示例#1
0
def train(init_path=None, is_reverse_model=False):
    processed_train_corpus_path = get_processed_corpus_path(TRAIN_CORPUS_NAME)
    processed_val_corpus_path = get_processed_corpus_path(
        CONTEXT_SENSITIVE_VAL_CORPUS_NAME)
    index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME)
    index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    # check the existence of all necessary files before compiling the model
    _look_for_saved_files(files_paths=[
        processed_train_corpus_path, processed_val_corpus_path,
        index_to_token_path
    ])

    index_to_token = load_index_to_item(index_to_token_path)
    index_to_condition = load_index_to_item(index_to_condition_path)

    w2v_matrix = _get_w2v_embedding_matrix_by_corpus_path(
        processed_train_corpus_path, index_to_token)

    # get nn_model and train it
    nn_model_resolver_factory = S3FileResolver.init_resolver(
        bucket_name=S3_MODELS_BUCKET_NAME, remote_dir=S3_NN_MODEL_REMOTE_DIR)

    nn_model, _ = get_nn_model(index_to_token,
                               index_to_condition,
                               model_init_path=init_path,
                               w2v_matrix=w2v_matrix,
                               resolver_factory=nn_model_resolver_factory,
                               is_reverse_model=is_reverse_model)

    train_model(nn_model)
示例#2
0
def load_model():
    index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME)
    index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    model_path = get_model_full_path()
    index_to_token = load_index_to_item(index_to_token_path)
    index_to_condition = load_index_to_item(index_to_condition_path)

    nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path)

    if not model_exists:
        raise FileNotFoundException('Couldn\'t find model:\n"{}". \nExiting...'.format(model_path))

    return nn_model
def load_model(model_path, tokens_index_path=None, conditions_index_path=None):
    if tokens_index_path is None:
        tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME)
    if conditions_index_path is None:
        conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    index_to_token = load_index_to_item(tokens_index_path)
    index_to_condition = load_index_to_item(conditions_index_path)
    nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, model_path)

    if not model_exists:
        raise ValueError('Couldn\'t find model: "{}".'.format(model_path))

    return nn_model
def load_model(model_path=None, tokens_index_path=None, conditions_index_path=None):
    if model_path is None:
        model_path = get_model_full_path()
    if tokens_index_path is None:
        tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME)
    if conditions_index_path is None:
        conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    index_to_token = load_index_to_item(tokens_index_path)
    index_to_condition = load_index_to_item(conditions_index_path)
    nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path)

    if not model_exists:
        raise ValueError('Couldn\'t find model: "{}".'.format(model_path))

    return nn_model
def load_model():
    index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME)
    index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    model_path = get_model_full_path()
    index_to_token = load_index_to_item(index_to_token_path)
    index_to_condition = load_index_to_item(index_to_condition_path)

    nn_model, model_exists = get_nn_model(index_to_token,
                                          index_to_condition,
                                          nn_model_path=model_path)

    if not model_exists:
        raise FileNotFoundException(
            'Couldn\'t find model:\n"{}". \nExiting...'.format(model_path))

    return nn_model
示例#6
0
def get_trained_model(reverse=False, fetch_from_s3=True):
    if fetch_from_s3:
        resolver_factory = S3FileResolver.init_resolver(
            bucket_name=S3_MODELS_BUCKET_NAME, remote_dir=S3_NN_MODEL_REMOTE_DIR)
    else:
        resolver_factory = None

    nn_model, model_exists = get_nn_model(
        _get_index_to_token(fetch_from_s3),
        _get_index_to_condition(fetch_from_s3),
        resolver_factory=resolver_factory,
        is_reverse_model=reverse)

    if not model_exists:
        raise Exception('Can\'t get the model. '
                        'Run tools/download_model.py first to get all required files or train it by yourself.')

    return nn_model
示例#7
0
def get_trained_model(reverse=False, fetch_from_s3=True):
    if fetch_from_s3:
        resolver_factory = S3FileResolver.init_resolver(
            bucket_name=S3_MODELS_BUCKET_NAME,
            remote_dir=S3_NN_MODEL_REMOTE_DIR)
    else:
        resolver_factory = None

    nn_model, model_exists = get_nn_model(
        index_to_token=_get_index_to_token(fetch_from_s3),
        index_to_condition=_get_index_to_condition(fetch_from_s3),
        resolver_factory=resolver_factory,
        is_reverse_model=reverse)
    if not model_exists:
        raise FileNotFoundException(
            'Can\'t get the pre-trained model. Run tools/download_model.py first '
            'to get all required files or train it by yourself.')
    return nn_model
示例#8
0
def train(is_reverse_model=False):
    processed_train_corpus_path = get_processed_corpus_path(TRAIN_CORPUS_NAME)
    processed_val_corpus_path = get_processed_corpus_path(CONTEXT_SENSITIVE_VAL_CORPUS_NAME)
    index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME)
    index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME)

    model_path = get_model_full_path(is_reverse_model)

    # check the existence of all necessary files before compiling the model
    _look_for_saved_files(files_paths=[processed_train_corpus_path, processed_val_corpus_path, index_to_token_path])
    _look_for_saved_model(model_path)

    index_to_token = load_index_to_item(index_to_token_path)
    index_to_condition = load_index_to_item(index_to_condition_path)

    w2v_matrix = _get_w2v_embedding_matrix_by_corpus_path(processed_train_corpus_path, index_to_token)

    # get nn_model and train it
    nn_model, _ = get_nn_model(index_to_token, index_to_condition, w2v_matrix)
    train_model(nn_model, is_reverse_model=is_reverse_model)
示例#9
0
def predict(model_path,
            tokens_index_path=None,
            conditions_index_path=None,
            default_predictions_path=None,
            reverse_model_weights=None,
            temperatures=None,
            prediction_mode=None):

    if not tokens_index_path:
        tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME)
    if not conditions_index_path:
        conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME)
    if not temperatures:
        temperatures = [DEFAULT_TEMPERATURE]
    if not prediction_mode:
        prediction_mode = PREDICTION_MODE_FOR_TESTS

    # Construct list of parameters values for all possible combinations of passed parameters
    prediction_params = [dict()]
    if reverse_model_weights:
        prediction_params = [
            dict(params, mmi_reverse_model_score_weight=w)
            for params in prediction_params for w in reverse_model_weights
        ]
    if temperatures:
        prediction_params = [
            dict(params, temperature=t) for params in prediction_params
            for t in temperatures
        ]

    if not is_non_empty_file(tokens_index_path):
        _logger.warning(
            'Couldn\'t find tokens_index file:\n{}. \nExiting...'.format(
                tokens_index_path))
        return

    index_to_token = load_index_to_item(tokens_index_path)
    index_to_condition = load_index_to_item(conditions_index_path)

    nn_model, _ = get_nn_model(index_to_token,
                               index_to_condition,
                               model_init_path=model_path)

    if not default_predictions_path:
        default_predictions_path = os.path.join(
            DATA_DIR, 'results', 'predictions_' + nn_model.model_name)

    # Get path for each combination of parameters
    predictions_paths = []
    # Add suffix to the filename only for parameters that have a specific value passed as an argument
    # If no parameters were specified, no suffix is added
    if len(prediction_params) > 1:
        for cur_params in prediction_params:
            cur_path = '{base_path}_{params_str}.tsv'.format(
                base_path=default_predictions_path,
                params_str='_'.join(
                    ['{}_{}'.format(k, v) for k, v in cur_params.items()]))
            predictions_paths.append(cur_path)
    else:
        predictions_paths = [default_predictions_path + '.tsv']

    _logger.info('Model for prediction:\n{}'.format(nn_model.model_load_path))
    _logger.info('Tokens index:\n{}'.format(tokens_index_path))
    _logger.info('File with questions:\n{}'.format(QUESTIONS_CORPUS_NAME))
    _logger.info('Files to dump responses:\n{}'.format(
        '\n'.join(predictions_paths)))
    _logger.info('Prediction parameters\n{}'.format('\n'.join(
        [str(x) for x in prediction_params])))

    processed_test_set = get_tokenized_test_lines(QUESTIONS_CORPUS_NAME,
                                                  set(index_to_token.values()))
    processed_test_set = list(processed_test_set)

    for cur_params, cur_path in zip(prediction_params, predictions_paths):
        _logger.info(
            'Predicting with the following params: {}'.format(cur_params))
        _save_test_results(processed_test_set,
                           cur_path,
                           nn_model,
                           prediction_modes=[prediction_mode])
示例#10
0
def predict(model_path=None,
            tokens_index_path=None,
            conditions_index_path=None,
            default_predictions_path=None,
            reverse_model_weights=None,
            temperatures=None,
            prediction_mode=PREDICTION_MODE_FOR_TESTS):
    if not model_path:
        model_path = get_model_full_path()
    if not tokens_index_path:
        tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME)
    if not conditions_index_path:
        conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME)
    if not default_predictions_path:
        default_predictions_path = os.path.join(DATA_DIR, 'results', 'predictions_' + get_model_full_params_str())

    # Construct list of parameters values for all possible combinations of passed parameters
    prediction_params = [dict()]
    if reverse_model_weights:
        prediction_params = [
            dict(params, mmi_reverse_model_score_weight=w)
            for params in prediction_params
            for w in reverse_model_weights
        ]
    if temperatures:
        prediction_params = [dict(params, temperature=t) for params in prediction_params for t in temperatures]

    # Get path for each combination of parameters
    predictions_paths = []
    # Add suffix to the filename only for parameters that have a specific value passed as an argument
    # If no parameters were specified, no suffix is added
    if len(prediction_params) > 1:
        for cur_params in prediction_params:
            cur_path = '{base_path}_{params_str}.tsv'.format(
                base_path=default_predictions_path,
                params_str='_'.join(['{}_{}'.format(k, v) for k, v in cur_params.items()]))
            predictions_paths.append(cur_path)
    else:
        predictions_paths = [default_predictions_path + '.tsv']

    if not is_non_empty_file(model_path):
        _logger.warn('Couldn\'t find model:\n"{}". \nExiting...'.format(model_path))
        return

    if not is_non_empty_file(tokens_index_path):
        _logger.warn('Couldn\'t find tokens_index file:\n"{}". \nExiting...'.format(tokens_index_path))
        return

    _logger.info('Model for prediction:\n{}'.format(model_path))
    _logger.info('Tokens index:\n{}'.format(tokens_index_path))
    _logger.info('File with questions:\n{}'.format(QUESTIONS_CORPUS_NAME))
    _logger.info('Files to dump responses:\n{}'.format('\n'.join(predictions_paths)))
    _logger.info('Prediction parameters\n{}'.format('\n'.join([str(x) for x in prediction_params])))

    index_to_token = load_index_to_item(tokens_index_path)
    index_to_condition = load_index_to_item(conditions_index_path)

    processed_test_set = get_tokenized_test_lines(QUESTIONS_CORPUS_NAME, set(index_to_token.values()))
    processed_test_set = list(processed_test_set)

    nn_model, _ = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path)

    for cur_params, cur_path in zip(prediction_params, predictions_paths):
        _logger.info('Predicting with the following params: {}'.format(cur_params))
        _save_test_results(processed_test_set, cur_path, nn_model, prediction_mode, **cur_params)