示例#1
0
for iel in range(elnods.shape[0]):
    eldofs[iel, ::2] = elnods[iel, :] * 2 + 1  # The x dofs
    eldofs[iel, 1::2] = elnods[iel, :] * 2 + 2  # The y dofs

# Draw the mesh.
if not bDrawMesh:
    cfv.drawMesh(coords=coords,
                 edof=eldofs,
                 dofsPerNode=2,
                 elType=elTypeInfo[0],
                 filled=True,
                 title=elTypeInfo[1])
    cfv.showAndWait()

# Extract element coordinates
ex, ey = cfc.coordxtr(eldofs, coords, dofs)

# Set fixed boundary condition on left side, i.e. nodes 0-nNody
bc = np.array(np.zeros(numNodesY * 2), 'i')
idof = 1
for i in range(numNodesY):
    idx = i * 2
    bc[idx] = idof
    bc[idx + 1] = idof + 1
    idof += 2

# Assemble stiffness matrix

K = np.zeros((ndofs, ndofs))
R = np.zeros((ndofs, 1))
示例#2
0
dofsPerNode = 2

# Create mesh

meshGen = cfm.GmshMeshGenerator(geometry=g)
meshGen.elType = elType
meshGen.dofsPerNode = dofsPerNode

coords, edof, dofs, bdofs, elementmarkers = meshGen.create()

# ---- Solve problem --------------------------------------------------------

cfu.info("Assembling system matrix...")

nDofs = np.size(dofs)
ex, ey = cfc.coordxtr(edof, coords, dofs)
K = np.zeros([nDofs, nDofs])

for eltopo, elx, ely in zip(edof, ex, ey):
    Ke = cfc.planqe(elx, ely, ep, D)
    cfc.assem(eltopo, K, Ke)

cfu.info("Solving equation system...")

f = np.zeros([nDofs, 1])

bc = np.array([], 'i')
bcVal = np.array([], 'i')

bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 5, 0.0, 0)
示例#3
0
# ----- Element properties, topology and coordinates -----

ep = np.array([1])
D = np.array([[1, 0], [0, 1]])
Edof = np.array([
    [1, 2, 5, 4],
    [2, 3, 6, 5],
    [4, 5, 8, 7],
    [5, 6, 9, 8],
    [7, 8, 11, 10],
    [8, 9, 12, 11],
    [10, 11, 14, 13],
    [11, 12, 15, 14],
])
Ex, Ey = cfc.coordxtr(Edof, Coord, Dof)

# ----- Generate FE-mesh -----

#clf; eldraw2(Ex,Ey,[1 3 0],Edof(:,1));
#disp('PRESS ENTER TO CONTINUE'); pause; clf;

# ----- Create and assemble element matrices -----

for i in range(8):
    Ke = cfc.flw2qe(Ex[i], Ey[i], ep, D)
    K = cfc.assem(Edof[i], K, Ke)

# ----- Solve equation system -----

bcPrescr = np.array([1, 2, 3, 4, 7, 10, 13, 14, 15])
示例#4
0
meshGen.elSizeFactor = elSizeFactor
meshGen.elType = elType  
meshGen.dofsPerNode = dofsPerNode

# Mesh the geometry:
#  The first four return values are the same as those that trimesh2d() returns.
#  value elementmarkers is a list of markers, and is used for finding the 
#  marker of a given element (index).

coords, edof, dofs, bdofs, elementmarkers = meshGen.create()

# ---- Solve problem --------------------------------------------------------

nDofs = np.size(dofs)
K = lil_matrix((nDofs,nDofs))
ex, ey = cfc.coordxtr(edof, coords, dofs)

print("Assembling K... ("+str(nDofs)+")")

for eltopo, elx, ely, elMarker in zip(edof, ex, ey, elementmarkers):

    if elType == 2:
        Ke = cfc.plante(elx, ely, elprop[elMarker][0], elprop[elMarker][1])
    else:
        Ke = cfc.planqe(elx, ely, elprop[elMarker][0], elprop[elMarker][1])
        
    cfc.assem(eltopo, K, Ke)
    
print("Applying bc and loads...")

bc = np.array([],'i')
示例#5
0
    def execute(self):
        # ------ Transfer model variables to local variables
        self.inputData.updateparams()
        version = self.inputData.version
        units = self.inputData.units
        v = self.inputData.v
        ep = self.inputData.ep
        E = self.inputData.E
        mp = self.inputData.mp
        fp = self.inputData.fp
        bp = self.inputData.bp
        ep[1] = ep[1] * U2SI[units][0]
        E = E * U2SI[units][2]
        for i in range(len(fp[0])):
            fp[1][i] = fp[1][i] * U2SI[units][1]
        for i in range(len(bp[0])):
            bp[1][i] = bp[1][i] * U2SI[units][0]

        # Get most updated dxf dimensions and import model geometry to calfem format
        self.inputData.dxf.readDXF(self.inputData.dxf_filename)
        for dim in self.inputData.d:
            ("Adjusting Dimension {0} with val {1}".format(
                dim[0], dim[1] * U2SI[units][0]))
            self.inputData.dxf.adjustDimension(dim[0], dim[1] * U2SI[units][0])
        self.inputData.dxf.adjustDimension(
            self.inputData.c['aName'], self.inputData.c['a'] * U2SI[units][0])
        self.inputData.dxf.adjustDimension(
            self.inputData.c['bName'], self.inputData.c['b'] * U2SI[units][0])
        dxf = self.inputData.dxf

        if self.inputData.refineMesh:
            geometry, curve_dict = dxf.convertToGeometry(max_el_size=mp[2])
        else:
            geometry, curve_dict = dxf.convertToGeometry()

        # Generate the mesh
        meshGen = cfm.GmshMeshGenerator(geometry)
        meshGen.elSizeFactor = mp[2]  # Max Area for elements
        meshGen.elType = mp[0]
        meshGen.dofsPerNode = mp[1]
        meshGen.returnBoundaryElements = True

        coords, edof, dofs, bdofs, elementmarkers, boundaryElements = meshGen.create(
        )

        # Add the force loads and boundary conditions
        bc = np.array([], int)
        bcVal = np.array([], int)
        nDofs = np.size(dofs)
        f = np.zeros([nDofs, 1])

        for i in range(len(bp[0])):
            bc, bcVal = cfu.applybc(bdofs, bc, bcVal, dxf.markers[bp[0][i]],
                                    bp[1][i])
        for i in range(len(fp[0])):
            xforce = fp[1][i] * np.cos(np.radians(fp[2][i]))
            yforce = fp[1][i] * np.sin(np.radians(fp[2][i]))
            cfu.applyforce(bdofs,
                           f,
                           dxf.markers[fp[0][i]],
                           xforce,
                           dimension=1)
            cfu.applyforce(bdofs,
                           f,
                           dxf.markers[fp[0][i]],
                           yforce,
                           dimension=2)

        # ------ Calculate the solution

        print("")
        print("Solving the equation system...")

        # Define the elements coordinates
        ex, ey = cfc.coordxtr(edof, coords, dofs)

        # Define the D and K matrices
        D = (E / (1 - v**2)) * np.matrix([[1, v, 0], [v, 1, 0],
                                          [0, 0, (1 - v) / 2]])
        K = np.zeros([nDofs, nDofs])

        # Extract element coordinates and topology for each element
        for eltopo, elx, ely in zip(edof, ex, ey):
            Ke = cfc.plante(elx, ely, ep, D)
            cfc.assem(eltopo, K, Ke)

        # Solve the system
        a, r = cfc.solveq(K, f, bc, bcVal)

        # ------ Determine stresses and displacements

        print("Computing the element forces")

        # Extract element displacements
        ed = cfc.extractEldisp(edof, a)

        # Determine max displacement
        max_disp = [[0, 0], 0]  # [node idx, value]
        for idx, node in zip(range(len(ed)), ed):
            for i in range(3):
                disp = math.sqrt(node[2 * i]**2 + node[2 * i + 1]**2)
                if disp > max_disp[1]:
                    max_disp = [[idx, 2 * i], disp]

        # Determine Von Mises stresses
        vonMises = []
        max_vm = [0, 0]  # [node idx, value]
        for i in range(edof.shape[0]):
            es, et = cfc.plants(ex[i, :], ey[i, :], ep, D, ed[i, :])
            try:
                vonMises.append(
                    math.sqrt(
                        pow(es[0, 0], 2) - es[0, 0] * es[0, 1] +
                        pow(es[0, 1], 2) + 3 * es[0, 2]))
                if vonMises[-1] > max_vm[1]:
                    max_vm = [i, vonMises[-1]]
            except ValueError:
                vonMises.append(0)
                print("CAUGHT MATH EXCEPTION with es = {0}".format(es))
            # Note: es = [sigx sigy tauxy]

        # ------ Store the solution in the output model variables
        self.outputData.disp = ed
        self.outputData.stress = vonMises
        self.outputData.geometry = geometry
        self.outputData.a = a
        self.outputData.coords = coords
        self.outputData.edof = edof
        self.outputData.mp = mp
        self.outputData.meshGen = meshGen
        self.outputData.statistics = [
            max_vm, max_disp, curve_dict, self.inputData.dxf.anchor,
            self.inputData.dxf.wh
        ]
        if self.inputData.paramFilename is None:
            print("Solution completed.")
示例#6
0
    def execute(self):

        # --- Överför modell variabler till lokala referenser

        ep = self.inputData.ep
        E = self.inputData.E
        v = self.inputData.v
        Elementsize = self.inputData.Elementsize

        # --- Anropa InputData för en geomtetribeskrivning

        geometry = self.inputData.geometry()

        # --- Nätgenerering

        elType = 3  # <-- Fyrnodselement flw2i4e
        dofsPerNode = 2

        meshGen = cfm.GmshMeshGenerator(geometry)

        meshGen.elSizeFactor = Elementsize  # <-- Anger max area för element
        meshGen.elType = elType
        meshGen.dofsPerNode = dofsPerNode
        meshGen.returnBoundaryElements = True

        coords, edof, dof, bdofs, elementmarkers, boundaryElements = meshGen.create(
        )
        self.outputData.topo = meshGen.topo

        #Solver
        bc = np.array([], 'i')
        bcVal = np.array([], 'i')

        D = cfc.hooke(1, E, v)
        nDofs = np.size(dof)
        ex, ey = cfc.coordxtr(edof, coords, dof)  #Coordinates
        K = np.zeros([nDofs, nDofs])

        #Append Boundary Conds
        f = np.zeros([nDofs, 1])
        bc, bcVal = cfu.applybc(bdofs, bc, bcVal, 30, 0.0, 0)
        cfu.applyforce(bdofs, f, 20, 100e3, 1)

        qs_array = []
        qt_array = []

        for x, y, z in zip(ex, ey, edof):

            Ke = cfc.planqe(x, y, ep, D)

            cfc.assem(z, K, Ke)

        asolve, r = cfc.solveq(K, f, bc, bcVal)

        ed = cfc.extractEldisp(edof, asolve)
        for x, y, z in zip(ex, ey, ed):
            qs, qt = cfc.planqs(x, y, ep, D, z)

            qs_array.append(qs)
            qt_array.append(qt)

        vonMises = []
        stresses1 = []
        stresses2 = []
        # For each element:

        for i in range(edof.shape[0]):

            # Determine element stresses and strains in the element.

            es, et = cfc.planqs(ex[i, :], ey[i, :], ep, D, ed[i, :])

            # Calc and append effective stress to list.

            vonMises.append(
                np.sqrt(
                    pow(es[0], 2) - es[0] * es[1] + pow(es[1], 2) + 3 * es[2]))

            ## es: [sigx sigy tauxy]
            # sigmaij = np.array([[es(i,1),es(i,3),0],[es(i,3),es(i,2),0],[0,0,0]])
            sigmaij = np.array([[es[0], es[2], 0], [es[2], es[1], 0],
                                [0, 0, 0]])
            [v, w] = np.linalg.eig(sigmaij)
            stresses1.append(v[0] * w[0])
            stresses2.append(v[1] * w[1])

        # --- Överför modell variabler till lokala referenser

        self.outputData.vonMises = vonMises
        self.outputData.edof = edof
        self.outputData.coords = coords
        self.outputData.stresses1 = stresses1
        self.outputData.stresses2 = stresses2
        self.outputData.geometry = geometry
        self.outputData.asolve = asolve
        self.outputData.r = r
        self.outputData.ed = ed
        self.outputData.qs = qs_array
        self.outputData.qt = qt_array
        self.outputData.dofsPerNode = dofsPerNode
        self.outputData.elType = elType
        self.outputData.calcDone = True