights by
    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = tuple(
        np.asarray(np.round(np.asarray(gsig_filt_micron) / float(pixel_size)),
                   int))  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = tuple(
        np.asarray(np.round(np.asarray(max_shifts_micron) / float(pixel_size)),
                   int))
    strides = tuple(
        np.asarray(np.round(np.asarray(strides_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = tuple(
        np.asarray(np.round(np.asarray(overlaps_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = int(
        round(max_deviation_rigid_micron / pixel_size)
    )  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }
    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing

    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)

    # % MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mcrig = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    #%
    mcrig.motion_correct(save_movie=True)
    dview.terminate()

    # % MOTION CORRECTION2
    opts.change_params({'pw_rigid': True})
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)
    # Create a motion correction object with the specified parameters
    mc = MotionCorrect(mcrig.mmap_file,
                       dview=dview,
                       **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    mc.motion_correct(save_movie=True)
    dview.terminate()

    # %% motion correction compared with original movie
    display_images = False
    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mcrig.mmap_file)
        m_pwrig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_rig.resize(1, 1, ds_ratio),
            m_pwrig.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
        # % movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        m_pwrig2 = (m_pwrig - np.mean(m_pwrig, axis=0))
        moviehandle1 = cm.concatenate([
            m_orig2.resize(1, 1, ds_ratio),
            m_rig2.resize(1, 1, ds_ratio),
            m_pwrig2.resize(1, 1, ds_ratio)
        ],
                                      axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2)

    # %% Memory Mapping
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=cpu_num,
                                                     single_thread=False)
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview,
                                    n_chunks=10)
    dview.terminate()

    # %% change fnames to the new motion corrected one
    opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION

    roidir = savedir[:savedir.find('VolPy')] + 'Spikepursuit' + savedir[
        savedir.find('VolPy') + len('Volpy'):]
    try:
        files = os.listdir(roidir)
    except:
        files = []
    if usematlabroi and 'ROIs.mat' in files:
        ROIs = loadmat(os.path.join(roidir, 'ROIs.mat'))['ROIs']
        if len(np.shape(ROIs)) == 3:
            ROIs = np.moveaxis(np.asarray(ROIs, bool), 2, 0)
        else:
            ROIs = np.asarray([ROIs])
        all_rois = ROIs
        opts.change_params(
            params_dict={
                'ROIs': ROIs,
                'index': list(range(ROIs.shape[0])),
                'method': 'SpikePursuit'
            })

    else:
        #%
        print('WTF')
        # Create mean and correlation image
        use_maskrcnn = True  # set to True to predict the ROIs using the mask R-CNN
        if not use_maskrcnn:  # use manual annotations
            with h5py.File(path_ROIs, 'r') as fl:
                ROIs = fl['mov'][()]  # load ROIs
            opts.change_params(
                params_dict={
                    'ROIs': ROIs,
                    'index': list(range(ROIs.shape[0])),
                    'method': 'SpikePursuit'
                })
        else:
            try:
                m = cm.load(mc.mmap_file[0], subindices=slice(0, 20000))
            except:
                m = cm.load(
                    '/home/rozmar/Data/Voltage_imaging/Voltage_rig_1P/rozsam/20200120/40x_1xtube_10A_7_000_rig__d1_128_d2_512_d3_1_order_F_frames_2273_._els__d1_128_d2_512_d3_1_order_F_frames_2273_.mmap',
                    subindices=slice(0, 20000))
            m.fr = fr
            img = m.mean(axis=0)
            img = (img - np.mean(img)) / np.std(img)
            m1 = m.computeDFF(secsWindow=1, in_place=True)[0]
            m = m - m1
            Cn = m.local_correlations(swap_dim=False, eight_neighbours=True)
            img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
            summary_image = np.stack([img, img, img_corr],
                                     axis=2).astype(np.float32)
            del m
            del m1

            # %
            # Mask R-CNN
            config = neurons.NeuronsConfig()

            class InferenceConfig(config.__class__):
                # Run detection on one image at a time
                GPU_COUNT = 1
                IMAGES_PER_GPU = 1
                DETECTION_MIN_CONFIDENCE = 0.7
                IMAGE_RESIZE_MODE = "pad64"
                IMAGE_MAX_DIM = 512
                RPN_NMS_THRESHOLD = 0.7
                POST_NMS_ROIS_INFERENCE = 1000

            config = InferenceConfig()
            config.display()
            model_dir = os.path.join(caiman_datadir(), 'model')
            DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
            with tf.device(DEVICE):
                model = modellib.MaskRCNN(mode="inference",
                                          model_dir=model_dir,
                                          config=config)
            weights_path = download_model('mask_rcnn')
            model.load_weights(weights_path, by_name=True)
            results = model.detect([summary_image], verbose=1)
            r = results[0]
            ROIs_mrcnn = r['masks'].transpose([2, 0, 1])

            # %% visualize the result
            display_result = False
            if display_result:
                _, ax = plt.subplots(1, 1, figsize=(16, 16))
                visualize.display_instances(summary_image,
                                            r['rois'],
                                            r['masks'],
                                            r['class_ids'], ['BG', 'neurons'],
                                            r['scores'],
                                            ax=ax,
                                            title="Predictions")
        # %% set rois
            opts.change_params(
                params_dict={
                    'ROIs': ROIs_mrcnn,
                    'index': list(range(ROIs_mrcnn.shape[0])),
                    'method': 'SpikePursuit'
                })
            #all_rois = ROIs_mrcnn

    # %% Trace Denoising and Spike Extraction

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local',
        n_processes=cpu_num_spikepursuit,
        single_thread=False,
        maxtasksperchild=1)
    #dview=None
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    #%%
    print('saving parameters')
    parameters = dict()
    parameters['motion'] = opts.motion
    parameters['data'] = opts.data
    parameters['volspike'] = opts.volspike
    with open(os.path.join(savedir, 'parameters.pickle'), 'wb') as outfile:
        pickle.dump(parameters, outfile)
    #%%
    volspikedata = dict()
    volspikedata['estimates'] = vpy.estimates
    volspikedata['params'] = vpy.params.data
    with open(os.path.join(savedir, 'spikepursuit.pickle'), 'wb') as outfile:
        pickle.dump(volspikedata, outfile)
    #%%

    for mcidx, mc_now in enumerate([mcrig, mc]):
        motioncorr = dict()
        motioncorr['fname'] = mc_now.fname
        motioncorr['fname_tot_rig'] = mc_now.fname_tot_rig
        motioncorr['mmap_file'] = mc_now.mmap_file
        motioncorr['min_mov'] = mc_now.min_mov
        motioncorr['shifts_rig'] = mc_now.shifts_rig
        motioncorr['shifts_opencv'] = mc_now.shifts_opencv
        motioncorr['niter_rig'] = mc_now.niter_rig
        motioncorr['min_mov'] = mc_now.min_mov
        motioncorr['templates_rig'] = mc_now.templates_rig
        motioncorr['total_template_rig'] = mc_now.total_template_rig
        try:
            motioncorr['x_shifts_els'] = mc_now.x_shifts_els
            motioncorr['y_shifts_els'] = mc_now.y_shifts_els
        except:
            pass
        with open(
                os.path.join(savedir, 'motion_corr_' + str(mcidx) + '.pickle'),
                'wb') as outfile:
            pickle.dump(motioncorr, outfile)
    #%% saving stuff
    print('moving files')
    for mmap_file in mcrig.mmap_file:
        fname = pathlib.Path(mmap_file).name
        os.remove(mmap_file)
        #shutil.move(mmap_file, os.path.join(savedir,fname))
    for mmap_file in mc.mmap_file:
        fname = pathlib.Path(mmap_file).name
        os.remove(mmap_file)
        #shutil.move(mmap_file, os.path.join(savedir,fname))

    fname = pathlib.Path(fname_new).name
    shutil.move(fname_new, os.path.join(savedir, fname))
    #print('waiting')
    #time.sleep(1000)
    # %% some visualization
    plotstuff = False
    if plotstuff:
        print(np.where(vpy.estimates['passedLocalityTest'])
              [0])  # neurons that pass locality test
        n = 0

        # Processed signal and spikes of neurons
        plt.figure()
        plt.plot(vpy.estimates['trace'][n])
        plt.plot(vpy.estimates['spikeTimes'][n],
                 np.max(vpy.estimates['trace'][n]) *
                 np.ones(vpy.estimates['spikeTimes'][n].shape),
                 color='g',
                 marker='o',
                 fillstyle='none',
                 linestyle='none')
        plt.title('signal and spike times')
        plt.show()
        # Location of neurons by Mask R-CNN or manual annotation
        plt.figure()
        if use_maskrcnn:
            plt.imshow(ROIs_mrcnn[n])
        else:
            plt.imshow(ROIs[n])
        mv = cm.load(fname_new)
        plt.imshow(mv.mean(axis=0), alpha=0.5)

        # Spatial filter created by algorithm
        plt.figure()
        plt.imshow(vpy.estimates['spatialFilter'][n])
        plt.colorbar()
        plt.title('spatial filter')
        plt.show()

    # %% STOP CLUSTER and clean up log files

    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#21
0
print('checkpoint 1: mcorrect', flush=True)

# %%% MOTION CORRECTION
# first we create a motion correction object with the specified parameters
if nomc:
    print('Skipping motion correction due to -nomc flag', flush=True)
    print('saving movies as mmap file', flush=True)
    fname_new = cm.save_memmap(fname, base_name='memmap_{}_full_'.format(slurmid), order='C',
                               border_to_0=0)
    
else:
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory
    
    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True, template=mc_temp)
    
        
    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries
    # memory map the file in order 'C'
    
    save_name = mc.fname_tot_els if opts.get('motion','pw_rigid') else mc.fname_tot_rig
    
    print('saving movies as mmap file', flush=True)
    
    fname_new = cm.save_memmap(save_name, base_name='memmap_{}_full_'.format(slurmid), order='C',
                               border_to_0=border_to_0)  # exclude borders
def main():
    pass  # For compatibility between running under Spyder and the CLI

    #%%
    """
    General parameters
    """
    play_movie = 1
    plot_extras = 1
    plot_extras_cell = 1
    compute_mc_metrics = 1

    #%% Select file(s) to be processed (download if not present)
    """
    Load file
    """

    #fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    #if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
    #    fnames = [download_demo(fnames[0])]

    #fnames = ['/home/yuriy/Desktop/Data/rest1_5_9_19_cut.tif']

    #f_dir = 'C:\\Users\\rylab_dataPC\\Desktop\\Yuriy\\caiman_data\\short\\'
    f_dir = 'G:\\analysis\\190828-calcium_voltage\\soma_dendrites\\pCAG_jREGECO1a_ASAP3_anesth_001\\'
    f_name = 'Ch1'
    f_ext = 'tif'
    fnames = [f_dir + f_name + '.' + f_ext]

    #fnames = ['C:/Users/rylab_dataPC/Desktop/Yuriy/caiman_data/rest1_5_9_19_2_cut_ca.hdf5']

    #%% First setup some parameters for data and motion correction
    """
    Parameters
    """

    # dataset dependent parameters
    fr = 30  # imaging rate in frames per second
    decay_time = 1
    #0.4    # length of a typical transient in seconds
    dxy = (2., 2.)  # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)  # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True  # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    #max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    max_shifts = [6, 6]
    # start a new patch for pw-rigid motion correction every x pixels
    #strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    strides = [48, 48]
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q

    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

    # %% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

    # type "mc."and press TAB to see all interesting associated variables and self. outputs
    # interesting outputs
    # saved file is mc.fname_tot_els / mc.fname_tot_rig
    # mc.x_shifts_els / mc.y_shifts_els: shifts in x/y per frame per patch
    # mc.coord_shifts_els: coordinates associated to patches with shifts
    # mc.total_template_els: updated template for pw
    # mc.total_template_rig: updated template for rigid
    # mc.templates_rig: templates for each iteration in rig

    #%% # compute metrics for the results (TAKES TIME!!)
    if compute_mc_metrics:
        # not finished
        bord_px_els = np.ceil(
            np.maximum(np.max(np.abs(mc.x_shifts_els)),
                       np.max(np.abs(mc.y_shifts_els)))).astype(np.int)

        final_size = np.subtract(
            mc.total_template_els.shape,
            2 * bord_px_els)  # remove pixels in the boundaries
        winsize = 100
        swap_dim = False
        resize_fact_flow = .2  # downsample for computing ROF

        tmpl_rig, correlations_orig, flows_orig, norms_orig, crispness_orig = cm.motion_correction.compute_metrics_motion_correction(
            fnames[0],
            final_size[0],
            final_size[1],
            swap_dim,
            winsize=winsize,
            play_flow=False,
            resize_fact_flow=resize_fact_flow)

        plt.figure()
        plt.plot(correlations_orig)

    # %% compare with original movie
    if play_movie:
        m_orig = cm.load_movie_chain(fnames)
        m_els = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([
            m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
            m_els.resize(1, 1, ds_ratio)
        ],
                                     axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit
        del m_orig
        del m_els

    if plot_extras:
        # plot total template
        plt.figure()
        plt.imshow(mc.total_template_els)
        plt.title('Template after iteration')
        # plot x and y corrections
        plt.figure()
        plt.plot(mc.shifts_rig)
        plt.title('Rigid motion correction xy movement')
        plt.legend(['x shift', 'y shift'])
        plt.xlabel('frames')

    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file,
                               base_name='memmap_',
                               order='C',
                               border_to_0=border_to_0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)

    # %% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                     n_processes=None,
                                                     single_thread=False)

    # %%  parameters for source extraction and deconvolution

    p = 2  # order of the autoregressive system
    gnb = 2  # number of global background components
    merge_thr = 0.85  # merging threshold, max correlation allowed
    rf = 15  # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6  # amount of overlap between the patches in pixels
    K = 2  # number of components per patch
    gSig = [15, 15]  # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 1  # spatial subsampling during initialization
    tsub = 1  # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'nb': gnb,
        'rf': rf,
        'K': K,
        'gSig': gSig,
        'stride': stride_cnmf,
        'method_init': method_init,
        'rolling_sum': True,
        'merge_thr': merge_thr,
        'n_processes': n_processes,
        'only_init': True,
        'ssub': ssub,
        'tsub': tsub
    }

    opts.change_params(params_dict=opts_dict)
    # %% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)

    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

    if plot_extras_cell:
        num_cell_plot = 51
        plt.figure()
        plt.plot(cnm.estimates.C[num_cell_plot, :])
        plt.title('Temporal component')
        plt.legend(['Cell ' + str(num_cell_plot)])
        # plot component sptial profile A
        # first convert back to dense components
        plot_spat_A = cnm.estimates.A[:, num_cell_plot].toarray().reshape(
            list(dims))
        plt.figure()
        plt.imshow(plot_spat_A)
        plt.title('Spatial component cell ' + str(num_cell_plot))

    # %% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

    # %% plot contours of found components
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')

    if plot_extras:
        plt.figure()
        plt.imshow(Cn)
        plt.title('Local correlations')

    # %% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)
    # %% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.90  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set(
        'quality', {
            'decay_time': decay_time,
            'min_SNR': min_SNR,
            'rval_thr': rval_thr,
            'use_cnn': True,
            'min_cnn_thr': cnn_thr,
            'cnn_lowest': cnn_lowest
        })
    cnm2.estimates.evaluate_components(images, cnm2.params, dview=dview)

    # %% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)
    plt.suptitle('Component selection: min_SNR=' + str(min_SNR) +
                 '; rval_thr=' + str(rval_thr) + '; cnn prob range=[' +
                 str(cnn_lowest) + ' ' + str(cnn_thr) + ']')

    # %% VIEW TRACES (accepted and rejected)

    if plot_extras:
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components)
        plt.suptitle('Accepted')
        cnm2.estimates.view_components(images,
                                       img=Cn,
                                       idx=cnm2.estimates.idx_components_bad)
        plt.suptitle('Rejected')

    #plt.figure();
    #plt.plot(cnm2.estimates.YrA[0,:]+cnm2.estimates.C[0,:])
    #
    #
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.R[0,:]-cnm2.estimates.YrA[0,:]);
    #plt.plot();
    #plt.show();
    #
    #
    #plt.figure();
    #plt.plot(cnm2.estimates.detrend_df_f[1,:])

    # these store the good and bad components, and next step sorts them
    # cnm2.estimates.idx_components
    # cnm2.estimates.idx_components_bad

    #%% update object with selected components
    #cnm2.estimates.select_components(use_object=True)
    #%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

    #%% Show final traces

    cnm2.estimates.view_components(img=Cn)
    plt.suptitle("Final results")

    #%% Save the mc data as in cmn struct as well

    ##
    #mc_out = dict(
    #            pw_rigid            = mc.pw_rigid,
    #            fname               = mc.fname,
    #            mmap_file           = mc.mmap_file,
    #            total_template_els  = mc.total_template_els,
    #            total_template_rig  = mc.total_template_rig,
    #            border_nan          = mc.border_nan,
    #            border_to_0         = mc.border_to_0,
    #            x_shifts_els        = mc.x_shifts_els,
    #            y_shifts_els        = mc.y_shifts_els,
    #            Cn                  = Cn
    #            )
    #
    #
    #deepdish.io.save(fnames[0] + '_mc_data.hdf5', mc_out)

    #%% reconstruct denoised movie (press q to exit)
    if play_movie:
        cnm2.estimates.play_movie(images,
                                  q_max=99.9,
                                  gain_res=2,
                                  magnification=2,
                                  bpx=border_to_0,
                                  include_bck=False)  # background not shown

    #%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    save_results = True
    if save_results:
        cnm2.save(fnames[0][:-4] + '_results.hdf5')
def main():
    pass  # For compatibility between running under Spyder and the CLI

    # %%  Load demo movie and ROIs
    fnames = download_demo('demo_voltage_imaging.hdf5', 'volpy')  # file path to movie file (will download if not present)
    path_ROIs = download_demo('demo_voltage_imaging_ROIs.hdf5', 'volpy')  # file path to ROIs file (will download if not present)

    # %% Setup some parameters for data and motion correction
    # dataset parameters
    fr = 400                                        # sample rate of the movie
    ROIs = None                                     # Region of interests
    index = None                                    # index of neurons
    weights = None                                  # reuse spatial weights by 
                                                    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False                                # flag for pw-rigid motion correction
    gSig_filt = (3, 3)                              # size of filter, in general gSig (see below),
                                                    # change this one if algorithm does not work
    max_shifts = (5, 5)                             # maximum allowed rigid shift
    strides = (48, 48)                              # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24)                             # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3                         # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=60, magnification=2)

    # %% start a cluster for parallel processing

    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    # %%% MOTION CORRECTION
    # Create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run piecewise rigid motion correction
    mc.motion_correct(save_movie=True)
    dview.terminate()

    # %% motion correction compared with original movie
    display_images = False

    if display_images:
        m_orig = cm.load(fnames)
        m_rig = cm.load(mc.mmap_file)
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
                                      m_rig.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=60, q_max=99.5, magnification=2)  # press q to exit

    # % movie subtracted from the mean
        m_orig2 = (m_orig - np.mean(m_orig, axis=0))
        m_rig2 = (m_rig - np.mean(m_rig, axis=0))
        moviehandle1 = cm.concatenate([m_orig2.resize(1, 1, ds_ratio),
                                       m_rig2.resize(1, 1, ds_ratio)], axis=2)
        moviehandle1.play(fr=60, q_max=99.5, magnification=2)

   # %% Memory Mapping
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    fname_new = cm.save_memmap_join(mc.mmap_file, base_name='memmap_',
                               add_to_mov=border_to_0, dview=dview, n_chunks=10)

    dview.terminate()

    # %% change fnames to the new motion corrected one
    opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION
    # Create mean and correlation image
    use_maskrcnn = True  # set to True to predict the ROIs using the mask R-CNN
    if not use_maskrcnn:                 # use manual annotations
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]  # load ROIs
        opts.change_params(params_dict={'ROIs': ROIs,
                                        'index': list(range(ROIs.shape[0])),
                                        'method': 'SpikePursuit'})
    else:
        m = cm.load(mc.mmap_file[0], subindices=slice(0, 20000))
        m.fr = fr
        img = m.mean(axis=0)
        img = (img-np.mean(img))/np.std(img)
        m1 = m.computeDFF(secsWindow=1, in_place=True)[0]
        m = m - m1
        Cn = m.local_correlations(swap_dim=False, eight_neighbours=True)
        img_corr = (Cn-np.mean(Cn))/np.std(Cn)
        summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)
        del m
        del m1

        # %%
        # Mask R-CNN
        config = neurons.NeuronsConfig()

        class InferenceConfig(config.__class__):
            # Run detection on one image at a time
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0.7
            IMAGE_RESIZE_MODE = "pad64"
            IMAGE_MAX_DIM = 512
            RPN_NMS_THRESHOLD = 0.7
            POST_NMS_ROIS_INFERENCE = 1000

        config = InferenceConfig()
        config.display()
        model_dir = os.path.join(caiman_datadir(), 'model')
        DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
        with tf.device(DEVICE):
            model = modellib.MaskRCNN(mode="inference", model_dir=model_dir,
                                      config=config)
        weights_path = download_model('mask_rcnn')
        model.load_weights(weights_path, by_name=True)
        results = model.detect([summary_image], verbose=1)
        r = results[0]
        ROIs_mrcnn = r['masks'].transpose([2, 0, 1])

    # %% visualize the result
        display_result = False

        if display_result:
            _, ax = plt.subplots(1,1, figsize=(16,16))
            visualize.display_instances(summary_image, r['rois'], r['masks'], r['class_ids'], 
                                    ['BG', 'neurons'], r['scores'], ax=ax,
                                    title="Predictions")

    # %% set rois
        opts.change_params(params_dict={'ROIs':ROIs_mrcnn,
                                        'index':list(range(ROIs_mrcnn.shape[0])),
                                        'method':'SpikePursuit'})

    # %% Trace Denoising and Spike Extraction
    c, dview, n_processes = cm.cluster.setup_cluster(
            backend='local', n_processes=None, single_thread=False, maxtasksperchild=1)
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    # %% some visualization
    print(np.where(vpy.estimates['passedLocalityTest'])[0])    # neurons that pass locality test
    n = 0
    
    # Processed signal and spikes of neurons
    plt.figure()
    plt.plot(vpy.estimates['trace'][n])
    plt.plot(vpy.estimates['spikeTimes'][n],
             np.max(vpy.estimates['trace'][n]) * np.ones(vpy.estimates['spikeTimes'][n].shape),
             color='g', marker='o', fillstyle='none', linestyle='none')
    plt.title('signal and spike times')
    plt.show()

    # Location of neurons by Mask R-CNN or manual annotation
    plt.figure()
    if use_maskrcnn:
        plt.imshow(ROIs_mrcnn[n])
    else:
        plt.imshow(ROIs[n])
    mv = cm.load(fname_new)
    plt.imshow(mv.mean(axis=0),alpha=0.5)
    
    # Spatial filter created by algorithm
    plt.figure()
    plt.imshow(vpy.estimates['spatialFilter'][n])
    plt.colorbar()
    plt.title('spatial filter')
    plt.show()
    
    

    # %% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
示例#24
0
def run_caiman_pipeline(movie, fr, fnames, savedir, caiman_parameters):
    #%%
    usematlabroi = caiman_parameters['usematlabroi']

    cpu_num = 16
    cpu_num_spikepursuit = 3
    #gsig_filt_micron = (4, 4)
    #max_shifts_micron = (6,6)
    #strides_micron = (60,60)
    #overlaps_micron = (30, 30)

    gsig_filt_micron = (4, 4)
    max_shifts_micron = (6, 6)
    strides_micron = (30, 30)
    overlaps_micron = (15, 15)

    max_deviation_rigid_micron = 4

    pixel_size = movie['movie_pixel_size']

    ROIs = None  # Region of interests
    index = None  # index of neurons
    weights = None  # reuse spatial weights by
    # opts.change_params(params_dict={'weights':vpy.estimates['weights']})
    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = tuple(
        np.asarray(np.round(np.asarray(gsig_filt_micron) / float(pixel_size)),
                   int))  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = tuple(
        np.asarray(np.round(np.asarray(max_shifts_micron) / float(pixel_size)),
                   int))
    strides = tuple(
        np.asarray(np.round(np.asarray(strides_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = tuple(
        np.asarray(np.round(np.asarray(overlaps_micron) / float(pixel_size)),
                   int)
    )  # start a new patch for pw-rigid motion correction every x pixels
    # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = int(
        round(max_deviation_rigid_micron / pixel_size)
    )  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'
    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'index': index,
        'ROIs': ROIs,
        'weights': weights,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }
    opts = volparams(params_dict=opts_dict)
    #%%
    if not caiman_parameters['motion_correction_already_done']:

        # %% play the movie (optional)
        # playing the movie using opencv. It requires loading the movie in memory.
        # To close the video press q
        display_images = False

        if display_images:
            m_orig = cm.load(fnames)
            ds_ratio = 0.2
            moviehandle = m_orig.resize(1, 1, ds_ratio)
            moviehandle.play(q_max=99.5, fr=60, magnification=2)

        # %% start a cluster for parallel processing

        c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                         n_processes=cpu_num,
                                                         single_thread=False)

        # % MOTION CORRECTION
        # Create a motion correction object with the specified parameters
        mcrig = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
        # Run piecewise rigid motion correction
        #%
        mcrig.motion_correct(save_movie=True)
        dview.terminate()

        # % MOTION CORRECTION2
        opts.change_params({'pw_rigid': True})
        c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                         n_processes=cpu_num,
                                                         single_thread=False)
        # Create a motion correction object with the specified parameters
        mc = MotionCorrect(mcrig.mmap_file,
                           dview=dview,
                           **opts.get_group('motion'))
        # Run piecewise rigid motion correction
        mc.motion_correct(save_movie=True)
        dview.terminate()

        # %% motion correction compared with original movie
        display_images = False
        if display_images:
            m_orig = cm.load(fnames)
            m_rig = cm.load(mcrig.mmap_file)
            m_pwrig = cm.load(mc.mmap_file)
            ds_ratio = 0.2
            moviehandle = cm.concatenate([
                m_orig.resize(1, 1, ds_ratio) - mc.min_mov * mc.nonneg_movie,
                m_rig.resize(1, 1, ds_ratio),
                m_pwrig.resize(1, 1, ds_ratio)
            ],
                                         axis=2)
            moviehandle.play(fr=60, q_max=99.5,
                             magnification=2)  # press q to exit
            # % movie subtracted from the mean
            m_orig2 = (m_orig - np.mean(m_orig, axis=0))
            m_rig2 = (m_rig - np.mean(m_rig, axis=0))
            m_pwrig2 = (m_pwrig - np.mean(m_pwrig, axis=0))
            moviehandle1 = cm.concatenate([
                m_orig2.resize(1, 1, ds_ratio),
                m_rig2.resize(1, 1, ds_ratio),
                m_pwrig2.resize(1, 1, ds_ratio)
            ],
                                          axis=2)
            moviehandle1.play(fr=60, q_max=99.5, magnification=2)

        # %% Memory Mapping
        c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                         n_processes=cpu_num,
                                                         single_thread=False)
        border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
        fname_new = cm.save_memmap_join(mc.mmap_file,
                                        base_name='memmap_',
                                        add_to_mov=border_to_0,
                                        dview=dview,
                                        n_chunks=10)
        dview.terminate()

        # %% change fnames to the new motion corrected one
        opts.change_params(params_dict={'fnames': fname_new})
    else:
        #%%
        files = os.listdir(savedir)
        for file in files:
            if '.mmap' in file:
                break
        fname_new = os.path.join(savedir, file)
        opts.change_params(params_dict={'fnames': fname_new})

    # %% SEGMENTATION
    if caiman_parameters['dospikepursuit']:
        roidir_matlab = savedir[:savedir.find(
            'VolPy')] + 'Spikepursuit' + savedir[savedir.find('VolPy') +
                                                 len('Volpy'):]
        try:
            files_matlab = os.listdir(roidir)
        except:
            files_matlab = []
        roidir_volpy = savedir[:savedir.find('VolPy')] + 'ROI' + savedir[
            savedir.find('VolPy') + len('Volpy'):]
        try:
            files_volpy = os.listdir(roidir_volpy)
        except:
            files_volpy = []
        if usematlabroi and 'ROIs.mat' in files_matlab:
            ROIs = loadmat(os.path.join(roidir_matlab, 'ROIs.mat'))['ROIs']
            if len(np.shape(ROIs)) == 3:
                ROIs = np.moveaxis(np.asarray(ROIs, bool), 2, 0)
            else:
                ROIs = np.asarray([ROIs])
            all_rois = ROIs
            opts.change_params(
                params_dict={
                    'ROIs': ROIs,
                    'index': list(range(ROIs.shape[0])),
                    'method': 'SpikePursuit'
                })
        elif caiman_parameters['usevolpyroi'] and 'VolPy.npy' in files_volpy:
            ROIs_original = np.load(os.path.join(roidir_volpy, 'VolPy.npy'))
            roinum = int(np.max(np.unique(ROIs_original)))
            ROIs = np.asarray(
                np.zeros([
                    int(roinum), ROIs_original.shape[0], ROIs_original.shape[1]
                ]), bool)
            for i in range(1, roinum + 1):
                ROIs[i - 1, ROIs_original == i] = True

            all_rois = ROIs
            opts.change_params(
                params_dict={
                    'ROIs': ROIs,
                    'index': list(range(ROIs.shape[0])),
                    'method': 'SpikePursuit'
                })
        else:
            #%
            print('WTF')

        # %% Trace Denoising and Spike Extraction

        c, dview, n_processes = cm.cluster.setup_cluster(
            backend='local',
            n_processes=cpu_num_spikepursuit,
            single_thread=False,
            maxtasksperchild=1)
        #dview=None
        vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
        vpy.fit(n_processes=n_processes, dview=dview)

    #%%
    if caiman_parameters['dospikepursuit']:
        volspikedata = dict()
        volspikedata['estimates'] = vpy.estimates
        volspikedata['params'] = vpy.params.data
        with open(os.path.join(savedir, 'spikepursuit.pickle'),
                  'wb') as outfile:
            pickle.dump(volspikedata, outfile)

    if not caiman_parameters['motion_correction_already_done']:
        print('saving parameters')
        parameters = dict()
        parameters['motion'] = opts.motion
        parameters['data'] = opts.data
        if caiman_parameters['dospikepursuit']:
            parameters['volspike'] = opts.volspike
        with open(os.path.join(savedir, 'parameters.pickle'), 'wb') as outfile:
            pickle.dump(parameters, outfile)
        #%

        #%

        for mcidx, mc_now in enumerate([mcrig, mc]):
            motioncorr = dict()
            motioncorr['fname'] = mc_now.fname
            motioncorr['fname_tot_rig'] = mc_now.fname_tot_rig
            motioncorr['mmap_file'] = mc_now.mmap_file
            motioncorr['min_mov'] = mc_now.min_mov
            motioncorr['shifts_rig'] = mc_now.shifts_rig
            motioncorr['shifts_opencv'] = mc_now.shifts_opencv
            motioncorr['niter_rig'] = mc_now.niter_rig
            motioncorr['min_mov'] = mc_now.min_mov
            motioncorr['templates_rig'] = mc_now.templates_rig
            motioncorr['total_template_rig'] = mc_now.total_template_rig
            try:
                motioncorr['x_shifts_els'] = mc_now.x_shifts_els
                motioncorr['y_shifts_els'] = mc_now.y_shifts_els
            except:
                pass
            with open(
                    os.path.join(savedir,
                                 'motion_corr_' + str(mcidx) + '.pickle'),
                    'wb') as outfile:
                pickle.dump(motioncorr, outfile)
        #%saving stuff
        print('moving files')
        for mmap_file in mcrig.mmap_file:
            fname = pathlib.Path(mmap_file).name
            os.remove(mmap_file)
            #shutil.move(mmap_file, os.path.join(savedir,fname))
        for mmap_file in mc.mmap_file:
            fname = pathlib.Path(mmap_file).name
            os.remove(mmap_file)
            #shutil.move(mmap_file, os.path.join(savedir,fname))

        fname = pathlib.Path(fname_new).name

        #Thread(target=shutil.copy, args=[fname_new, os.path.join(savedir,fname)]).start()
        shutil.move(fname_new, os.path.join(savedir, fname))

    #print('waiting')
    #time.sleep(1000)
    # %% some visualization
    plotstuff = False
    if plotstuff:
        print(np.where(vpy.estimates['passedLocalityTest'])
              [0])  # neurons that pass locality test
        n = 0

        # Processed signal and spikes of neurons
        plt.figure()
        plt.plot(vpy.estimates['trace'][n])
        plt.plot(vpy.estimates['spikeTimes'][n],
                 np.max(vpy.estimates['trace'][n]) *
                 np.ones(vpy.estimates['spikeTimes'][n].shape),
                 color='g',
                 marker='o',
                 fillstyle='none',
                 linestyle='none')
        plt.title('signal and spike times')
        plt.show()
        # Location of neurons by Mask R-CNN or manual annotation
        plt.figure()
        if use_maskrcnn:
            plt.imshow(ROIs_mrcnn[n])
        else:
            plt.imshow(ROIs[n])
        mv = cm.load(fname_new)
        plt.imshow(mv.mean(axis=0), alpha=0.5)

        # Spatial filter created by algorithm
        plt.figure()
        plt.imshow(vpy.estimates['spatialFilter'][n])
        plt.colorbar()
        plt.title('spatial filter')
        plt.show()

    # %% STOP CLUSTER and clean up log files

    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)
def run_alignmnet(selected_rows, parameters, dview):
    '''
    This is the main function for the alignment step. It applies methods
    from the CaImAn package used originally in motion correction
    to do alignment.

    Args:
        df: pd.DataFrame
            A dataframe containing the analysis states you want to have aligned.
        parameters: dict
            The alignment parameters.
        dview: object
            The dview object

    Returns:
        df: pd.DataFrame
            A dataframe containing the aligned analysis states.
    '''

    # Sort the dataframe correctly
    df = selected_rows.copy()
    df = df.sort_values(by=paths.multi_index_structure)

    # Determine the mouse and session of the dataset
    index = df.iloc[0].name
    mouse, session, *r = index
    # alignment_v = index[len(paths.data_structure) + step_index]
    alignment_v = len(df)
    alignment_index = (mouse, session, alignment_v)

    # Determine the output .mmap file name
    file_name = f'mouse_{mouse}_session_{session}_v{alignment_v}'
    output_mmap_file_path = os.environ['DATA_DIR'] + f'data/interim/alignment/main/{file_name}.mmap'

    try:
        df.reset_index()[['session','trial', 'is_rest']].set_index(['session','trial', 'is_rest'], verify_integrity=True)
    except ValueError:
        logging.error('You passed multiple of the same trial in the dataframe df')
        return df

    output = {
        'meta': {
            'analysis': {
                'analyst': os.environ['ANALYST'],
                'date': datetime.datetime.today().strftime("%m-%d-%Y"),
                'time': datetime.datetime.today().strftime("%H:%M:%S")
            },
            'duration': {}
        }
    }

    # Get necessary parameters
    motion_correction_parameters_list = []
    motion_correction_output_list = []
    input_mmap_file_list = []
    trial_index_list = []
    x_ = []
    _x = []
    y_ = []
    _y = []
    for idx, row in df.iterrows():
        motion_correction_parameters_list.append(eval(row.loc['motion_correction_parameters']))
        motion_correction_output = eval(row.loc['motion_correction_output'])
        motion_correction_output_list.append(motion_correction_output)
        input_mmap_file_list.append(motion_correction_output['main'])
        trial_index_list.append(db.get_trial_name(idx[2], idx[3]))
        [x1,x2,y1,y2] = motion_correction_output['meta']['cropping_points']
        x_.append(x1)
        _x.append(x2)
        y_.append(y1)
        _y.append(y2)

    new_x1 = max(x_)
    new_x2 = max(_x)
    new_y1 = max(y_)
    new_y2 = max(_y)
    m_list = []
    for i in range(len(input_mmap_file_list)):
        m = cm.load(input_mmap_file_list[i])
        motion_correction_output = eval(df.iloc[i].loc['motion_correction_output'])
        [x1,x2,y1,y2] = motion_correction_output['meta']['cropping_points']
        m = m.crop(new_x1 - x1, new_x2 - x2, new_y1 - y1, new_y2 - y2, 0, 0)
        m_list.append(m)

    # Concatenate them using the concat function
    m_concat = cm.concatenate(m_list, axis=0)
    data_dir = os.environ['DATA_DIR'] + 'data/interim/alignment/main/'
    file_name = db.create_file_name(step_index, index)
    fname= m_concat.save(data_dir + file_name + '.mmap', order='C')

    #meta_pkl_dict['pw_rigid']['cropping_points'] = [x_, _x, y_, _y]
    #output['meta']['cropping_points'] = [x_, _x, y_, _y]
    # Save the movie
    #fname_tot_els  = m_els.save(data_dir + 'main/' + file_name + '_els' + '.mmap',  order='C')
    #logging.info(f'{index} Cropped and saved rigid movie as {fname_tot_els}')

    # MOTION CORRECTING EACH INDIVIDUAL MOVIE WITH RESPECT TO A TEMPLATE MADE OF THE FIRST MOVIE
    logging.info(f'{alignment_index} Performing motion correction on all movies with respect to a template made of \
    the first movie.')
    t0 = datetime.datetime.today()

    # Create a template of the first movie
    template_index = trial_index_list.index(parameters['make_template_from_trial'])
    m0 = cm.load(input_mmap_file_list[template_index ])
    [x1, x2, y1, y2] = motion_correction_output_list[template_index]['meta']['cropping_points']
    m0 = m0.crop(new_x1 - x1, new_x2 - x2, new_y1 - y1, new_y2 - y2, 0, 0)
    m0_filt = cm.movie(
        np.array([high_pass_filter_space(m_, parameters['gSig_filt']) for m_ in m0]))
    template0 = cm.motion_correction.bin_median(
        m0_filt.motion_correct(5, 5, template=None)[0])  # may be improved in the future

    # Setting the parameters
    opts = params.CNMFParams(params_dict=parameters)

    # Create a motion correction object
    mc = MotionCorrect(fname, dview=dview, **opts.get_group('motion'))

    # Perform non-rigid motion correction
    mc.motion_correct(template=template0, save_movie=True)

    # Cropping borders
    x_ = math.ceil(abs(np.array(mc.shifts_rig)[:, 1].max()) if np.array(mc.shifts_rig)[:, 1].max() > 0 else 0)
    _x = math.ceil(abs(np.array(mc.shifts_rig)[:, 1].min()) if np.array(mc.shifts_rig)[:, 1].min() < 0 else 0)
    y_ = math.ceil(abs(np.array(mc.shifts_rig)[:, 0].max()) if np.array(mc.shifts_rig)[:, 0].max() > 0 else 0)
    _y = math.ceil(abs(np.array(mc.shifts_rig)[:, 0].min()) if np.array(mc.shifts_rig)[:, 0].min() < 0 else 0)

    # Load the motion corrected movie into memory
    movie= cm.load(mc.fname_tot_rig[0])
    # Crop all movies to those border pixels
    movie.crop(x_, _x, y_, _y, 0, 0)
    output['meta']['cropping_points'] = [x_, _x, y_, _y]

    #save motion corrected and cropped movie
    output_mmap_file_path_tot = movie.save(data_dir + file_name  + '.mmap', order='C')
    logging.info(f'{index} Cropped and saved rigid movie as {output_mmap_file_path_tot}')
    # Save the path in teh output dictionary
    output['main'] = output_mmap_file_path_tot
    # Remove the remaining non-cropped movie
    os.remove(mc.fname_tot_rig[0])

    # Create a timeline and store it
    timeline = [[trial_index_list[0], 0]]
    timepoints = [0]
    for i in range(1, len(m_list)):
        m = m_list[i]
        timeline.append([trial_index_list[i], timeline[i - 1][1] + m.shape[0]])
        timepoints.append(timepoints[i-1]+ m.shape[0])
        timeline_pkl_file_path = os.environ['DATA_DIR'] + f'data/interim/alignment/meta/timeline/{file_name}.pkl'
        with open(timeline_pkl_file_path,'wb') as f:
            pickle.dump(timeline,f)
    output['meta']['timeline'] = timeline_pkl_file_path
    timepoints.append(movie.shape[0])

    dt = int((datetime.datetime.today() - t0).seconds / 60)  # timedelta in minutes
    output['meta']['duration']['concatenation'] = dt
    logging.info(f'{alignment_index} Performed concatenation. dt = {dt} min.')

    for idx, row in df.iterrows():
        df.loc[idx, 'alignment_output'] = str(output)
        df.loc[idx, 'alignment_parameters'] = str(parameters)

    ## modify all motion correction file to the aligned version
    data_dir = os.environ['DATA_DIR'] + 'data/interim/motion_correction/main/'
    for i in range(len(input_mmap_file_list)):
        row = df.iloc[i].copy()
        motion_correction_output_list.append(motion_correction_output)
        aligned_movie = movie[timepoints[i]:timepoints[i+1]]
        file_name = db.create_file_name(2, selected_rows.iloc[i].name)
        motion_correction_output_aligned = aligned_movie.save(data_dir + file_name + '_els' + '.mmap',  order='C')
        new_output= {'main' : motion_correction_output_aligned }
        new_dict = eval(row['motion_correction_output'])
        new_dict.update(new_output)
        row['motion_correction_output'] = str(new_dict)
        df = db.append_to_or_merge_with_states_df(df, row)

    #    # Delete the motion corrected movies
    #    for fname in mc.fname_tot_rig:
    #        os.remove(fname)

    return df
def main():
    pass  # For compatibility between running under Spyder and the CLI

#%% Select file(s) to be processed (download if not present)
    root = '/Users/hheiser/Desktop/testing data/chronic_M2N3/0d_baseline/channel1'
    fnames = [r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\1\file_00003.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\2\file_00004.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\3\file_00005.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\4\file_00006.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\5\file_00007.tif',
              r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M22\20191208\N1\6\file_00008.tif']

    fnames = ['Sue_2x_3000_40_-46.tif']  # filename to be processed
    if fnames[0] in ['Sue_2x_3000_40_-46.tif', 'demoMovie.tif']:
        fnames = [download_demo(fnames[0])]

#%% First setup some parameters for data and motion correction

    # dataset dependent parameters
    fr = 30             # imaging rate in frames per second
    decay_time = 0.4    # length of a typical transient in seconds
    dxy = (2., 2.)      # spatial resolution in x and y in (um per pixel)
    # note the lower than usual spatial resolution here
    max_shift_um = (12., 12.)       # maximum shift in um
    patch_motion_um = (100., 100.)  # patch size for non-rigid correction in um

    # motion correction parameters
    pw_rigid = True       # flag to select rigid vs pw_rigid motion correction
    # maximum allowed rigid shift in pixels
    max_shifts = [int(a/b) for a, b in zip(max_shift_um, dxy)]
    # start a new patch for pw-rigid motion correction every x pixels
    strides = tuple([int(a/b) for a, b in zip(patch_motion_um, dxy)])
    # overlap between pathes (size of patch in pixels: strides+overlaps)
    overlaps = (24, 24)
    # maximum deviation allowed for patch with respect to rigid shifts
    max_deviation_rigid = 3

    mc_dict = {
        'fnames': fnames,
        'fr': fr,
        'decay_time': decay_time,
        'dxy': dxy,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': 'copy'
    }

    opts = params.CNMFParams(params_dict=mc_dict)

#%% play the movie (optional)
    # playing the movie using opencv. It requires loading the movie in memory.
    # To close the video press q
    display_images = True

    if display_images:
        m_orig = cm.load_movie_chain(fnames)
        ds_ratio = 0.2
        moviehandle = m_orig.resize(1, 1, ds_ratio)
        moviehandle.play(q_max=99.5, fr=30, magnification=1, do_loop=False)

#%% start a cluster for parallel processing
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

#%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # note that the file is not loaded in memory

#%% Run (piecewise-rigid motion) correction using NoRMCorre
    mc.motion_correct(save_movie=True)

#%% compare with original movie
    if display_images:
        m_orig = cm.load_movie_chain(fnames[:3])
        m_els = cm.load(mmap_file[:3])
        ds_ratio = 0.2
        moviehandle = cm.concatenate([m_orig.resize(1, 1, ds_ratio) - mc.min_mov*mc.nonneg_movie,
                                      m_els.resize(1, 1, ds_ratio)], axis=2)
        moviehandle.play(fr=15, q_max=99.5, magnification=2)  # press q to exit

#%% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    mmap_file = [r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\1\file_00001_els__d1_512_d2_512_d3_1_order_F_frames_1147_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\2\file_00002_els__d1_512_d2_512_d3_1_order_F_frames_2520_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\3\file_00003_els__d1_512_d2_512_d3_1_order_F_frames_3814_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\4\file_00004_els__d1_512_d2_512_d3_1_order_F_frames_5154_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\5\file_00005_els__d1_512_d2_512_d3_1_order_F_frames_2677_.mmap',
                 r'W:\Neurophysiology-Storage1\Wahl\Hendrik\PhD\Data\Batch2\M19\20191219\N2\6\file_00006_els__d1_512_d2_512_d3_1_order_F_frames_3685_.mmap']

    fname_new = r'E:\PhD\Data\DG\M14_20191014\N1\memmap__d1_512_d2_512_d3_1_order_C_frames_34939_.mmap'

    # memory map the file in order 'C'
    fname_new = cm.save_memmap(mc.mmap_file, base_name='memmap_', order='C',
                               border_to_0=0)  # exclude borders

    # now load the file
    Yr, dims, T = cm.load_memmap(fname_new)
    images = np.reshape(Yr.T, [T] + list(dims), order='F')
    # load frames in python format (T x X x Y)


#%% restart cluster to clean up memory
    cm.stop_server(dview=dview)
    c, dview, n_processes = cm.cluster.setup_cluster(
        backend='local', n_processes=None, single_thread=False)

#%%  parameters for source extraction and deconvolution
    p = 1                    # order of the autoregressive system
    gnb = 2                  # number of global background components
    merge_thr = 0.85         # merging threshold, max correlation allowed
    rf = 15
    # half-size of the patches in pixels. e.g., if rf=25, patches are 50x50
    stride_cnmf = 6          # amount of overlap between the patches in pixels
    K = 4                    # number of components per patch
    gSig = [4, 4]            # expected half size of neurons in pixels
    # initialization method (if analyzing dendritic data using 'sparse_nmf')
    method_init = 'greedy_roi'
    ssub = 2                     # spatial subsampling during initialization
    tsub = 2                     # temporal subsampling during intialization

    # parameters for component evaluation
    opts_dict = {'fnames': fnames,
                 'fr': fr,
                 'nb': gnb,
                 'rf': rf,
                 'K': K,
                 'gSig': gSig,
                 'stride': stride_cnmf,
                 'method_init': method_init,
                 'rolling_sum': True,
                 'merge_thr': merge_thr,
                 'n_processes': n_processes,
                 'only_init': True,
                 'ssub': ssub,
                 'tsub': tsub}

    opts.change_params(params_dict=opts_dict)
#%% RUN CNMF ON PATCHES
    # First extract spatial and temporal components on patches and combine them
    # for this step deconvolution is turned off (p=0)

    #opts.change_params({'p': 1,'rf':None, 'only_init':False})
    opts.change_params({'p': 0})
    cnm = cnmf.CNMF(n_processes, params=opts, dview=dview)
    cnm = cnm.fit(images)

#%% RUN CNMF SEEDED WITH MANUAL MASK

    # load mask
    mask = np.asarray(imageio.imread('/Users/hheiser/Desktop/testing data/file_00020_no_motion/avg_mask_fixed.png'), dtype=bool)

    # get component ROIs from the mask and plot them
    Ain, labels, mR = cm.base.rois.extract_binary_masks(mask)

    # plot original mask and extracted labels to check mask
    fig, ax = plt.subplots(1,2)
    ax[0].imshow(-mR,cmap='binary')
    ax[0].set_title('Original mask')
    ax[1].imshow(labels)
    ax[1].set_title('Extracted labelled ROIs')

    """"
    plt.figure()
    crd = cm.utils.visualization.plot_contours(
        Ain.astype('float32'), mR, thr=0.99, display_numbers=True) # todo check if this is important for the pipeline
    plt.title('Contour plots of detected ROIs in the structural channel')
    """

    opts.change_params({'rf': None, 'only_init': False})

    # run CNMF seeded with this mask
    cnm_corr = cnmf.CNMF(n_processes, params=opts, dview=dview, Ain=Ain)
    cnm_corr_seed = cnm_corr_seed.fit(images)
    #cnm_seed = cnm_seed.fit_file(motion_correct=False)

#%% ALTERNATE WAY TO RUN THE PIPELINE AT ONCE
    #   you can also perform the motion correction plus cnmf fitting steps
    #   simultaneously after defining your parameters object using
    #  cnm1 = cnmf.CNMF(n_processes, params=opts, dview=dview)
    #  cnm1.fit_file(motion_correct=True)

#%% plot contours of found components
    Cn = cm.local_correlations(images, swap_dim=False)
    Cn[np.isnan(Cn)] = 0
    cnm.estimates.plot_contours(img=Cn)
    plt.title('Contour plots of found components')

#%% RE-RUN seeded CNMF on accepted patches to refine and perform deconvolution
    cnm.params.change_params({'p': p})
    cnm2 = cnm.refit(images, dview=dview)

#%% COMPONENT EVALUATION
    # the components are evaluated in three ways:
    #   a) the shape of each component must be correlated with the data
    #   b) a minimum peak SNR is required over the length of a transient
    #   c) each shape passes a CNN based classifier
    min_SNR = 2  # signal to noise ratio for accepting a component
    rval_thr = 0.85  # space correlation threshold for accepting a component
    cnn_thr = 0.99  # threshold for CNN based classifier
    cnn_lowest = 0.1  # neurons with cnn probability lower than this value are rejected

    cnm2.params.set('quality', {'decay_time': decay_time,
                               'min_SNR': min_SNR,
                               'rval_thr': rval_thr,
                               'use_cnn': True,
                               'min_cnn_thr': cnn_thr,
                               'cnn_lowest': cnn_lowest})
    cnm2.estimates.evaluate_components(images, params=cnm2.params, dview=dview)

#%% PLOT COMPONENTS
    cnm2.estimates.plot_contours(img=Cn, idx=cnm2.estimates.idx_components)

#%% VIEW TRACES (accepted and rejected)

    if display_images:
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components)
        cnm2.estimates.view_components(images, img=Cn,
                                      idx=cnm2.estimates.idx_components_bad)
#%% update object with selected components
    #### -> will delete rejected components!
    cnm2.estimates.select_components(use_object=True)
#%% Extract DF/F values
    cnm2.estimates.detrend_df_f(quantileMin=8, frames_window=250)

#%% Show final traces
    cnm2.estimates.view_components(img=Cn)

#%% reconstruct denoised movie (press q to exit)
    if display_images:
        cnm2.estimates.play_movie(images, q_max=99.9, gain_res=2,
                                  magnification=1,
                                  bpx=border_to_0,
                                  include_bck=True)  # background not shown

#%% STOP CLUSTER and clean up log files
    cm.stop_server(dview=dview)
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

#%% save results

    dirname = fnames[0][:-4] + "_results.hdf5"
    cnm2.estimates.Cn = Cn
    cnm2.save(dirname)

    #load results
    cnm2 = cnmf.load_CNMF(dirname)

    mov_name = fnames[0][:-4] + "_movie_restored_2_gain.tif"
    helper.save_movie(cnm2.estimates,images,mov_name,frame_range=range(200),include_bck=True)
示例#27
0
def test_computational_performance(fnames, path_ROIs, n_processes):
    import os
    import cv2
    import glob
    import logging
    import matplotlib.pyplot as plt
    import numpy as np
    import tensorflow as tf
    import h5py
    from time import time

    try:
        cv2.setNumThreads(0)
    except:
        pass

    try:
        if __IPYTHON__:
            # this is used for debugging purposes only. allows to reload classes
            # when changed
            get_ipython().magic('load_ext autoreload')
            get_ipython().magic('autoreload 2')
    except NameError:
        pass

    import caiman as cm
    from caiman.motion_correction import MotionCorrect
    from caiman.utils.utils import download_demo, download_model
    from caiman.source_extraction.volpy.volparams import volparams
    from caiman.source_extraction.volpy.volpy import VOLPY
    from caiman.source_extraction.volpy.mrcnn import visualize, neurons
    import caiman.source_extraction.volpy.mrcnn.model as modellib
    from caiman.paths import caiman_datadir
    from caiman.summary_images import local_correlations_movie_offline
    from caiman.summary_images import mean_image
    from caiman.source_extraction.volpy.utils import quick_annotation
    from multiprocessing import Pool

    time_start = time()
    print('Start MOTION CORRECTION')

    # %%  Load demo movie and ROIs
    fnames = fnames
    path_ROIs = path_ROIs

    #%% dataset dependent parameters
    # dataset dependent parameters
    fr = 400  # sample rate of the movie

    # motion correction parameters
    pw_rigid = False  # flag for pw-rigid motion correction
    gSig_filt = (3, 3)  # size of filter, in general gSig (see below),
    # change this one if algorithm does not work
    max_shifts = (5, 5)  # maximum allowed rigid shift
    strides = (
        48, 48
    )  # start a new patch for pw-rigid motion correction every x pixels
    overlaps = (24, 24
                )  # overlap between pathes (size of patch strides+overlaps)
    max_deviation_rigid = 3  # maximum deviation allowed for patch with respect to rigid shifts
    border_nan = 'copy'

    opts_dict = {
        'fnames': fnames,
        'fr': fr,
        'pw_rigid': pw_rigid,
        'max_shifts': max_shifts,
        'gSig_filt': gSig_filt,
        'strides': strides,
        'overlaps': overlaps,
        'max_deviation_rigid': max_deviation_rigid,
        'border_nan': border_nan
    }

    opts = volparams(params_dict=opts_dict)

    # %% start a cluster for parallel processing
    dview = Pool(n_processes)
    #dview = None
    # %%% MOTION CORRECTION
    # first we create a motion correction object with the specified parameters
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    # Run correction
    mc.motion_correct(save_movie=True)

    time_mc = time() - time_start
    print(time_mc)
    print('START MEMORY MAPPING')

    # %% restart cluster to clean up memory
    dview.terminate()
    dview = Pool(n_processes)

    # %% MEMORY MAPPING
    border_to_0 = 0 if mc.border_nan == 'copy' else mc.border_to_0
    # you can include the boundaries of the FOV if you used the 'copy' option
    # during motion correction, although be careful about the components near
    # the boundaries

    # memory map the file in order 'C'
    fname_new = cm.save_memmap_join(mc.mmap_file,
                                    base_name='memmap_',
                                    add_to_mov=border_to_0,
                                    dview=dview,
                                    n_chunks=1000)  # exclude border

    time_mmap = time() - time_start - time_mc
    print('Start Segmentation')
    # %% SEGMENTATION
    # create summary images
    img = mean_image(mc.mmap_file[0], window=1000, dview=dview)
    img = (img - np.mean(img)) / np.std(img)
    Cn = local_correlations_movie_offline(mc.mmap_file[0],
                                          fr=fr,
                                          window=1500,
                                          stride=1500,
                                          winSize_baseline=400,
                                          remove_baseline=True,
                                          dview=dview).max(axis=0)
    img_corr = (Cn - np.mean(Cn)) / np.std(Cn)
    summary_image = np.stack([img, img, img_corr], axis=2).astype(np.float32)

    #%% three methods for segmentation
    methods_list = [
        'manual_annotation',  # manual annotation needs user to prepare annotated datasets same format as demo ROIs 
        'quick_annotation',  # quick annotation annotates data with simple interface in python
        'maskrcnn'
    ]  # maskrcnn is a convolutional network trained for finding neurons using summary images
    method = methods_list[0]
    if method == 'manual_annotation':
        with h5py.File(path_ROIs, 'r') as fl:
            ROIs = fl['mov'][()]  # load ROIs

    elif method == 'quick_annotation':
        ROIs = quick_annotation(img_corr, min_radius=4, max_radius=10)

    elif method == 'maskrcnn':
        config = neurons.NeuronsConfig()

        class InferenceConfig(config.__class__):
            # Run detection on one image at a time
            GPU_COUNT = 1
            IMAGES_PER_GPU = 1
            DETECTION_MIN_CONFIDENCE = 0.7
            IMAGE_RESIZE_MODE = "pad64"
            IMAGE_MAX_DIM = 512
            RPN_NMS_THRESHOLD = 0.7
            POST_NMS_ROIS_INFERENCE = 1000

        config = InferenceConfig()
        config.display()
        model_dir = os.path.join(caiman_datadir(), 'model')
        DEVICE = "/cpu:0"  # /cpu:0 or /gpu:0
        with tf.device(DEVICE):
            model = modellib.MaskRCNN(mode="inference",
                                      model_dir=model_dir,
                                      config=config)
        weights_path = download_model('mask_rcnn')
        model.load_weights(weights_path, by_name=True)
        results = model.detect([summary_image], verbose=1)
        r = results[0]
        ROIs = r['masks'].transpose([2, 0, 1])

        display_result = False
        if display_result:
            _, ax = plt.subplots(1, 1, figsize=(16, 16))
            visualize.display_instances(summary_image,
                                        r['rois'],
                                        r['masks'],
                                        r['class_ids'], ['BG', 'neurons'],
                                        r['scores'],
                                        ax=ax,
                                        title="Predictions")

    time_seg = time() - time_mmap - time_mc - time_start
    print('Start SPIKE EXTRACTION')

    # %% restart cluster to clean up memory
    dview.terminate()
    dview = Pool(n_processes, maxtasksperchild=1)

    # %% parameters for trace denoising and spike extraction
    fnames = fname_new  # change file
    ROIs = ROIs  # region of interests
    index = list(range(len(ROIs)))  # index of neurons
    weights = None  # reuse spatial weights

    tau_lp = 5  # parameter for high-pass filter to remove photobleaching
    threshold = 4  # threshold for finding spikes, increase threshold to find less spikes
    contextSize = 35  # number of pixels surrounding the ROI to censor from the background PCA
    flip_signal = True  # Important! Flip signal or not, True for Voltron indicator, False for others

    opts_dict = {
        'fnames': fnames,
        'ROIs': ROIs,
        'index': index,
        'weights': weights,
        'tau_lp': tau_lp,
        'threshold': threshold,
        'contextSize': contextSize,
        'flip_signal': flip_signal
    }

    opts.change_params(params_dict=opts_dict)

    #%% Trace Denoising and Spike Extraction
    vpy = VOLPY(n_processes=n_processes, dview=dview, params=opts)
    vpy.fit(n_processes=n_processes, dview=dview)

    # %% STOP CLUSTER and clean up log files
    #dview.terminate()
    log_files = glob.glob('*_LOG_*')
    for log_file in log_files:
        os.remove(log_file)

    time_ext = time() - time_mmap - time_mc - time_start - time_seg

    #%%
    print('file:' + fnames)
    print('number of processes' + str(n_processes))
    print(time_mc)
    print(time_mmap)
    print(time_seg)
    print(time_ext)
    time_list = [time_mc, time_mmap, time_seg, time_ext]

    return time_list
示例#28
0
    def motion_correct(
            self, fname: str,
            co_fname: str) -> Tuple[np.ndarray, dict, Optional[np.ndarray]]:
        """
        Uses caiman non-rigid motion correction to remove/reduce motion artefacts
        Note: ALways saves an intermediate mem-map representation in order C of the corrected 32-bit stack
        :param fname: The filename of the source file
        :param co_fname: Filename of a stack that should be co-aligned or None
        :return:
            [0]: Corrected stack as a memmap
            [1]: Wrapped CaImAn parameter dictionary
            [2]: Corrected co-stack as a memmap or None
        """
        cont_folder = path.dirname(fname)  # the containing folder
        stack_name = path.split(fname)[1]
        save_dir = cont_folder + f"/{self.ana_dir}"
        if not path.exists(save_dir):
            makedirs(save_dir)
            print("Created analysis directory", flush=True)
        out_name = save_dir + '/' + stack_name

        if co_fname is not None:
            co_stack_name = path.split(co_fname)[1]
            co_out_name = save_dir + '/' + co_stack_name
        else:
            co_out_name = None

        test_image = imread(
            fname, key=0)  # load first frame of stack to compute resolution
        assert test_image.shape[0] == test_image.shape[1]
        resolution = self.fov_um / test_image.shape[0]

        fr = 1 / self.time_per_frame  # frame-rate
        dxy = (resolution, resolution)  # spatial resolution in um/pixel
        max_shift_um = (self.neuron_radius * 4, self.neuron_radius * 4
                        )  # maximally allow shift by ~2 cell diameters
        # maximum allowed rigid shift in pixels
        max_shifts = [int(a / b) for a, b in zip(max_shift_um, dxy)]
        # start a new patch for pw-rigid motion correction every x pixels
        strides = tuple(
            [int(a / b) for a, b in zip(self.patch_motion_um, dxy)])
        # overlap between patches (size of patch in pixels: strides+overlaps)
        overlaps = (24, 24)
        # maximum deviation allowed for patch with respect to rigid shifts (unit unclear - likely pixels as it is int)
        max_deviation_rigid = 3
        # create parameter dictionary
        mc_dict = {
            'fnames': [fname],
            'fr': fr,
            'decay_time': self.decay_time,
            'dxy': dxy,
            'pw_rigid': self.pw_rigid,
            'max_shifts': max_shifts,
            'strides': strides,
            'overlaps': overlaps,
            'max_deviation_rigid': max_deviation_rigid,
            'border_nan': 'copy'
        }
        opts = params.CNMFParams(params_dict=mc_dict)
        # start a cluster for parallel processing
        c, dview, n_processes = cm.cluster.setup_cluster(backend='local',
                                                         n_processes=None,
                                                         single_thread=False)
        try:
            # motion correction
            mc = MotionCorrect(fname, dview=dview, **opts.get_group('motion'))
            # Run (piecewise-rigid motion) correction using NoRMCorre
            # if we don't save the movie into a memmap, there doesn't seem to be
            # any possibility to get at the corrected data later???
            mc.motion_correct(save_movie=True)
            # memory mapping
            border_to_0 = 0 if mc.border_nan is 'copy' else mc.border_to_0
            # memory map the file in order 'C'
            fname_new = cm.save_memmap(mc.mmap_file,
                                       base_name=out_name,
                                       order='C',
                                       border_to_0=border_to_0)
            # delete the original mem-map
            if mc.fname_tot_els is None:
                [remove(fn) for fn in mc.fname_tot_rig]
            else:
                [remove(fn) for fn in mc.fname_tot_els]
            # now load the new file and transform output into [z,y,x] stack
            yr, dims, n_t = cm.load_memmap(fname_new)
            images = np.reshape(yr.T, [n_t] + list(dims), order='F')
            if self.save_projection:
                # save anatomical projection as 16bit tif
                anat_projection = images.copy()
                anat_projection = np.sum(anat_projection, 0)
                anat_projection -= np.min(anat_projection)
                anat_projection /= np.max(anat_projection)
                anat_projection *= (2**16 - 1)
                anat_projection[anat_projection < 0] = 0
                anat_projection[anat_projection > (2**16 - 1)] = (2**16 - 1)
                anat_projection = anat_projection.astype(np.uint16)
                imsave(out_name,
                       anat_projection,
                       imagej=True,
                       resolution=(1 / dxy[0], 1 / dxy[1]),
                       metadata={
                           'axes': 'YX',
                           'unit': 'um'
                       })

            # Repeat for the co-stack if present
            if co_fname is not None:
                co_aligned_images = np.array(mc.apply_shifts_movie(co_fname))
                if self.save_projection:
                    # save anatomical projection as 16bit tif
                    anat_projection = np.sum(co_aligned_images, 0)
                    anat_projection -= np.min(anat_projection)
                    anat_projection /= np.max(anat_projection)
                    anat_projection *= (2**16 - 1)
                    anat_projection[anat_projection < 0] = 0
                    anat_projection[anat_projection > (2**16 - 1)] = (2**16 -
                                                                      1)
                    anat_projection = anat_projection.astype(np.uint16)
                    imsave(co_out_name,
                           anat_projection,
                           imagej=True,
                           resolution=(1 / dxy[0], 1 / dxy[1]),
                           metadata={
                               'axes': 'YX',
                               'unit': 'um'
                           })
            else:
                co_aligned_images = None
        finally:
            cm.stop_server(dview=dview)
        return images, {"Motion Correction": mc_dict}, co_aligned_images
示例#29
0
    'decay_time': decay_time,
    'pw_rigid': pw_rigid,
    'max_shifts': max_shifts,
    'gSig_filt': gSig_filt,
    'strides': strides,
    'overlaps': overlaps,
    'max_deviation_rigid': max_deviation_rigid,
    'border_nan': border_nan
}

opts = params.CNMFParams(params_dict=mc_dict)

if motion_correct:
    # do motion correction rigid
    mc = MotionCorrect(fnames, dview=dview, **opts.get_group('motion'))
    mc.motion_correct(save_movie=True)
    fname_mc = mc.fname_tot_els if pw_rigid else mc.fname_tot_rig
    if pw_rigid:
        bord_px = np.ceil(np.maximum(np.max(np.abs(mc.x_shifts_els)),
                                     np.max(np.abs(mc.y_shifts_els)))).astype(np.int)
    else:
        bord_px = np.ceil(np.max(np.abs(mc.shifts_rig))).astype(np.int)
        plt.subplot(1, 2, 1); plt.imshow(mc.total_template_rig)  # % plot template
        plt.subplot(1, 2, 2); plt.plot(mc.shifts_rig)  # % plot rigid shifts
        plt.legend(['x shifts', 'y shifts'])
        plt.xlabel('frames')
        plt.ylabel('pixels');plt.savefig(newpath + r'/' + "shift.pdf",edgecolor='w',format='pdf',transparent=True)

    bord_px = 0 if border_nan is 'copy' else bord_px
    fname_new = cm.save_memmap(fname_mc, base_name='memmap_', order='C',
                               border_to_0=bord_px)
class MakeMasks3D:
    def __init__(self, mc_opts, tiff, channels, planes, x_start, x_end):
        self.tiff = tiff
        self.channels = channels
        self.planes = planes
        self.x_start = x_start
        self.x_end = x_end
        self.xslice = slice(x_start, x_end)
        self.mc_opts = mc_opts
        self.opts = params.CNMFParams(params_dict=mc_opts)
        self.c, self.dview, self.n_processes = cm.cluster.setup_cluster(
            backend='local', n_processes=None, single_thread=False)

        self.file_list = []
        self.images = []
        self.motion_corrected_images = []
        self.masks = []

    def crop_tiffs(self):
        self.images = []
        self.file_list = []
        for plane in list(range(self.planes)):
            time_slice = slice(plane * self.channels + 1, -1,
                               self.channels * self.planes)
            with ScanImageTiffReader(self.tiff) as reader:
                data = reader.data()
                data = data[time_slice, :, self.xslice]
            self.images.append(data)
            tif_name = self.tiff.split('.')[0] + '_template_plane' + str(
                plane) + '.tif'
            self.file_list.append(tif_name)
            tifffile.imsave(tif_name, data)

    def view_planes(self):
        fig, axes = plt.subplots(1, self.planes, constrained_layout=True)
        for i, ax in enumerate(axes):
            image = self.images[i].mean(axis=0)
            ax.imshow(image)
            ax.set_aspect('equal', 'box')
            ax.axis('off')
            ax.set_title(f'Plane {i}')
        fig.suptitle('Original')

    def view_corrected(self):
        fig, axes = plt.subplots(1, self.planes, constrained_layout=True)
        for i, ax in enumerate(axes):
            image = self.motion_corrected_images[i]
            ax.imshow(image)
            ax.set_aspect('equal', 'box')
            ax.axis('off')
            ax.set_title(f'Plane {i}')
        fig.suptitle('Corrected')

    # def view_sources(self):
    #     if len(self.motion_corrected_images) > 0:
    #         image_source = self.motion_corrected_images[0]
    #     else:
    #         image_source = self.images[0]
    #     cm.utils.visualization.nb_plot_contour(image_source, self.masks[0].astype('float32'),
    #                                            image_source.shape[0], image_source.shape[1])

    def motion_correct_red(self):
        self.motion_corrected_images = []
        for plane in list(range(self.planes)):
            print(f'Starting motion correction plane {plane}')
            self.mc = MotionCorrect(self.file_list[plane],
                                    dview=self.dview,
                                    **self.opts.get_group('motion'))
            self.mc.motion_correct()
            self.motion_corrected_images.append(self.mc.total_template_els)

    def extract_masks(self, radius=7):
        self.masks = []
        if len(self.motion_corrected_images) > 0:
            image_source = self.motion_corrected_images
        else:
            image_source = self.images
        for plane in list(range(self.planes)):
            self.masks.append(
                cm.base.rois.extract_binary_masks_from_structural_channel(
                    image_source[plane])[0])

    def run(self):
        self.crop_tiffs()
        self.motion_correct_red()