def train(init_path=None, is_reverse_model=False): processed_train_corpus_path = get_processed_corpus_path(TRAIN_CORPUS_NAME) processed_val_corpus_path = get_processed_corpus_path( CONTEXT_SENSITIVE_VAL_CORPUS_NAME) index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME) index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME) # check the existence of all necessary files before compiling the model _look_for_saved_files(files_paths=[ processed_train_corpus_path, processed_val_corpus_path, index_to_token_path ]) index_to_token = load_index_to_item(index_to_token_path) index_to_condition = load_index_to_item(index_to_condition_path) w2v_matrix = _get_w2v_embedding_matrix_by_corpus_path( processed_train_corpus_path, index_to_token) # get nn_model and train it nn_model_resolver_factory = S3FileResolver.init_resolver( bucket_name=S3_MODELS_BUCKET_NAME, remote_dir=S3_NN_MODEL_REMOTE_DIR) nn_model, _ = get_nn_model(index_to_token, index_to_condition, model_init_path=init_path, w2v_matrix=w2v_matrix, resolver_factory=nn_model_resolver_factory, is_reverse_model=is_reverse_model) train_model(nn_model)
def load_model(): index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME) index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME) model_path = get_model_full_path() index_to_token = load_index_to_item(index_to_token_path) index_to_condition = load_index_to_item(index_to_condition_path) nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path) if not model_exists: raise FileNotFoundException('Couldn\'t find model:\n"{}". \nExiting...'.format(model_path)) return nn_model
def load_model(model_path, tokens_index_path=None, conditions_index_path=None): if tokens_index_path is None: tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME) if conditions_index_path is None: conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME) index_to_token = load_index_to_item(tokens_index_path) index_to_condition = load_index_to_item(conditions_index_path) nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, model_path) if not model_exists: raise ValueError('Couldn\'t find model: "{}".'.format(model_path)) return nn_model
def load_model(model_path=None, tokens_index_path=None, conditions_index_path=None): if model_path is None: model_path = get_model_full_path() if tokens_index_path is None: tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME) if conditions_index_path is None: conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME) index_to_token = load_index_to_item(tokens_index_path) index_to_condition = load_index_to_item(conditions_index_path) nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path) if not model_exists: raise ValueError('Couldn\'t find model: "{}".'.format(model_path)) return nn_model
def load_model(): index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME) index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME) model_path = get_model_full_path() index_to_token = load_index_to_item(index_to_token_path) index_to_condition = load_index_to_item(index_to_condition_path) nn_model, model_exists = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path) if not model_exists: raise FileNotFoundException( 'Couldn\'t find model:\n"{}". \nExiting...'.format(model_path)) return nn_model
def get_trained_model(reverse=False, fetch_from_s3=True): if fetch_from_s3: resolver_factory = S3FileResolver.init_resolver( bucket_name=S3_MODELS_BUCKET_NAME, remote_dir=S3_NN_MODEL_REMOTE_DIR) else: resolver_factory = None nn_model, model_exists = get_nn_model( _get_index_to_token(fetch_from_s3), _get_index_to_condition(fetch_from_s3), resolver_factory=resolver_factory, is_reverse_model=reverse) if not model_exists: raise Exception('Can\'t get the model. ' 'Run tools/download_model.py first to get all required files or train it by yourself.') return nn_model
def get_trained_model(reverse=False, fetch_from_s3=True): if fetch_from_s3: resolver_factory = S3FileResolver.init_resolver( bucket_name=S3_MODELS_BUCKET_NAME, remote_dir=S3_NN_MODEL_REMOTE_DIR) else: resolver_factory = None nn_model, model_exists = get_nn_model( index_to_token=_get_index_to_token(fetch_from_s3), index_to_condition=_get_index_to_condition(fetch_from_s3), resolver_factory=resolver_factory, is_reverse_model=reverse) if not model_exists: raise FileNotFoundException( 'Can\'t get the pre-trained model. Run tools/download_model.py first ' 'to get all required files or train it by yourself.') return nn_model
def train(is_reverse_model=False): processed_train_corpus_path = get_processed_corpus_path(TRAIN_CORPUS_NAME) processed_val_corpus_path = get_processed_corpus_path(CONTEXT_SENSITIVE_VAL_CORPUS_NAME) index_to_token_path = get_index_to_token_path(BASE_CORPUS_NAME) index_to_condition_path = get_index_to_condition_path(BASE_CORPUS_NAME) model_path = get_model_full_path(is_reverse_model) # check the existence of all necessary files before compiling the model _look_for_saved_files(files_paths=[processed_train_corpus_path, processed_val_corpus_path, index_to_token_path]) _look_for_saved_model(model_path) index_to_token = load_index_to_item(index_to_token_path) index_to_condition = load_index_to_item(index_to_condition_path) w2v_matrix = _get_w2v_embedding_matrix_by_corpus_path(processed_train_corpus_path, index_to_token) # get nn_model and train it nn_model, _ = get_nn_model(index_to_token, index_to_condition, w2v_matrix) train_model(nn_model, is_reverse_model=is_reverse_model)
def predict(model_path, tokens_index_path=None, conditions_index_path=None, default_predictions_path=None, reverse_model_weights=None, temperatures=None, prediction_mode=None): if not tokens_index_path: tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME) if not conditions_index_path: conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME) if not temperatures: temperatures = [DEFAULT_TEMPERATURE] if not prediction_mode: prediction_mode = PREDICTION_MODE_FOR_TESTS # Construct list of parameters values for all possible combinations of passed parameters prediction_params = [dict()] if reverse_model_weights: prediction_params = [ dict(params, mmi_reverse_model_score_weight=w) for params in prediction_params for w in reverse_model_weights ] if temperatures: prediction_params = [ dict(params, temperature=t) for params in prediction_params for t in temperatures ] if not is_non_empty_file(tokens_index_path): _logger.warning( 'Couldn\'t find tokens_index file:\n{}. \nExiting...'.format( tokens_index_path)) return index_to_token = load_index_to_item(tokens_index_path) index_to_condition = load_index_to_item(conditions_index_path) nn_model, _ = get_nn_model(index_to_token, index_to_condition, model_init_path=model_path) if not default_predictions_path: default_predictions_path = os.path.join( DATA_DIR, 'results', 'predictions_' + nn_model.model_name) # Get path for each combination of parameters predictions_paths = [] # Add suffix to the filename only for parameters that have a specific value passed as an argument # If no parameters were specified, no suffix is added if len(prediction_params) > 1: for cur_params in prediction_params: cur_path = '{base_path}_{params_str}.tsv'.format( base_path=default_predictions_path, params_str='_'.join( ['{}_{}'.format(k, v) for k, v in cur_params.items()])) predictions_paths.append(cur_path) else: predictions_paths = [default_predictions_path + '.tsv'] _logger.info('Model for prediction:\n{}'.format(nn_model.model_load_path)) _logger.info('Tokens index:\n{}'.format(tokens_index_path)) _logger.info('File with questions:\n{}'.format(QUESTIONS_CORPUS_NAME)) _logger.info('Files to dump responses:\n{}'.format( '\n'.join(predictions_paths))) _logger.info('Prediction parameters\n{}'.format('\n'.join( [str(x) for x in prediction_params]))) processed_test_set = get_tokenized_test_lines(QUESTIONS_CORPUS_NAME, set(index_to_token.values())) processed_test_set = list(processed_test_set) for cur_params, cur_path in zip(prediction_params, predictions_paths): _logger.info( 'Predicting with the following params: {}'.format(cur_params)) _save_test_results(processed_test_set, cur_path, nn_model, prediction_modes=[prediction_mode])
def predict(model_path=None, tokens_index_path=None, conditions_index_path=None, default_predictions_path=None, reverse_model_weights=None, temperatures=None, prediction_mode=PREDICTION_MODE_FOR_TESTS): if not model_path: model_path = get_model_full_path() if not tokens_index_path: tokens_index_path = get_index_to_token_path(BASE_CORPUS_NAME) if not conditions_index_path: conditions_index_path = get_index_to_condition_path(BASE_CORPUS_NAME) if not default_predictions_path: default_predictions_path = os.path.join(DATA_DIR, 'results', 'predictions_' + get_model_full_params_str()) # Construct list of parameters values for all possible combinations of passed parameters prediction_params = [dict()] if reverse_model_weights: prediction_params = [ dict(params, mmi_reverse_model_score_weight=w) for params in prediction_params for w in reverse_model_weights ] if temperatures: prediction_params = [dict(params, temperature=t) for params in prediction_params for t in temperatures] # Get path for each combination of parameters predictions_paths = [] # Add suffix to the filename only for parameters that have a specific value passed as an argument # If no parameters were specified, no suffix is added if len(prediction_params) > 1: for cur_params in prediction_params: cur_path = '{base_path}_{params_str}.tsv'.format( base_path=default_predictions_path, params_str='_'.join(['{}_{}'.format(k, v) for k, v in cur_params.items()])) predictions_paths.append(cur_path) else: predictions_paths = [default_predictions_path + '.tsv'] if not is_non_empty_file(model_path): _logger.warn('Couldn\'t find model:\n"{}". \nExiting...'.format(model_path)) return if not is_non_empty_file(tokens_index_path): _logger.warn('Couldn\'t find tokens_index file:\n"{}". \nExiting...'.format(tokens_index_path)) return _logger.info('Model for prediction:\n{}'.format(model_path)) _logger.info('Tokens index:\n{}'.format(tokens_index_path)) _logger.info('File with questions:\n{}'.format(QUESTIONS_CORPUS_NAME)) _logger.info('Files to dump responses:\n{}'.format('\n'.join(predictions_paths))) _logger.info('Prediction parameters\n{}'.format('\n'.join([str(x) for x in prediction_params]))) index_to_token = load_index_to_item(tokens_index_path) index_to_condition = load_index_to_item(conditions_index_path) processed_test_set = get_tokenized_test_lines(QUESTIONS_CORPUS_NAME, set(index_to_token.values())) processed_test_set = list(processed_test_set) nn_model, _ = get_nn_model(index_to_token, index_to_condition, nn_model_path=model_path) for cur_params, cur_path in zip(prediction_params, predictions_paths): _logger.info('Predicting with the following params: {}'.format(cur_params)) _save_test_results(processed_test_set, cur_path, nn_model, prediction_mode, **cur_params)