示例#1
0
    def test_sync(self):
        with ScratchDir('.'):
            df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))

            # Construct and start campaign
            new_campaign = Campaign(df,
                                    AgentStabilityML5(),
                                    ATFSampler(df),
                                    StabilityAnalyzer(),
                                    create_seed=10,
                                    s3_prefix="test")
            new_campaign.auto_loop(n_iterations=3,
                                   save_iterations=True,
                                   initialize=True)
        # Test iteration read
        s3 = boto3.resource('s3')
        obj = s3.Object(CAMD_S3_BUCKET, "test/iteration.json")
        loaded = json.loads(obj.get()['Body'].read())
        self.assertEqual(loaded, 2)

        # Test save directories
        for iteration in [-1, 0, 1, 2]:
            obj = s3.Object(CAMD_S3_BUCKET, f"test/{iteration}/iteration.json")
            loaded = json.loads(obj.get()['Body'].read())
            self.assertEqual(loaded, iteration)
示例#2
0
    def test_random_agent_loop(self):
        df = load_default_atf_data()
        n_seed = 200  # Starting sample size
        agent = RandomAgent(n_query=10)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(dataframe=df)
        candidate_data = df
        new_loop = Campaign(candidate_data,
                            agent,
                            experiment,
                            analyzer,
                            create_seed=n_seed)

        new_loop.initialize()
        self.assertFalse(new_loop.create_seed)

        for _ in range(6):
            new_loop.run()
            self.assertTrue(True)

        # Testing the continuation
        new_loop = Campaign(candidate_data,
                            agent,
                            experiment,
                            analyzer,
                            create_seed=n_seed)
        self.assertTrue(new_loop.initialized)
        self.assertEqual(new_loop.iteration, 6)
        self.assertEqual(new_loop.loop_state, None)

        new_loop.run()
        self.assertTrue(True)
        self.assertEqual(new_loop.iteration, 7)
    def test_mp_loop(self):
        df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df_analysis.csv'))
        df['id'] = [int(mp_id.replace("mp-", "").replace('mvc-', ''))
                    for mp_id in df['id']]
        df.set_index("id")
        df['Composition'] = df['formula']

        # Just use the Ti-O-N chemsys
        seed = df.iloc[:38]
        candidates = df.iloc[38:209]
        agent = RandomAgent(n_query=20)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(dataframe=df)
        new_loop = Campaign(
            candidates, agent, experiment, analyzer, seed_data=seed
        )

        new_loop.initialize()

        for iteration in range(6):
            new_loop.run()
            self.assertTrue(os.path.isfile("hull.png"))
            if iteration >= 1:
                self.assertTrue(
                    os.path.isfile("history.pickle"))

        # Testing the continuation
        new_loop = Campaign(df, agent, experiment, analyzer)
        self.assertTrue(new_loop.initialized)
        self.assertEqual(new_loop.iteration, 6)
        self.assertEqual(new_loop.loop_state, None)

        new_loop.run()
        self.assertTrue(True)
        self.assertEqual(new_loop.iteration, 7)
示例#4
0
    def test_sync(self):
        with ScratchDir('.'):
            df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))

            # Construct and start campaign
            new_campaign = Campaign(df,
                                    AgentStabilityML5(),
                                    ATFSampler(df),
                                    StabilityAnalyzer(),
                                    create_seed=10,
                                    s3_prefix="test")
            new_campaign.initialize()
        s3 = boto3.resource('s3')
        obj = s3.Object(CAMD_S3_BUCKET, "test/iteration.json")
        loaded = json.loads(obj.get()['Body'].read())
        self.assertEqual(loaded, 0)
示例#5
0
def update_run(folder):
    """
    Updates existing runs in s3 to include plots

    Returns:
        List of modified chemsys

    """
    required_files = ["seed_data.pickle", "report.log"]
    with cd(folder):
        if os.path.isfile("error.json"):
            error = loadfn("error.json")
            print("{} ERROR: {}".format(folder, error))

        if not all([os.path.isfile(fn) for fn in required_files]):
            print("{} ERROR: no seed data, no analysis to be done")
        else:
            analyzer = StabilityAnalyzer(hull_distance=0.2)

            # Generate report plots
            for iteration in range(0, 25):
                print("{}: {}".format(folder, iteration))
                if not os.path.isdir(str(iteration)) or not os.path.isdir(
                        str(iteration - 1)):
                    continue
                with open(os.path.join(str(iteration), "seed_data.pickle"),
                          "rb") as f:
                    result_df = pickle.load(f)
                all_result_ids = loadfn(
                    os.path.join(str(iteration - 1),
                                 "consumed_candidates.json"))
                new_result_ids = loadfn(
                    os.path.join(str(iteration - 1),
                                 "submitted_experiment_requests.json"))
                analyzer.plot_hull(df=result_df,
                                   new_result_ids=new_result_ids,
                                   all_result_ids=all_result_ids,
                                   filename="hull_{}.png".format(iteration),
                                   finalize=False)

            Campaign.generate_report_plot()
示例#6
0
    def test_agent(self, agent):
        """
        Runs a simulation of a given agent according to the
        class attributes

        Args:
            agent (HypothesisAgent):

        Returns:
            None

        """
        campaign = Campaign(
            candidate_data=self.atf_dataframe,
            seed_data=self.seed_data,
            agent=agent,
            analyzer=self.analyzer,
            experiment=ATFSampler(dataframe=self.atf_dataframe),
        )
        campaign.auto_loop(n_iterations=self.iterations, initialize=True)
        return campaign
示例#7
0
    def test_gp_bagging(self):
        df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))
        df_sub = df[df['N_species'] <= 3]
        n_seed = 200  # Starting sample size
        agent = BaggedGaussianProcessStabilityAgent(
            n_query=10,
            hull_distance=0.05,
            alpha=0.5,  # Fraction of std to include in expected improvement
            n_estimators=2,
            max_samples=195,
            parallel=False)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(df_sub)
        candidate_data = df_sub

        new_loop = Campaign(candidate_data,
                            agent,
                            experiment,
                            analyzer,
                            create_seed=n_seed)
        new_loop.initialize()
        self.assertTrue(new_loop.initialized)

        new_loop.auto_loop(6)
        self.assertTrue(True)
    def test_svgp_loop(self):
        df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))
        df_sub = df[df['N_species'] <= 3]
        n_seed = 200  # Starting sample size
        agent = SVGProcessStabilityAgent(n_query=10, hull_distance=0.05, alpha=0.5, M=100)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(df_sub)
        candidate_data = df_sub

        new_loop = Campaign(candidate_data, agent, experiment, analyzer,
                            create_seed=n_seed)
        new_loop.initialize()
        self.assertTrue(new_loop.initialized)

        new_loop.auto_loop(3)
        self.assertTrue(True)
    def test_qbc_agent_loop(self):
        df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))
        df_sub = df[df['N_species'] <= 3]
        n_seed = 200  # Starting sample size
        agent = QBCStabilityAgent(model=MLPRegressor(hidden_layer_sizes=(84, 50)),
                                  n_query=10, hull_distance=0.05, alpha=0.5)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(dataframe=df_sub)
        candidate_data = df_sub

        new_loop = Campaign(candidate_data, agent, experiment, analyzer,
                            create_seed=n_seed)
        new_loop.initialize()
        self.assertTrue(new_loop.initialized)

        new_loop.auto_loop(3)
        self.assertTrue(True)
    def test_random_agent_loop(self):
        df = load_dataframe("oqmd1.2_exp_based_entries_featurized_v2")
        n_seed = 5000
        agent = RandomAgent(n_query=200)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(dataframe=df)
        candidate_data = df

        new_loop = Campaign(candidate_data, agent, experiment, analyzer,
                            create_seed=n_seed)

        new_loop.initialize()
        self.assertFalse(new_loop.create_seed)

        for _ in range(6):
            new_loop.run()
            self.assertTrue(True)
    def test_simple_gp_loop(self):
        df = pd.read_csv(os.path.join(CAMD_TEST_FILES, 'test_df.csv'))
        df_sub = df[df['N_species'] <= 3]
        n_seed = 200  # Starting sample size
        n_query = 10  # This many new candidates are "calculated with DFT" (i.e. requested from Oracle -- DFT)
        agent = GaussianProcessStabilityAgent(n_query=n_query, hull_distance=0.05, alpha=0.5, parallel=False)
        analyzer = StabilityAnalyzer(hull_distance=0.05, parallel=False)
        experiment = ATFSampler(dataframe=df_sub)
        candidate_data = df_sub

        new_loop = Campaign(candidate_data, agent, experiment, analyzer,
                            create_seed=n_seed)
        new_loop.initialize()
        self.assertTrue(new_loop.initialized)

        new_loop.auto_loop(2)
        self.assertTrue(True)
    def test_gp_ucb_generic(self):
        def f(x):
            return np.sin(x) * np.sin(x) * (x ** 2)

        x = np.linspace(0, 10, 500)
        y = f(x)
        df = pd.DataFrame({'x': x, 'target': y})

        N_query = 2  # This many experiments are requested in each iteration
        N_seed = 5  # This many samples are randomly acquired in the beginning to form a seed.
        agent = GenericGPUCB(n_query=2,kernel=ConstantKernel(100.0) + RBF(10.0) * ConstantKernel(1.0))
        analyzer = GenericMaxAnalyzer(threshold=58)
        experiment = ATFSampler(dataframe=df)
        candidate_data = df
        new_loop = Campaign(candidate_data, agent, experiment, analyzer, create_seed=N_seed)
        new_loop.initialize(random_state=20)
        self.assertTrue(new_loop.initialized)
        new_loop.run()
        self.assertTrue(True)
示例#13
0
from sklearn.neural_network import MLPRegressor
from camd.agent.stability import AgentStabilityML5
from camd.analysis import StabilityAnalyzer
from camd.experiment.base import ATFSampler
from camd.utils.data import load_default_atf_data

##########################################################
# Load dataset and filter by N_species of 2 or less
##########################################################
df = load_default_atf_data()

## Epsilon-Greedy
n_seed = 5000  # Starting sample size - a seed of this size will be randomly chosen.
n_query = 200  # This many new candidates are "calculated with DFT" (i.e. requested from Oracle -- DFT)
agent = AgentStabilityML5(model=MLPRegressor(hidden_layer_sizes=(84, 50)),
                          n_query=n_query,
                          hull_distance=0.05,
                          exploit_fraction=0.5)
analyzer = StabilityAnalyzer(hull_distance=0.05)
experiment = ATFSampler(dataframe=df)
candidate_data = df
##########################################################
new_loop = Campaign(candidate_data,
                    agent,
                    experiment,
                    analyzer,
                    create_seed=n_seed)

new_loop.auto_loop(n_iterations=4, initialize=True)
示例#14
0
from camd.campaigns.base import Campaign
from camd.agent.stability import QBCStabilityAgent
from camd.analysis import StabilityAnalyzer
from camd.experiment.dft import OqmdDFTonMC1
from sklearn.neural_network import MLPRegressor

# Let's create our search domain as Ir-Fe-O ternary. We restrict our search to structures with max 10 atoms.
# We further restrict the possible stoichiometry coefficients to integers to [1,4).

domain = StructureDomain.from_bounds(["Ir", "Fe", "O"], charge_balanced=True, n_max_atoms = 10, **{"grid": range(1,4)})
candidate_data = domain.candidates()
structure_dict = domain.hypo_structures_dict

# Setup the loop for this campaign.

agent = QBCStabilityAgent(MLPRegressor(hidden_layer_sizes=(84, 50)),
                          n_query=3,
                          hull_distance=0.1,
                          training_fraction=0.5,
                          n_members=10)
analyzer = StabilityAnalyzer(hull_distance=0.05)
experiment = OqmdDFTonMC1           # This is the Experiment method to run OQMD compatible DFT on AWS-MC1
experiment_params = {'structure_dict': structure_dict,  # Parameters of this experiment class include structures.
                     'candidate_data': candidate_data, 'timeout': 30000}

# Campaign class puts all the above pieces together.
new_loop = Campaign(candidate_data, agent, experiment, analyzer,
                    agent_params=agent_params, analyzer_params=analyzer_params, experiment_params=experiment_params)

# Let's start the campaign!
new_loop.auto_loop_in_directories(n_iterations=3, timeout=1, monitor=True, initialize=True, with_icsd=True)