def test_both_rois(self): pipeline_config = PipelineConfig("test_pipeline") simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() parameters = pipeline_config.get_configuration() camera_name = simulated_camera.get_name() parameters["roi_signal"] = [0, 200, 0, 200] parameters["roi_background"] = [0, 200, 0, 200] for i in range(10): result = process_image(image=image, pulse_id=i, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) required_fields_in_result = [ camera_name + ".processing_parameters", camera_name + '.roi_signal_x_profile', # camera_name + '.edge_position', # camera_name + '.cross_correlation_amplitude', camera_name + '.roi_background_x_profile' ] self.assertSetEqual(set(required_fields_in_result), set(result.keys()), "Not all required keys are present in the result")
def test_wrong_background_size(self): pipeline_parameters = { "camera_name": "simulation", "image_background": "white_background" } simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() background_provider = MockBackgroundManager() # Invalid background size. background_provider.save_background("white_background", numpy.zeros(shape=(100, 100)), append_timestamp=False) parameters = PipelineConfig("test_pipeline", pipeline_parameters).get_configuration() image_background_array = background_provider.get_background("white_background") with self.assertRaisesRegex(RuntimeError, "Invalid background_image size "): process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters, image_background_array=image_background_array)
def test_single_function(self): # Profile only if LineProfiler present. # To install: conda install line_profiler try: from line_profiler import LineProfiler except ImportError: return function_to_perf = functions.subtract_background n_iterations = 200 n_tests = 5 simulated_camera = CameraSimulation(CameraConfig("simulation"), size_x=2048, size_y=2048) for _ in range(n_tests): profile = LineProfiler() wrapped_function = profile(function_to_perf) images = [] backgrounds = [] for _ in range(n_iterations): images.append(simulated_camera.get_image()) backgrounds.append(simulated_camera.get_image()) for index in range(n_iterations): wrapped_function(images[index], backgrounds[index]) profile.print_stats()
def test_get_image(self): simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() self.assertIsNotNone(image) raw_image = simulated_camera.get_image(raw=True) self.assertIsNotNone(raw_image)
def test_background_roi(self): pipeline_config = PipelineConfig("test_pipeline") simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() parameters = pipeline_config.get_configuration() camera_name = simulated_camera.get_name() parameters["roi_background"] = [0, 200, 0, 200] result = process_image(image=image, pulse_id=0, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) required_fields_in_result = [ camera_name + ".processing_parameters", camera_name + '.roi_background_x_profile' ] self.assertSetEqual(set(required_fields_in_result), set(result.keys()), "Not all required keys are present in the result")
def test_noop_pipeline(self): pipeline_config = PipelineConfig("test_pipeline") simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() parameters = pipeline_config.get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) required_fields_in_result = ['x_center_of_mass', 'x_axis', 'y_axis', 'x_profile', 'y_fit_standard_deviation', 'y_rms', 'timestamp', 'y_profile', 'image', 'max_value', 'x_fit_offset', 'x_fit_gauss_function', 'y_center_of_mass', 'min_value', 'y_fit_mean', 'x_fit_mean', 'x_rms', 'y_fit_amplitude', 'x_fit_amplitude', 'y_fit_gauss_function', 'x_fit_standard_deviation', 'y_fit_offset', "processing_parameters", "intensity"] self.assertSetEqual(set(required_fields_in_result), set(result.keys()), "Not all required keys are present in the result") self.assertTrue(numpy.array_equal(result["image"], image), "The input and output image are not the same, but the pipeline should not change it.") self.assertDictEqual(parameters, json.loads(result["processing_parameters"]), "The passed and the received processing parameters are not the same.")
def test_process_image_performance(self): # Profile only if LineProfiler present. # To install: conda install line_profiler try: from line_profiler import LineProfiler except ImportError: return simulated_camera = CameraSimulation(CameraConfig("simulation"), size_x=2048, size_y=2048) x_axis, y_axis = simulated_camera.get_x_y_axis() x_size, y_size = simulated_camera.get_geometry() image_background_array = numpy.zeros(shape=(y_size, x_size), dtype="uint16") + 3 parameters = { "image_threshold": 1, "image_region_of_interest": [0, 2048, 0, 2048], "image_good_region": { "threshold": 0.3, "gfscale": 1.8 }, "image_slices": { "number_of_slices": 5, "scale": 1.0, "orientation": "horizontal" } } profile = LineProfiler(process_image) process_image_wrapper = profile(process_image) n_iterations = 300 print("Generating images.") images = [] for _ in range(n_iterations): images.append(simulated_camera.get_image()) print("Processing images.") start_time = time.time() for image in images: process_image_wrapper(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters, image_background_array=image_background_array) end_time = time.time() time_difference = end_time - start_time rate = n_iterations / time_difference print("Processing rate: ", rate) profile.print_stats()
def test_image_background(self): pipeline_parameters = { "camera_name": "simulation", "image_background": "white_background" } simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() background_provider = MockBackgroundManager() x_size, y_size = simulated_camera.get_geometry() background_provider.save_background("white_background", numpy.zeros(shape=(y_size, x_size)), append_timestamp=False) pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters) parameters = pipeline_config.get_configuration() image_background_array = background_provider.get_background(parameters.get("image_background")) result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters, image_background_array=image_background_array) self.assertTrue(numpy.array_equal(result["image"], image), "A zero background should not change the image.") max_value_in_image = result["max_value"] pipeline_parameters = { "camera_name": "simulation", "image_background": "max_background", "image_threshold": 0 } max_background = numpy.zeros(shape=(y_size, x_size), dtype="uint16") max_background.fill(max_value_in_image) background_provider.save_background("max_background", max_background, append_timestamp=False) pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters) parameters = pipeline_config.get_configuration() image_background_array = background_provider.get_background(parameters.get("image_background")) expected_image = numpy.zeros(shape=(y_size, x_size)) result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters, image_background_array=image_background_array) self.assertTrue(numpy.array_equal(result["image"], expected_image), "The image should be all zeros - negative numbers are not allowed.")
def run_the_pipeline(configuration, simulated_image=None): parameters = PipelineConfig("test_pipeline", configuration).get_configuration() simulated_camera = CameraSimulation(CameraConfig("simulation")) if simulated_image is None: simulated_image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() return process_image(image=simulated_image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters)
def test_camera_calibration(self): camera = CameraSimulation(CameraConfig("simulation")) size_x, size_y = camera.get_geometry() image = camera.get_image() self.assertEqual(image.shape[0], size_y) self.assertEqual(image.shape[1], size_x) x_axis, y_axis = camera.get_x_y_axis() self.assertEqual(x_axis.shape[0], size_x) self.assertEqual(y_axis.shape[0], size_y)
def test_sum_images(self): simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() accumulated_image = None n_images = 1000 for _ in range(n_images): accumulated_image = sum_images(image=image, accumulator_image=accumulated_image) processed_image = accumulated_image / n_images processed_image = processed_image.astype(dtype="uint16") numpy.testing.assert_array_equal(image, processed_image)
def test_camera_frame_rate(self): camera = CameraSimulation(CameraConfig("simulation")) self.assertEqual(camera.frame_rate, 10) new_frame_rate = 1 camera_config = CameraConfig("simulation") configuration = camera_config.get_configuration() configuration["frame_rate"] = new_frame_rate camera_config.set_configuration(configuration) camera = CameraSimulation(camera_config) self.assertEqual(camera.frame_rate, new_frame_rate)
def test_camera_simulation_interval(self): camera = CameraSimulation(CameraConfig("simulation")) self.assertEqual(camera.simulation_interval, config.DEFAULT_CAMERA_SIMULATION_INTERVAL) new_simulation_interval = 1 camera_config = CameraConfig("simulation") configuration = camera_config.get_configuration() configuration["simulation_interval"] = new_simulation_interval camera_config.set_configuration(configuration) camera = CameraSimulation(camera_config) self.assertEqual(camera.simulation_interval, new_simulation_interval)
def test_intensity(self): simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() parameters = PipelineConfig("test_pipeline", { "camera_name": "simulation" }).get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) x_sum = result["x_profile"].sum() y_sum = result["y_profile"].sum() # The sums of X and Y profile should always give us the same result as the intensity. self.assertAlmostEqual(x_sum, result["intensity"], delta=10000) self.assertAlmostEqual(y_sum, result["intensity"], delta=10000)
def test_image_threshold(self): simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() x_size, y_size = simulated_camera.get_geometry() pipeline_parameters = { "camera_name": "simulation", "image_threshold": 9999999 } pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters) parameters = pipeline_config.get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) expected_image = numpy.zeros(shape=(y_size, x_size)) self.assertTrue(numpy.array_equal(result["image"], expected_image), "An image of zeros should have been produced.") pipeline_parameters = { "camera_name": "simulation", "image_threshold": 0 } pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters) parameters = pipeline_config.get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) self.assertTrue(numpy.array_equal(result["image"], image), "The image should be the same as the original image.")
def test_camera_simulation(self): camera = CameraSimulation(CameraConfig("simulation")) n_images_to_receive = 5 def callback_method(image, timestamp): self.assertIsNotNone(image, "Image should not be None") self.assertIsNotNone(timestamp, "Timestamp should not be None") nonlocal n_images_to_receive if n_images_to_receive <= 0: camera.clear_callbacks() camera.simulation_stop_event.set() n_images_to_receive -= 1 camera.connect() camera.add_callback(callback_method) camera.simulation_stop_event.wait()
def get_simulated_camera(path="camera_config/", name="simulation"): return CameraSimulation(CameraConfig(name, get_config(path, name)))
from cam_server.pipeline.data_processing.processor import process_image # Size of simulated image. image_size_x = 1280 image_size_y = 960 # Select compression options. Only this 2 are available in Python - cam_server uses "bitshuffle_lz4". compression = "bitshuffle_lz4" # compression = "none" # Stream configuration. cam_server uses PUB for the output stream. output_stream_port = 9999 output_stream_mode = PUB # output_stream_mode = PUSH simulated_camera = CameraSimulation(camera_config=CameraConfig("simulation"), size_x=image_size_x, size_y=image_size_y) x_axis, y_axis = simulated_camera.get_x_y_axis() x_size, y_size = simulated_camera.get_geometry() # Documentation: https://github.com/datastreaming/cam_server#pipeline_configuration pipeline_parameters = { "camera_name": "simulation" } pipeline_config = PipelineConfig("test_pipeline", pipeline_parameters) parameters = pipeline_config.get_configuration() image_number = 0 with sender(port=output_stream_port, mode=output_stream_mode) as output_stream: # Get simulated image.
def test_client(self): server_info = self.client.get_server_info() self.assertIsNot(server_info["active_instances"], "There should be no running instances.") expected_cameras = set([ "camera_example_1", "camera_example_2", "camera_example_3", "camera_example_4", "simulation" ]) self.assertSetEqual(set(self.client.get_cameras()), expected_cameras, "Not getting all expected cameras") camera_stream_address = self.client.get_camera_stream("simulation") self.assertTrue(bool(camera_stream_address), "Camera stream address cannot be empty.") self.assertTrue( "simulation" in self.client.get_server_info()["active_instances"], "Simulation camera not present in server info.") # Check if we can connect to the stream and receive data (in less than 2 seconds). host, port = get_host_port_from_stream_address(camera_stream_address) with source(host=host, port=port, receive_timeout=2000, mode=SUB) as stream: data = stream.receive() self.assertIsNotNone(data, "Received data was none.") required_fields = set( ["image", "timestamp", "width", "height", "x_axis", "y_axis"]) self.assertSetEqual(required_fields, set(data.data.data.keys()), "Required fields missing.") image = data.data.data["image"].value x_size, y_size = CameraSimulation( CameraConfig("simulation")).get_geometry() self.assertListEqual( list(image.shape), [y_size, x_size], "Original and received image are not the same.") self.assertEqual(data.data.data["width"].value, x_size, "Width not correct.") self.assertEqual(data.data.data["height"].value, y_size, "Height not correct.") # Stop the simulation instance. self.client.stop_camera("simulation") self.assertTrue( "simulation" not in self.client.get_server_info()["active_instances"], "Camera simulation did not stop.") self.client.get_camera_stream("simulation") self.assertTrue( "simulation" in self.client.get_server_info()["active_instances"], "Camera simulation did not start.") self.client.stop_all_cameras() self.assertTrue( "simulation" not in self.client.get_server_info()["active_instances"], "Camera simulation did not stop.") example_1_config = self.client.get_camera_config("camera_example_1") self.assertTrue(bool(example_1_config), "Cannot retrieve config.") # Change the name to reflect tha camera. example_1_config["name"] = "testing_camera" self.client.set_camera_config("testing_camera", example_1_config) testing_camera_config = self.client.get_camera_config("testing_camera") self.assertDictEqual(example_1_config, testing_camera_config, "Saved and loaded configs are not the same.") geometry = self.client.get_camera_geometry("simulation") simulated_camera = CameraSimulation(CameraConfig("simulation")) size_x, size_y = simulated_camera.get_geometry() self.assertListEqual( geometry, [size_x, size_y], 'The geometry of the simulated camera is not correct.') self.assertTrue("testing_camera" in self.client.get_cameras(), "Testing camera should be present.") self.client.delete_camera_config("testing_camera") self.assertTrue("testing_camera" not in self.client.get_cameras(), "Testing camera should not be present.") # Test if it fails quickly enough. with self.assertRaisesRegex( ValueError, "Camera with prefix EPICS_example_1 not online - Status None"): self.client.get_camera_stream("camera_example_1") self.assertTrue(self.client.is_camera_online("simulation"), "Simulation should be always online") self.assertFalse(self.client.is_camera_online("camera_example_1"), "Epics not working in this tests.") self.client.set_camera_config( "simulation_temp", self.client.get_camera_config("simulation")) stream_address = self.client.get_camera_stream("simulation_temp") camera_host, camera_port = get_host_port_from_stream_address( stream_address) sim_x, sim_y = CameraSimulation( CameraConfig("simulation")).get_geometry() instance_info = self.client.get_server_info( )["active_instances"]["simulation_temp"] self.assertTrue("last_start_time" in instance_info) self.assertTrue("statistics" in instance_info) # Collect from the pipeline. with source(host=camera_host, port=camera_port, mode=SUB) as stream: data = stream.receive() x_size = data.data.data["width"].value y_size = data.data.data["height"].value self.assertEqual(x_size, sim_x) self.assertEqual(y_size, sim_y) x_axis_1 = data.data.data["x_axis"].value y_axis_1 = data.data.data["y_axis"].value self.assertEqual(x_axis_1.shape[0], sim_x) self.assertEqual(y_axis_1.shape[0], sim_y) camera_config = self.client.get_camera_config("simulation_temp") camera_config["rotate"] = 1 self.client.set_camera_config("simulation_temp", camera_config) sleep(0.5) # Collect from the pipeline. with source(host=camera_host, port=camera_port, mode=SUB) as stream: data = stream.receive() x_size = data.data.data["width"].value y_size = data.data.data["height"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_size, sim_y) self.assertEqual(y_size, sim_x) x_axis_2 = data.data.data["x_axis"].value y_axis_2 = data.data.data["y_axis"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_axis_2.shape[0], sim_y) self.assertEqual(y_axis_2.shape[0], sim_x) self.client.delete_camera_config("simulation_temp") image = self.client.get_camera_image("simulation") self.assertGreater(len(image.content), 0) image = self.client.get_camera_image_bytes("simulation") dtype = image["dtype"] shape = image["shape"] bytes = base64.b64decode(image["bytes"].encode()) x_size, y_size = CameraSimulation( CameraConfig("simulation")).get_geometry() self.assertEqual(shape, [y_size, x_size]) image_array = numpy.frombuffer(bytes, dtype=dtype).reshape(shape) self.assertIsNotNone(image_array) self.client.stop_all_cameras()
def test_camera_settings_change(self): stream_address = self.instance_manager.get_instance_stream( "simulation") simulated_camera = CameraSimulation(CameraConfig("simulation")) sim_x, sim_y = simulated_camera.get_geometry() camera_host, camera_port = get_host_port_from_stream_address( stream_address) # Collect from the pipeline. with source(host=camera_host, port=camera_port, mode=SUB) as stream: data = stream.receive() x_size = data.data.data["width"].value y_size = data.data.data["height"].value self.assertEqual(x_size, sim_x) self.assertEqual(y_size, sim_y) x_axis_1 = data.data.data["x_axis"].value y_axis_1 = data.data.data["y_axis"].value self.assertEqual(x_axis_1.shape[0], sim_x) self.assertEqual(y_axis_1.shape[0], sim_y) new_config = update_camera_config( self.instance_manager.get_instance( "simulation").get_configuration(), {"rotate": 1}) new_config = CameraConfig("simulation", new_config).get_configuration() self.instance_manager.set_camera_instance_config( "simulation", new_config) sleep(0.5) # Collect from the pipeline. with source(host=camera_host, port=camera_port, mode=SUB) as stream: data = stream.receive() x_size = data.data.data["width"].value y_size = data.data.data["height"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_size, sim_y) self.assertEqual(y_size, sim_x) x_axis_2 = data.data.data["x_axis"].value y_axis_2 = data.data.data["y_axis"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_axis_2.shape[0], sim_y) self.assertEqual(y_axis_2.shape[0], sim_x) # The axis should just be switched. self.assertTrue(numpy.array_equal(x_axis_1, y_axis_2)) self.assertTrue(numpy.array_equal(y_axis_1, x_axis_2)) new_config = update_camera_config( self.instance_manager.get_instance( "simulation").get_configuration(), {"camera_calibration": {}}) new_config = CameraConfig("simulation", new_config).get_configuration() self.instance_manager.set_camera_instance_config( "simulation", new_config) with source(host=camera_host, port=camera_port, mode=SUB) as stream: data = stream.receive() x_size = data.data.data["width"].value y_size = data.data.data["height"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_size, sim_y) self.assertEqual(y_size, sim_x) x_axis_3 = data.data.data["x_axis"].value y_axis_3 = data.data.data["y_axis"].value # We rotate the image for 90 degrees - X and Y size should be inverted. self.assertEqual(x_axis_3.shape[0], sim_y) self.assertEqual(y_axis_3.shape[0], sim_x) self.instance_manager.stop_all_instances()
def test_slices(self): def run_the_pipeline(configuration, simulated_image=None): parameters = PipelineConfig("test_pipeline", configuration).get_configuration() simulated_camera = CameraSimulation(CameraConfig("simulation")) if simulated_image is None: simulated_image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() return process_image(image=simulated_image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) pipeline_configuration = { "camera_name": "simulation", "image_good_region": { "threshold": 1 }, "image_slices": { "number_of_slices": 9 } } result = run_the_pipeline(pipeline_configuration) self.assertEqual(result["slice_amount"], 9) self.assertEqual(result["slice_orientation"], "vertical", "Default slice orientation should be vertical.") self.assertTrue("slice_length" in result) pipeline_configuration = { "camera_name": "simulation", "image_good_region": { "threshold": 1 }, "image_slices": { "orientation": "horizontal" } } result = run_the_pipeline(pipeline_configuration) self.assertEqual(result["slice_orientation"], "horizontal") self.assertTrue("slice_length" in result) with self.assertRaisesRegex(ValueError, "Invalid slice orientation 'invalid'."): pipeline_configuration = { "camera_name": "simulation", "image_good_region": { "threshold": 1 }, "image_slices": { "orientation": "invalid" } } run_the_pipeline(pipeline_configuration) image = CameraSimulation(CameraConfig("simulation")).get_image() pipeline_configuration = { "camera_name": "simulation", "image_good_region": { "threshold": 0.1 }, "image_slices": { "orientation": "vertical", "number_of_slices": 3 } } result_1 = run_the_pipeline(pipeline_configuration, image) result_2 = run_the_pipeline(pipeline_configuration, image) # 2 calculations with the same data should give the same result. self.assertEqual(result_1["slice_0_center_x"], result_2["slice_0_center_x"]) self.assertEqual(result_1["slice_0_center_y"], result_2["slice_0_center_y"]) pipeline_configuration = { "camera_name": "simulation", "image_good_region": { "threshold": 0.1 }, "image_slices": { "orientation": "horizontal", "number_of_slices": 3 } } result_3 = run_the_pipeline(pipeline_configuration, image) # If we orientate the slices horizontally, the slice center has to change. self.assertNotEqual(result_1["slice_0_center_x"], result_3["slice_0_center_x"]) self.assertNotEqual(result_1["slice_0_center_y"], result_3["slice_0_center_y"])
def test_region_of_interest_default_values(self): simulated_camera = CameraSimulation(CameraConfig("simulation")) image = simulated_camera.get_image() x_axis, y_axis = simulated_camera.get_x_y_axis() parameters = PipelineConfig("test_pipeline", { "camera_name": "simulation" }).get_configuration() good_region_keys = set(["good_region", "gr_x_axis", "gr_y_axis", "gr_x_fit_gauss_function", "gr_x_fit_offset", "gr_x_fit_amplitude", "gr_x_fit_standard_deviation", "gr_x_fit_mean", "gr_y_fit_gauss_function", "gr_y_fit_offset", "gr_y_fit_amplitude", "gr_y_fit_standard_deviation", "gr_y_fit_mean", "gr_intensity", "gr_x_profile", "gr_y_profile"]) slices_key_formats = set(["slice_%s_center_x", "slice_%s_center_y", "slice_%s_standard_deviation", "slice_%s_intensity"]) result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) self.assertFalse(any((x in result for x in good_region_keys)), 'There should not be good region keys.') parameters = PipelineConfig("test_pipeline", { "camera_name": "simulation", "image_good_region": { "threshold": 99999 } }).get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) self.assertTrue(all((x in result for x in good_region_keys)), 'There should be good region keys.') self.assertTrue(all((result[x] is None for x in good_region_keys)), 'All values should be None.') number_of_slices = 7 parameters = PipelineConfig("test_pipeline", { "camera_name": "simulation", "image_good_region": { "threshold": 99999 }, "image_slices": { "number_of_slices": number_of_slices } }).get_configuration() result = process_image(image=image, timestamp=time.time(), x_axis=x_axis, y_axis=y_axis, parameters=parameters) self.assertTrue(all((x in result for x in good_region_keys)), 'There should be good region keys.') self.assertTrue(all((x in result for x in (x % counter for x in slices_key_formats for counter in range(number_of_slices)))))