示例#1
0
def get_var(backend_model, var, dims=None, sparse=False):
    """
    Return output for variable `var` as a pandas.Series (1d),
    pandas.Dataframe (2d), or xarray.DataArray (3d and higher).

    Parameters
    ----------
    var : variable name as string, e.g. 'resource'
    dims : list, optional
        indices as strings, e.g. ('loc_techs', 'timesteps');
        if not given, they are auto-detected
    sparse : bool, optional; default = False
        If extracting Pyomo Param data, the output sparse array includes inputs
        the user left as NaN replaced with the default value for that Param.
    """
    try:
        var_container = getattr(backend_model, var)
    except AttributeError:
        raise exceptions.BackendError("Variable {} inexistent.".format(var))

    if not dims:
        if var + "_index" == var_container.index_set().name:
            dims = [i.name for i in var_container.index_set().set_tuple]
        else:
            dims = [var_container.index_set().name]

    if sparse:
        result = pd.DataFrame.from_dict(var_container.extract_values_sparse(),
                                        orient="index")
    else:
        result = pd.DataFrame.from_dict(var_container.extract_values(),
                                        orient="index")

    if result.empty:
        raise exceptions.BackendError("Variable {} has no data.".format(var))

    result = result[0]  # Get the only column in the dataframe

    if len(dims) > 1:
        result.index = pd.MultiIndex.from_tuples(result.index, names=dims)

    if len(result.index.names) == 1:
        result = result.sort_index()
        result.index.name = dims[0]
    elif len(result.index.names) == 2:
        # if len(dims) is 2, we already have a well-formed DataFrame
        result = result.unstack(level=0)
        result = result.sort_index()
    else:  # len(dims) >= 3
        result = xr.DataArray.from_series(result)

    return result
示例#2
0
def get_var(backend_model, var, dims=None, sparse=False, expr=False):
    """
    Return output for variable `var` as a pandas.Series (1d),
    pandas.Dataframe (2d), or xarray.DataArray (3d and higher).

    Parameters
    ----------
    var : variable name as string, e.g. 'resource'
    dims : list, optional
        indices as strings, e.g. ('loc_techs', 'timesteps');
        if not given, they are auto-detected
    sparse : bool, optional; default = False
        If extracting Pyomo Param data, the output sparse array includes inputs
        the user left as NaN replaced with the default value for that Param.
    expr : bool, optional
        If True, treat var as a pyomo expression, which requires calculating
        the result of the expression before translating into nd data structure
    """
    try:
        var_container = getattr(backend_model, var)
    except AttributeError:
        raise exceptions.BackendError("Variable {} inexistent.".format(var))

    if not dims:
        if var + "_index" == var_container.index_set().name:
            dims = [i.name for i in var_container.index_set().subsets()]
        else:
            dims = [var_container.index_set().name]

    if sparse and not expr:
        if invalid(var_container.default()):
            result = pd.Series(var_container._data).apply(
                lambda x: po.value(x) if not invalid(x) else np.nan)
        else:
            result = pd.Series(var_container.extract_values_sparse())
    else:
        if expr:
            result = pd.Series(var_container._data).apply(po.value)
        else:
            result = pd.Series(var_container.extract_values())
    if result.empty:
        raise exceptions.BackendError("Variable {} has no data.".format(var))

    result = result.rename_axis(index=dims)

    return xr.DataArray.from_series(result)