def main(): if os.environ.get('ROS_DISTRO'): rospy.init_node("CAIRO_Sawyer_Simulator") use_ros = True else: use_ros = False use_real_time = True logger = Logger() sim = Simulator(logger=logger, use_ros=use_ros, use_real_time=use_real_time) # Initialize the Simulator p.configureDebugVisualizer(p.COV_ENABLE_RENDERING,0) p.setPhysicsEngineParameter(enableFileCaching=0) ground_plane = SimObject("Ground", "plane.urdf", [0,0,0]) # Add a table and a Sawyer robot table = SimObject("Table", ASSETS_PATH + 'table.sdf', (0.9, 0, 0), (0, 0, 1.5708)) # Table rotated 90deg along z-axis print(p.getNumJoints(table.get_simulator_id())) sawyer_robot = Sawyer("sawyer0", [0, 0, 0.8], fixed_base=1) p.configureDebugVisualizer(p.COV_ENABLE_RENDERING,1) sim_obj = SimObject('cube0', 'cube_small.urdf', (0.75, 0, .55)) sim_obj = SimObject('cube1', 'cube_small.urdf', (0.74, 0.05, .55)) sim_obj = SimObject('cube2', 'cube_small.urdf', (0.67, -0.1, .55)) sim_obj = SimObject('cube3', 'cube_small.urdf', (0.69, 0.1, .55)) joint_config = sawyer_robot.solve_inverse_kinematics([0.9,0,1.5], [0,0,0,1]) #sawyer_robot.move_to_joint_pos(joint_config) # Loop until someone shuts us down try: while True: sim.step() except KeyboardInterrupt: p.disconnect() sys.exit(0)
def main(): ################################ # Environment Checks and Flags # ################################ if os.environ.get('ROS_DISTRO'): rospy.init_node("CAIRO_Sawyer_Simulator") use_ros = True else: use_ros = False ######################################################## # Create the Simulator and pass it a Logger (optional) # ######################################################## logger = Logger() sim = Simulator(logger=logger, use_ros=use_ros, use_gui=True, use_real_time=True) # Initialize the Simulator ##################################### # Create a Robot, or two, or three. # ##################################### sawyer_robot = Sawyer("sawyer0", [0, 0, 0.9], fixed_base=1) ############################################# # Create sim environment objects and assets # ############################################# ground_plane = SimObject("Ground", "plane.urdf", [0, 0, 0]) sawyer_id = sawyer_robot.get_simulator_id() sawyer_robot.move_to_joint_pos([ 0.006427734375, -0.4784267578125, -2.6830537109375, -1.5901376953125, 0.1734560546875, 1.1468447265625, 1.310236328125 ]) time.sleep(3) # Exclude the ground plane and the pedestal feet from disabled collisions. excluded_bodies = [ground_plane.get_simulator_id()] # the ground plane pedestal_feet_idx = get_joint_info_by_name(sawyer_id, 'pedestal_feet').idx # The (sawyer_idx, pedestal_feet_idx) tuple the ecluded from disabled collisions. excluded_body_link_pairs = [(sawyer_id, pedestal_feet_idx)] ############ # PLANNING # ############ # Disabled collisions during planning with certain eclusions in place. with DisabledCollisionsContext(sim, excluded_bodies, excluded_body_link_pairs): ######################### # STATE SPACE SELECTION # ######################### # This inherently uses UniformSampler but a different sampling class could be injected. state_space = SawyerConfigurationSpace() ############################## # STATE VALIDITY FORMULATION # ############################## # Certain links in Sawyer seem to be permentently in self collision. This is how to remove them by name when getting all link pairs to check for self collision. excluded_pairs = [(get_joint_info_by_name(sawyer_id, "right_l1_2").idx, get_joint_info_by_name(sawyer_id, "right_l0").idx), (get_joint_info_by_name(sawyer_id, "right_l1_2").idx, get_joint_info_by_name(sawyer_id, "head").idx)] link_pairs = get_link_pairs(sawyer_id, excluded_pairs=excluded_pairs) self_collision_fn = partial(self_collision_test, robot=sawyer_robot, link_pairs=link_pairs) # Create constraint checks def constraint_test(q): upright_orientation = [ 0.0005812598018143569, 0.017721236427960724, -0.6896867930096543, 0.723890701324838 ] axis = 'z' threshold = 15 world_pose, _ = sawyer_robot.solve_forward_kinematics(q) return orientation(upright_orientation, world_pose[1], threshold, axis) # In this case, we only have a self_col_fn. svc = StateValidityChecker(self_col_func=self_collision_fn, col_func=None, validity_funcs=[constraint_test]) ####### # PRM # ####### # Use parametric linear interpolation with 5 steps between points. interp = partial(parametric_lerp, steps=5) # See params for PRM specific parameters prm = PRM(state_space, svc, interp, params={ 'n_samples': 1000, 'k': 10, 'ball_radius': 3.0 }) logger.info("Planning....") plan = prm.plan( np.array([ 0.006427734375, -0.4784267578125, -2.6830537109375, -1.5901376953125, 0.1734560546875, 1.1468447265625, 1.310236328125 ]), np.array([ -0.9232412109375, 0.2353603515625, -2.51373828125, -0.6898984375, 0.33058203125, 1.0955361328125, 1.14510546875 ])) logger.info("Plan found....") print(len(plan)) print(plan) # get_path() reuses the interp function to get the path between vertices of a successful plan path = prm.get_path(plan) if len(path) == 0: logger.info("Planning failed....") sys.exit(1) ########## # SPLINE # ########## # splinging uses numpy so needs to be converted path = [np.array(p) for p in path] # Create a MinJerk spline trajectory using JointTrajectoryCurve and execute jtc = JointTrajectoryCurve() traj = jtc.generate_trajectory(path, move_time=5) print("Executing splined trajectory...") sawyer_robot.execute_trajectory(traj) try: while True: sim.step() except KeyboardInterrupt: p.disconnect() sys.exit(0)
if valid: graph.add_edge(graph.vs['value'].index(end), graph.vs['value'].index(list(q_near)), **{'weight': pair[2]}) break graph_path = graph.get_shortest_paths( 'start', 'goal', weights='weight', mode='ALL')[0] points = [graph.vs[idx]['value'] for idx in graph_path] pairs = list(zip(points, points[1:])) segments = [parametric_lerp(np.array(p[0]), np.array(p[1]), steps=20) for p in pairs] segments = [[list(val) for val in seg] for seg in segments] path = [] for seg in segments: path = path + seg ########## # SPLINE # ########## # splinging uses numpy so needs to be converted path = [np.array(p) for p in path] print(path) # Create a MinJerk spline trajectory using JointTrajectoryCurve and execute jtc = JointTrajectoryCurve() traj = jtc.generate_trajectory(path, move_time=10) sawyer_robot.execute_trajectory(traj) try: while True: sim.step() except KeyboardInterrupt: p.disconnect() sys.exit(0)