示例#1
0
    def predict(self, logits, temperature=None):
        """Scales logits based on the temperature, returns calibrated probabilities.

    Args:
        logits: raw (non-normalized) predictions that a classification model
          generates, shape=(num_examples, num_classes)
        temperature: temperature to scale logits by

    Returns:
        calibrated softmax probabilities shape=(num_samples, num_classes)
    """

        if not temperature:
            return utils.to_softmax(logits / self.temperature)
        else:
            return utils.to_softmax(logits / temperature)
示例#2
0
    def fit(self, logits, one_hot_labels):
        """Fit the isotonic regression model.

    Args:
        logits: raw (non-normalized) predictions that a classification model
          generates, shape=(num_examples, num_classes)
        one_hot_labels: one-hot-encoding of true labels, shape=(num_examples,
          num_classes)
    """
        assert logits.shape[1] == self.num_classes
        assert logits.shape == one_hot_labels.shape

        softmax_probabilities = utils.to_softmax(logits)
        for i in range(self.num_classes):
            self.ir_per_class[i].fit(softmax_probabilities[:, i],
                                     one_hot_labels[:, i])
示例#3
0
    def predict(self, logits):
        """Predict new softmax probabilities from logit scores.

    Uses linear interpolation in underlying scikit learn call.

    Args:
        logits: raw (non-normalized) predictions that a classification model
          generates, shape=(num_examples, num_classes)

    Returns:
        calibrated softmax probabilities, shape = (num_examples, num_classes)
    """
        assert logits.shape[1] == self.num_classes
        input_probabilities = utils.to_softmax(logits)
        new_probabilities = np.ones(np.shape(input_probabilities))
        for i in range(self.num_classes):
            new_probabilities[:, i] = self.ir_per_class[i].predict(
                input_probabilities[:, i])
        # normalize each row of the probability vector if in multiclass setting
        if self.num_classes > 1:
            row_sums = np.sum(new_probabilities, axis=1)
            return new_probabilities / row_sums[:, np.newaxis]
        else:
            return new_probabilities