def _data_frame(solution):
     notice("%s: %f" % self.solutions.axes[0][solution - 1][0])
     notice("%s: %f" % self.solutions.axes[0][solution - 1][1])
     df = self.solutions.iloc[solution - 1]
     df = df[abs(df.normalized_gaps) >= non_zero_flux_threshold]
     df = df.sort_values('normalized_gaps')
     display(df)
示例#2
0
 def _data_frame(solution):
     df = self.nth_panel(solution - 1)
     notice("biomass: {0:g}".format(df['biomass'].iat[0]))
     notice("production: {0:g}".format(df['production'].iat[0]))
     df = df.loc[abs(df['normalized_gaps']) >= non_zero_flux_threshold]
     df.sort_values('normalized_gaps', inplace=True)
     display(df)
 def _data_frame(solution):
     df = self.nth_panel(solution - 1)
     notice("biomass: {0:g}".format(df['biomass'].iat[0]))
     notice("production: {0:g}".format(df['production'].iat[0]))
     df = df.loc[abs(df['normalized_gaps']) >= non_zero_flux_threshold]
     df.sort_values('normalized_gaps', inplace=True)
     display(df)
示例#4
0
 def plot(self, grid=None, width=None, height=None, title=None, axis_font_size=None):
     if len(self.variable_ids) > 1:
         notice("Multi-dimensional plotting is not supported")
         return
     plotting.plot_production_envelope(self._phase_plane, objective=self.objective, key=self.variable_ids[0],
                                       grid=grid, width=width, height=height, title=title,
                                       axis_font_size=axis_font_size)
示例#5
0
    def __call__(self, product='L-glutamate', hosts=hosts, database=None, view=config.default_view):
        """The works.

        The following workflow will be followed to determine suitable
        metabolic engineering strategies for a desired product:

        - Determine production pathways for desired product and host organisms.
          Try a list of default hosts if no hosts are specified.
        - Determine maximum theoretical yields and production envelopes for
          all routes.
        - Determine if production routes can be coupled to growth.
        - Determine over-expression, down-regulation, and KO targets.

        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list or Model or Host
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.

        Returns
        -------
        Designs
        """
        if database is None:
            database = universal.metanetx_universal_model_bigg_rhea

        notice("Starting searching for compound %s" % product)
        product = self.__translate_product_to_universal_reactions_model_metabolite(product, database)
        pathways = self.predict_pathways(product, hosts=hosts, database=database)
        optimization_reports = self.optimize_strains(pathways, view)
        return optimization_reports
示例#6
0
    def predict_pathways(self, product, hosts=None, database=None):  # TODO: make this work with a single host or model
        """Predict production routes for a desired product and host spectrum.
        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list or Model or Host
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.

        Returns
        -------
        dict
            ...
        """
        pathways = dict()
        product = self.__translate_product_to_universal_reactions_model_metabolite(product, database)
        for host in hosts:
            logging.debug('Processing host {}'.format(host.name))
            if isinstance(host, Model):
                host = Host(name='UNKNOWN_HOST', models=[host])
            for model in list(host.models):
                identifier = searching()
                logging.debug('Processing model {} for host {}'.format(model.id, host.name))
                notice('Predicting pathways for product %s in %s (using model %s).'
                       % (product.name, host, model.id))
                logging.debug('Predicting pathways for model {}'.format(model.id))
                pathway_predictor = pathway_prediction.PathwayPredictor(model,
                                                                        universal_model=database,
                                                                        compartment_regexp=re.compile(".*_c$"))
                # TODO adjust these numbers to something reasonable
                predicted_pathways = pathway_predictor.run(product, max_predictions=4, timeout=3 * 60, silent=True)
                stop_loader(identifier)
                pathways[(host, model)] = predicted_pathways
                self.__display_pathways_information(predicted_pathways, host, model)
        return pathways
 def plot(self, index=None, variables=None, grid=None, width=None, height=None, title=None, palette=None, **kwargs):
     if len(self.variable_ids) > 1:
         notice("Multi-dimensional plotting is not supported")
         return
     if index is not None:
         self._plot_flux_variability_analysis(index, variables=variables, width=width, grid=grid, palette=palette)
     else:
         self._plot_production_envelope(title=title, grid=grid, width=width, height=height)
 def plot(self, grid=None, width=None, height=None, title=None):
     if len(self.variable_ids) > 1:
         notice("Multi-dimensional plotting is not supported")
         return
     title = "DifferentialFVA Result" if title is None else title
     x = [elem[0][1] for elem in list(self.solutions.items)]
     y = [elem[1][1] for elem in list(self.solutions.items)]
     colors = ["red" for _ in x]
     plotting.plot_production_envelope(self._phase_plane, objective=self.objective, key=self.variable_ids[0],
                                       grid=grid, width=width, height=height, title=title,
                                       points=[x, y], points_colors=colors)
示例#9
0
 def __translate_product_to_universal_reactions_model_metabolite(self, product, database):
     if isinstance(product, Metabolite):
         return product
     elif isinstance(product, str):
         search_result = products.search(product)
         notice("Found %d compounds that match query '%s'" % (len(search_result), product))
         self.__display_product_search_result(search_result)
         notice("Choosing best match (%s) ... please interrupt if this is not the desired compound."
                % search_result.name[0])
         self.__display_compound(search_result.InChI[0])
         return database.metabolites.get_by_id(search_result.index[0])
示例#10
0
文件: designer.py 项目: weif000/cameo
 def translate_product_to_universal_reactions_model_metabolite(self, product, database):
     if isinstance(product, Metabolite):
         return product
     elif isinstance(product, six.text_type) or isinstance(product, six.string_types):
         search_result = products.search(product)
         search_result = search_result.loc[[i for i in search_result.index if i in database.metabolites]]
         if len(search_result) == 0:
             raise KeyError("No compound matches found for query %s" % product)
         notice("Found %d compounds that match query '%s'" % (len(search_result), product))
         self.__display_product_search_result(search_result)
         notice("Choosing best match (%s) ... please interrupt if this is not the desired compound."
                % search_result.name.values[0])
         self.__display_compound(search_result.InChI.values[0])
         return database.metabolites.get_by_id(search_result.index[0])
示例#11
0
 def translate_product_to_universal_reactions_model_metabolite(self, product, database):
     if isinstance(product, Metabolite):
         return product
     elif isinstance(product, six.text_type) or isinstance(product, six.string_types):
         search_result = products.search(product)
         search_result = search_result.loc[[i for i in search_result.index if i in database.metabolites]]
         if len(search_result) == 0:
             raise KeyError("No compound matches found for query %s" % product)
         notice("Found %d compounds that match query '%s'" % (len(search_result), product))
         self.__display_product_search_result(search_result)
         notice("Choosing best match (%s) ... please interrupt if this is not the desired compound."
                % search_result.name.values[0])
         self.__display_compound(search_result.InChI.values[0])
         return database.metabolites.get_by_id(search_result.index[0])
示例#12
0
 def __translate_product_to_universal_reactions_model_metabolite(
         self, product, database):
     if isinstance(product, Metabolite):
         return product
     elif isinstance(product, str):
         search_result = products.search(product)
         notice("Found %d compounds that match query '%s'" %
                (len(search_result), product))
         self.__display_product_search_result(search_result)
         notice(
             "Choosing best match (%s) ... please interrupt if this is not the desired compound."
             % search_result.name[0])
         self.__display_compound(search_result.InChI[0])
         return database.metabolites.get_by_id(search_result.index[0])
示例#13
0
    def predict_pathways(self, product, hosts, database, aerobic=True):
        """Predict production routes for a desired product and host spectrum.
        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.
        database: Model
            A model to use as database. See also: cameo.models.universal
        aerobic: bool
            If True, it will set `model.reactions.EX_o2_e.lower_bound` to 0.

        Returns
        -------
        dict
            ([Host, Model] -> PredictedPathways)
        """
        pathways = dict()
        product = self.__translate_product_to_universal_reactions_model_metabolite(
            product, database)
        for host in hosts:
            logging.debug('Processing host {}'.format(host.name))
            if isinstance(host, Model):
                host = Host(name='UNKNOWN_HOST', models=[host])
            for model in list(host.models):
                with model:
                    if not aerobic and "EX_o2_e" in model.reactions:
                        model.reactions.EX_o2_e.lower_bound = 0
                    identifier = searching()
                    logging.debug('Processing model {} for host {}'.format(
                        model.id, host.name))
                    notice(
                        'Predicting pathways for product %s in %s (using model %s).'
                        % (product.name, host, model.id))
                    logging.debug('Predicting pathways for model {}'.format(
                        model.id))
                    pathway_predictor = pathway_prediction.PathwayPredictor(
                        model, universal_model=database)
                    predicted_pathways = pathway_predictor.run(
                        product,
                        max_predictions=self.options.max_pathway_predictions,
                        timeout=self.options.pathway_prediction_timeout,
                        silent=not self.options.verbose)
                    stop_loader(identifier)
                    pathways[(host, model)] = predicted_pathways
                    self.__display_pathways_information(
                        predicted_pathways, host, model)
        return pathways
示例#14
0
    def __call__(self,
                 product='L-glutamate',
                 hosts=HOSTS,
                 database=None,
                 aerobic=True,
                 view=config.default_view):
        """The works.

        The following workflow will be followed to determine suitable
        metabolic engineering strategies for a desired product:

        - Determine production pathways for desired product and host organisms.
          Try a list of default hosts if no hosts are specified.
        - Determine maximum theoretical yields and production envelopes for
          all routes.
        - Determine if production routes can be coupled to growth.
        - Determine over-expression, down-regulation, and KO targets.

        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list or Model or Host
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.
        aerobic: bool
            If false, sets `model.reaction.EX_o2_e.lower_bound = 0`

        Returns
        -------
        Designs
        """
        if database is None:
            database = universal.metanetx_universal_model_bigg

        notice("Starting searching for compound %s" % product)
        try:
            product = self.__translate_product_to_universal_reactions_model_metabolite(
                product, database)
        except Exception:
            raise KeyError("Product %s is not in the %s database" %
                           (product, database.id))
        pathways = self.predict_pathways(product,
                                         hosts=hosts,
                                         database=database,
                                         aerobic=aerobic)
        optimization_reports = self.optimize_strains(pathways,
                                                     view,
                                                     aerobic=aerobic)
        return optimization_reports
示例#15
0
文件: designer.py 项目: ehukim/cameo
    def predict_pathways(
            self,
            product,
            hosts=None,
            database=None):  # TODO: make this work with a single host or model
        """Predict production routes for a desired product and host spectrum.
        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list or Model or Host
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.

        Returns
        -------
        dict
            ...
        """
        pathways = dict()
        product = self.__translate_product_to_universal_reactions_model_metabolite(
            product, database)
        for host in hosts:
            logging.debug('Processing host {}'.format(host.name))
            if isinstance(host, Model):
                host = Host(name='UNKNOWN_HOST', models=[host])
            for model in list(host.models):
                identifier = searching()
                logging.debug('Processing model {} for host {}'.format(
                    model.id, host.name))
                notice(
                    'Predicting pathways for product %s in %s (using model %s).'
                    % (product.name, host, model.id))
                logging.debug('Predicting pathways for model {}'.format(
                    model.id))
                pathway_predictor = pathway_prediction.PathwayPredictor(
                    model,
                    universal_model=database,
                    compartment_regexp=re.compile(".*_c$"))
                # TODO adjust these numbers to something reasonable
                predicted_pathways = pathway_predictor.run(product,
                                                           max_predictions=4,
                                                           timeout=3 * 60,
                                                           silent=True)
                stop_loader(identifier)
                pathways[(host, model)] = predicted_pathways
                self.__display_pathways_information(predicted_pathways, host,
                                                    model)
        return pathways
示例#16
0
 def plot(self,
          grid=None,
          width=None,
          height=None,
          title=None,
          axis_font_size=None):
     if len(self.variable_ids) > 1:
         notice("Multi-dimensional plotting is not supported")
         return
     plotting.plot_production_envelope(self._phase_plane,
                                       objective=self.objective,
                                       key=self.variable_ids[0],
                                       grid=grid,
                                       width=width,
                                       height=height,
                                       title=title,
                                       axis_font_size=axis_font_size)
 def plot(self, grid=None, width=None, height=None, title=None):
     if len(self.variable_ids) > 1:
         notice("Multi-dimensional plotting is not supported")
         return
     title = "DifferentialFVA Result" if title is None else title
     x = [elem[0][1] for elem in list(self.solutions.items)]
     y = [elem[1][1] for elem in list(self.solutions.items)]
     colors = ["red" for _ in x]
     plotting.plot_production_envelope(self._phase_plane,
                                       objective=self.objective,
                                       key=self.variable_ids[0],
                                       grid=grid,
                                       width=width,
                                       height=height,
                                       title=title,
                                       points=[x, y],
                                       points_colors=colors)
示例#18
0
    def plot(self, grid=None, width=None, height=None, title=None, axis_font_size=None, palette=None,
             points=None, points_colors=None, **kwargs):
        if title is None:
                title = "Phenotypic Phase Plane"
        if len(self.variable_ids) == 1:

            variable = self.variable_ids[0]
            x_axis_label = self.nice_variable_ids[0]
            y_axis_label = self.nice_objective_id

            dataframe = pandas.DataFrame(columns=["ub", "lb", "value", "strain"])
            for _, row in self.iterrows():
                _df = pandas.DataFrame([[row['objective_upper_bound'], row['objective_lower_bound'], row[variable], "WT"]],
                                       columns=dataframe.columns)
                dataframe = dataframe.append(_df)

            plot = plotter.production_envelope(dataframe, grid=grid, width=width, height=height,
                                               title=title, y_axis_label=y_axis_label, x_axis_label=x_axis_label,
                                               palette=palette, points=points, points_colors=points_colors)

        elif len(self.variable_ids) == 2:
            var_1 = self.variable_ids[0]
            var_2 = self.variable_ids[1]
            x_axis_label = self.nice_variable_ids[0]
            y_axis_label = self.nice_variable_ids[1]
            z_axis_label = self.nice_objective_id

            dataframe = pandas.DataFrame(columns=["ub", "lb", "value1", "value2", "strain"])
            for _, row in self.iterrows():
                _df = pandas.DataFrame([[row['objective_upper_bound'], row['objective_lower_bound'],
                                         row[var_1], row[var_2], "WT"]],
                                       columns=dataframe.columns)
                dataframe = dataframe.append(_df)

            plot = plotter.production_envelope_3d(dataframe, grid=grid, width=width, height=height,
                                                  title=title, y_axis_label=y_axis_label, x_axis_label=x_axis_label,
                                                  z_axis_label=z_axis_label, palette=palette, points=points,
                                                  points_colors=points_colors)

        else:
            notice("Multi-dimensional plotting is not supported")
            return


        if grid is None:
            plotter.display(plot)
示例#19
0
    def predict_pathways(self, product, hosts, database, aerobic=True):
        """Predict production routes for a desired product and host spectrum.
        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.
        database: Model
            A model to use as database. See also: cameo.models.universal
        aerobic: bool
            If True, it will set `model.reactions.EX_o2_e.lower_bound` to 0.

        Returns
        -------
        dict
            ([Host, Model] -> PredictedPathways)
        """
        pathways = dict()
        product = self.translate_product_to_universal_reactions_model_metabolite(product, database)
        for host in hosts:
            logging.debug('Processing host {}'.format(host.name))
            if isinstance(host, Model):
                host = Host(name='UNKNOWN_HOST', models=[host])
            for model in list(host.models):
                with model:
                    if not aerobic and "EX_o2_e" in model.reactions:
                        model.reactions.EX_o2_e.lower_bound = 0
                    identifier = searching()
                    logging.debug('Processing model {} for host {}'.format(model.id, host.name))
                    notice('Predicting pathways for product %s in %s (using model %s).'
                           % (product.name, host, model.id))
                    logging.debug('Predicting pathways for model {}'.format(model.id))
                    pathway_predictor = pathway_prediction.PathwayPredictor(model, universal_model=database)
                    predicted_pathways = pathway_predictor.run(product,
                                                               max_predictions=self.options.max_pathway_predictions,
                                                               timeout=self.options.pathway_prediction_timeout,
                                                               silent=not self.options.verbose)
                    stop_loader(identifier)
                    pathways[(host, model)] = predicted_pathways
                    self.__display_pathways_information(predicted_pathways, host, model)
        return pathways
示例#20
0
    def plot(self,
             grid=None,
             width=None,
             height=None,
             title=None,
             axis_font_size=None,
             palette=None,
             points=None,
             points_colors=None,
             estimate='flux',
             **kwargs):
        """plot phenotypic phase plane result

        create a plot of a phenotypic phase plane analysis

        Parameters
        ----------
        grid: plotting grid
            the grid for plotting
        width: int
            the width of the plot
        height: int
            the height of the plot
        title: string
            the height of the plot
        axis_font_size: int
            the font sizes for the axis
        palette: string
            name of color palette to use, e.g. RdYlBlu
        points: iterable of points
            additional points to plot as x, y iterable
        points_colors: iterable of strings
            iterable with colors for the points
        estimate: string
            either flux, mass_yield (g output / g output) or c_yield (mol carbon output / mol carbon input)
        """
        possible_estimates = {
            'flux': ('objective_upper_bound', 'objective_lower_bound', 'flux',
                     '[mmol gDW^-1 h^-1]'),
            'mass_yield': ('mass_yield_upper_bound', 'mass_yield_lower_bound',
                           'mass yield, src={}'.format(self.source_reaction),
                           '[g/g(src) h^-1]'),
            'c_yield': ('c_yield_upper_bound', 'c_yield_lower_bound',
                        'carbon yield, src={}'.format(self.source_reaction),
                        '[mmol(C)/mmol(C(src)) h^-1]')
        }
        if estimate not in possible_estimates:
            raise Exception('estimate must be one of %s' %
                            ', '.join(possible_estimates.keys()))
        upper, lower, description, unit = possible_estimates[estimate]
        if title is None:
            title = "Phenotypic Phase Plane ({})".format(description)
        if len(self.variable_ids) == 1:

            variable = self.variable_ids[0]
            y_axis_label = self._axis_label(self.objective,
                                            self.nice_objective_id, unit)
            x_axis_label = self._axis_label(variable,
                                            self.nice_variable_ids[0],
                                            '[mmol gDW^-1 h^-1]')

            dataframe = pandas.DataFrame(
                columns=["ub", "lb", "value", "strain"])
            for _, row in self.iterrows():
                _df = pandas.DataFrame(
                    [[row[upper], row[lower], row[variable], "WT"]],
                    columns=dataframe.columns)
                dataframe = dataframe.append(_df)

            plot = plotter.production_envelope(dataframe,
                                               grid=grid,
                                               width=width,
                                               height=height,
                                               title=title,
                                               y_axis_label=y_axis_label,
                                               x_axis_label=x_axis_label,
                                               palette=palette,
                                               points=points,
                                               points_colors=points_colors)

        elif len(self.variable_ids) == 2:
            var_1 = self.variable_ids[0]
            var_2 = self.variable_ids[1]
            x_axis_label = self._axis_label(var_1, self.nice_variable_ids[0],
                                            '[mmol gDW^-1 h^-1]')
            y_axis_label = self._axis_label(var_2, self.nice_variable_ids[1],
                                            '[mmol gDW^-1 h^-1]')
            z_axis_label = self._axis_label(self.objective,
                                            self.nice_objective_id, unit)

            dataframe = pandas.DataFrame(
                columns=["ub", "lb", "value1", "value2", "strain"])
            for _, row in self.iterrows():
                _df = pandas.DataFrame(
                    [[row[upper], row[lower], row[var_1], row[var_2], "WT"]],
                    columns=dataframe.columns)
                dataframe = dataframe.append(_df)

            plot = plotter.production_envelope_3d(dataframe,
                                                  grid=grid,
                                                  width=width,
                                                  height=height,
                                                  title=title,
                                                  y_axis_label=y_axis_label,
                                                  x_axis_label=x_axis_label,
                                                  z_axis_label=z_axis_label,
                                                  palette=palette,
                                                  points=points,
                                                  points_colors=points_colors)

        else:
            notice("Multi-dimensional plotting is not supported")
            return

        if grid is None:
            plotter.display(plot)
 def _data_frame(solution):
     notice("%s: %f" % self.solutions.axes[0][solution - 1][0])
     notice("%s: %f" % self.solutions.axes[0][solution - 1][1])
     display(self.solutions.iloc[solution - 1])
示例#22
0
def display_pathway(pathway, i):
    notice("Pathway %i" % i)
    if in_ipnb():
        display(pathway.data_frame)
    else:
        print(pathway.data_frame)
示例#23
0
def display_pathway(pathway, i):
    notice("Pathway %i" % i)
    if in_ipnb():
        display(pathway.data_frame)
    else:
        print(pathway.data_frame)
示例#24
0
    def predict_pathways(self,
                         product,
                         hosts=None,
                         database=None,
                         aerobic=True):
        """Predict production routes for a desired product and host spectrum.
        Parameters
        ----------
        product : str or Metabolite
            The desired product.
        hosts : list or Model or Host
            A list of hosts (e.g. cameo.api.hosts), models, mixture thereof, or a single model or host.
        database: SolverBasedModel
            A model to use as database. See also: cameo.models.universal
        aerobic: bool
            If True, it will set `model.reactions.EX_o2_e.lower_bound` to 0.

        Returns
        -------
        dict
            ([Host, Model] -> PredictedPathways)
        """
        max_predictions = 8
        timeout = 3 * 60

        pathways = dict()
        product = self.__translate_product_to_universal_reactions_model_metabolite(
            product, database)
        for host in hosts:
            logging.debug('Processing host {}'.format(host.name))
            if isinstance(host, Model):
                host = Host(name='UNKNOWN_HOST', models=[host])
            for model in list(host.models):
                with TimeMachine() as tm:
                    if not aerobic and "EX_o2_e" in model.reactions:
                        model.reactions.EX_o2_e.change_bounds(lb=0,
                                                              time_machin=tm)
                    identifier = searching()
                    logging.debug('Processing model {} for host {}'.format(
                        model.id, host.name))
                    notice(
                        'Predicting pathways for product %s in %s (using model %s).'
                        % (product.name, host, model.id))
                    logging.debug('Predicting pathways for model {}'.format(
                        model.id))
                    pathway_predictor = pathway_prediction.PathwayPredictor(
                        model,
                        universal_model=database,
                        compartment_regexp=re.compile(".*_c$"))

                    if self.debug:
                        max_predictions = 2
                        timeout = 60

                    predicted_pathways = pathway_predictor.run(
                        product,
                        max_predictions=max_predictions,
                        timeout=timeout,
                        silent=True)
                    stop_loader(identifier)
                    pathways[(host, model)] = predicted_pathways
                    self.__display_pathways_information(
                        predicted_pathways, host, model)
        return pathways
 def _data_frame(solution):
     notice("%s: %f" % self.solutions.axes[0][solution - 1][0])
     notice("%s: %f" % self.solutions.axes[0][solution - 1][1])
     display(self.solutions.iloc[solution - 1])