示例#1
0
def test_empty_config_is_preserved_exactly_across_dictionary_conversion():
    config = calib.Config()

    dictionary = config.to_dict()
    loaded = calib.Config.from_dict(eval(repr(dictionary)))

    np.set_printoptions(threshold=sys.maxsize)

    assert loaded == config
def test_config_populated_from_paths_matches_config_populated_from_same_loaded_images():

    path = "sample_images/002h.bmp"

    path_config = calib.Config()
    assert path_config.populate_lens_parameters_from_chessboard(path, 6, 8)
    assert path_config.populate_keystone_and_real_parameters_from_chessboard(
        path, 8, 6, 90.06, 64.45
    )

    image = cv.imread(path)
    image_config = calib.Config()
    assert image_config.populate_lens_parameters_from_chessboard(image, 6, 8)
    assert image_config.populate_keystone_and_real_parameters_from_chessboard(
        image, 8, 6, 90.06, 64.45
    )

    assert path_config == image_config
示例#3
0
def test_partial_config_is_preserved_exactly_across_dictionary_conversion():
    config = calib.Config()
    config.populate_lens_parameters_from_chessboard("sample_images/002h.bmp", 6, 8)

    dictionary = config.to_dict()
    loaded = calib.Config.from_dict(eval(repr(dictionary)))

    np.set_printoptions(threshold=sys.maxsize)

    assert loaded == config
def test_points_transform_from_combined_config_to_100_microns():
    params = cv.SimpleBlobDetector_Params()
    params.minArea = 50
    params.maxArea = 1000
    params.filterByArea = True
    params.minCircularity = 0.2
    params.filterByCircularity = True
    params.blobColor = 0
    params.filterByColor = True
    detector = cv.SimpleBlobDetector_create(params)

    config = calib.Config()

    assert config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8
    ), "Unable to populate distortion parameters"
    assert config.populate_keystone_and_real_parameters_from_symmetric_dot_pattern(
        "sample_images/distcor_01_cleaned.bmp", detector, 116, 170, 84.5, 57.5
    ), "Unable to populate homography parameters"

    # Points determined by dot centers from running an openCV blob detector over sample_images/distcor_01_cleaned.bmp
    points = np.array(
        [
            [[3584.902, 2468.0232]],  # bottom right
            [[71.22837, 2466.539]],  # bottom left
            [[68.2684, 62.64333]],  # top left
            [[3600.0374, 78.32093]],  # top right
            [[1804.8428, 38.65753]],  # middle top
            [[1799.092, 2498.543]],  # middle bottom
            [[47.950756, 1299.2955]],  # middle left
            [[3611.6602, 1307.9681]],  # middle right
            [[1800.4049, 1304.3975]],  # center
        ],
        np.float32,
    )

    expectations = np.array(
        [
            [84.5, 57.5],
            [0, 57.5],
            [0, 0],
            [84.5, 0],
            [83 / 2.0, 0],
            [83 / 2.0, 57.5],
            [0, 59 / 2.0],
            [84.5, 59 / 2.0],
            [83 / 2.0, 59 / 2.0],
        ],
        np.float32,
    )

    assess_points_transform_to_given_absolute_accuracy(
        config, points, expectations, 0.1
    )
def test_homography_border_doesnt_affect_point_transforms():
    default_border_config = calib.Config()
    assert default_border_config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8
    ), "Unable to populate distortion parameters"
    assert default_border_config.populate_keystone_and_real_parameters_from_chessboard(
        "sample_images/002h.bmp", 8, 6, 90.06, 64.45
    ), "Unable to populate homography parameters"

    custom_border_config = calib.Config()
    assert custom_border_config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8
    ), "Unable to populate distortion parameters"
    assert custom_border_config.populate_keystone_and_real_parameters_from_chessboard(
        "sample_images/002h.bmp", 8, 6, 90.06, 64.45, border=200
    ), "Unable to populate homography parameters"

    found, corners = cv.findChessboardCorners(
        cv.imread("sample_images/mocked checkboard.png"), (15, 10)
    )
    targets = np.zeros((len(corners), 2), np.float32)
    for i in range(15):
        for j in range(10):
            targets[j * 15 + i, 0] = 70 * (14 - i) / 14.0
            targets[j * 15 + i, 1] = 45 * (9 - j) / 9.0

    default_border_transformed = calib.correct_points(
        corners,
        default_border_config,
        calib.Correction.lens_keystone_and_real_coordinates,
    )
    custom_border_transformed = calib.correct_points(
        corners,
        custom_border_config,
        calib.Correction.lens_keystone_and_real_coordinates,
    )

    assert np.allclose(
        default_border_transformed, custom_border_transformed
    ), "Real world coordinates not consistent with image borders"
def test_partial_config_is_preserved_exactly_across_save_and_load():
    file = TemporaryFile()

    config = calib.Config()
    config.populate_lens_parameters_from_chessboard("sample_images/002h.bmp",
                                                    6, 8)

    config.save(file)
    file.seek(0)
    loaded = calib.Config.load(file)

    np.set_printoptions(threshold=sys.maxsize)

    assert loaded == config
def test_points_transform_from_only_mock_chessboard_to_100_microns():
    config = calib.Config()
    assert config.populate_lens_parameters_from_chessboard(
        "sample_images/mocked checkboard.png", 10, 15
    ), "Unable to populate distortion parameters"
    assert config.populate_keystone_and_real_parameters_from_chessboard(
        "sample_images/mocked checkboard.png", 15, 10, 70, 45
    ), "Unable to populate homography parameters"

    found, corners = cv.findChessboardCorners(
        cv.imread("sample_images/mocked checkboard.png"), (15, 10)
    )
    targets = np.zeros((len(corners), 2), np.float32)
    for i in range(15):
        for j in range(10):
            targets[j * 15 + i, 0] = 70 * (14 - i) / 14.0
            targets[j * 15 + i, 1] = 45 * (9 - j) / 9.0

    assess_points_transform_to_given_absolute_accuracy(config, corners, targets, 0.1)
def test_points_transform_from_only_chessboard_to_100_microns():
    config = calib.Config()
    assert config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8
    ), "Unable to populate distortion parameters"
    assert config.populate_keystone_and_real_parameters_from_chessboard(
        "sample_images/002h.bmp", 8, 6, 90.06, 64.45
    ), "Unable to populate homography parameters"

    found, corners = cv.findChessboardCorners(
        cv.imread("sample_images/002h.bmp"), (8, 6)
    )
    targets = np.zeros((len(corners), 2), np.float32)
    for i in range(8):
        for j in range(6):
            targets[j * 8 + i, 0] = 90.06 * (7 - i) / 7.0
            targets[j * 8 + i, 1] = 64.45 * (5 - j) / 5.0

    assess_points_transform_to_given_absolute_accuracy(config, corners, targets, 0.1)
示例#9
0
def test_separate_lens_and_keystone_image_correction_calls_are_equivalent_to_a_single_combined_call(
):

    image = cv.imread("sample_images/002h.bmp")

    config = calib.Config()
    config.populate_lens_parameters_from_chessboard(image, 6, 8)
    config.populate_keystone_and_real_parameters_from_chessboard(
        image, 8, 6, 90.06, 64.45)

    lens_corrected = calib.correct_image(image, config,
                                         calib.Correction.lens_distortion)
    keystone_corrected = calib.correct_image(
        lens_corrected, config, calib.Correction.keystone_distortion)

    combo_corrected = calib.correct_image(image, config,
                                          calib.Correction.lens_and_keystone)

    assert np.array_equal(keystone_corrected, combo_corrected)
示例#10
0
def test_separate_lens_keystone_and_real_point_correction_calls_are_equivalent_to_a_single_combined_call(
):

    image = cv.imread("sample_images/002h.bmp")

    config = calib.Config()
    config.populate_lens_parameters_from_chessboard(image, 6, 8)
    config.populate_keystone_and_real_parameters_from_chessboard(
        image, 8, 6, 90.06, 64.45)

    _, points = cv.findChessboardCorners(image, (6, 8))

    camera_corrected = calib.correct_points(points, config,
                                            calib.Correction.lens_and_keystone)
    real_converted = calib.correct_points(camera_corrected, config,
                                          calib.Correction.real_coordinates)

    combo_corrected = calib.correct_points(
        points, config, calib.Correction.lens_keystone_and_real_coordinates)

    assert np.array_equal(real_converted, combo_corrected)
def assess_config(image_path, chess_image, distorted_grid,
                  corner_only_homography):

    config = calib.Config()
    config.populate_lens_parameters_from_chessboard(chess_image, rows, cols)
    config.populate_keystone_and_real_parameters_from_chessboard(
        chess_image,
        cols,
        rows,
        grid_width,
        grid_height,
        corners_only=corner_only_homography,
        border=200,
    )

    cv.imshow(
        "{} {} lens".format(image_path, corner_only_homography),
        calib.correct_image(chess_image, config,
                            calib.Correction.lens_distortion),
    )
    cv.imshow(
        "{} {} lens and keystone".format(image_path, corner_only_homography),
        calib.correct_image(chess_image, config,
                            calib.Correction.lens_and_keystone),
    )
    # grid[0] -> bottom left
    # grid[10] -> top left
    # grid[-11] -> bottom right
    # grid[-1] -> top right
    expectations = np.zeros((len(distorted_grid), 2), np.float32)
    for i in range(rows):
        for j in range(cols):
            expectations[i + j * rows, 0] = square_edge_mm * j
            expectations[i + j * rows, 1] = grid_height - (square_edge_mm * i)

    corrected_points = calib.correct_points(
        distorted_grid, config,
        calib.Correction.lens_keystone_and_real_coordinates)

    print(config)
    print(config.to_dict())

    distances = []
    distance_hist = {}
    highest = 0
    for i in range(len(corrected_points)):
        original = distorted_grid[i, 0]
        point = corrected_points[i, 0]
        expectation = expectations[i]
        assert len(point) == 2
        dist = distance(point, expectation)
        if dist > highest:
            highest = dist
            print("new highest: px{} res{} exp{} dist{}".format(
                original, point, expectation, dist))
        distances.append(dist)
        mm = math.ceil(dist)
        if mm in distance_hist:
            distance_hist[mm] += 1
        else:
            distance_hist[mm] = 1

    print("image: {} corners_only_homography: {}".format(
        image_path, corner_only_homography))
    print("average deviation:\n{}mm".format(sum(distances) / len(distances)))
    print("max deviation:\n{}mm".format(max(distances)))
    print("deviation spread:")
    pprint(distance_hist)
"""
Generate a calibration configuration using a chessboard image.
Then use that configuration to generate distortion corrected image files of that chessboard.
"""
import camera_calibration as calib
import cv2

image_path = "../sample_images/002h.bmp"
rows = 6
cols = 8

config = calib.Config()
config.populate_lens_parameters_from_chessboard(image_path, rows, cols)
config.populate_keystone_and_real_parameters_from_chessboard(
    image_path, cols, rows, 90.06, 64.45)

bgr = cv2.imread(image_path)
undistorted = calib.correct_image(bgr, config,
                                  calib.Correction.lens_distortion)
cv2.imwrite("undistorted.png", undistorted)
grid_aligned = calib.correct_image(undistorted, config,
                                   calib.Correction.keystone_distortion)
cv2.imwrite("grid_aligned.png", grid_aligned)
def test_points_transform_from_only_dot_grid_to_20_microns():
    config = calib.Config()
    assert config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8
    ), "Unable to populate distortion parameters"

    params = cv.SimpleBlobDetector_Params()
    params.minArea = 50
    params.maxArea = 1000
    params.filterByArea = True
    params.minCircularity = 0.2
    params.filterByCircularity = True
    params.blobColor = 0
    params.filterByColor = True
    dot_detector = cv.SimpleBlobDetector_create(params)

    rows = 116
    cols = 170

    dot_image = cv.imread("sample_images/distcor_01_cleaned.bmp")
    undistorted_dot_image = calib.correct_image(
        dot_image, config, calib.Correction.lens_distortion
    )
    print("searching for grid in undistorted image")
    found, undistorted_grid = cv.findCirclesGrid(
        undistorted_dot_image,
        (cols, rows),
        cv.CALIB_CB_SYMMETRIC_GRID + cv.CALIB_CB_CLUSTERING,
        dot_detector,
        cv.CirclesGridFinderParameters(),
    )
    assert found, "Unable to find dot grid in initially undistorted image"
    print("grid found in undistorted image")

    print("looking for dots in distorted image")
    distorted_points = cv.KeyPoint_convert(dot_detector.detect(dot_image))
    print("dots found in distorted image")
    distorted_points = np.array([[point] for point in distorted_points], np.float32)
    transformed_points = cv.undistortPoints(
        distorted_points,
        config.distorted_camera_matrix,
        config.distortion_coefficients,
        P=config.undistorted_camera_matrix,
    )

    def distance(p1, p2):
        return math.hypot(p1[0] - p2[0], p1[1] - p2[1])

    print("searching for dot mapping")
    distorted_grid = np.zeros(undistorted_grid.shape, undistorted_grid.dtype)
    for i in range(len(undistorted_grid)):
        if i % 100 == 0:
            print("progress: {}/{}".format(i, cols * rows), end="\r")
        # get the point at i in the grid
        grid_member = undistorted_grid[i]
        # find the nearest member of transformed_points
        nearest_distance = sys.float_info.max
        original_point = None
        for j in range(len(transformed_points)):
            transformed_point = transformed_points[j]
            separation = distance(grid_member[0], transformed_point[0])
            if separation < nearest_distance:
                nearest_distance = separation
                original_point = distorted_points[j]
            if separation < 1:
                break
        # get the untransformed point that matches the transformed_point
        assert original_point is not None
        # set it to position i in the new grid
        distorted_grid[i, 0, 0] = original_point[0, 0]
        distorted_grid[i, 0, 1] = original_point[0, 1]

    # np.save('full_grid', distorted_grid)

    print("generating sparse grid")
    # Use fewer points to improve distortion performance from not finishing in >20mins while using all available RAM
    sparse_rows = rows // 2
    sparse_cols = cols // 2
    sparse_grid = np.zeros((sparse_rows * sparse_cols, 1, 2), np.float32)
    for i in range(sparse_rows):
        for j in range(sparse_cols):
            sparse_grid[i * sparse_cols + j, 0, 0] = distorted_grid[
                (i * 2) * cols + (j * 2), 0, 0
            ]
            sparse_grid[i * sparse_cols + j, 0, 1] = distorted_grid[
                (i * 2) * cols + (j * 2), 0, 1
            ]

    print("generating config")
    h, w = dot_image.shape[:2]
    dot_config = calib.Config()
    dot_config.populate_lens_parameters_from_grid(
        sparse_grid, sparse_cols, sparse_rows, w, h
    )

    undistorted_distorted_grid = cv.undistortPoints(
        distorted_grid,
        dot_config.distorted_camera_matrix,
        dot_config.distortion_coefficients,
        P=dot_config.undistorted_camera_matrix,
    )

    dot_config.populate_keystone_and_real_parameters_from_grid(
        undistorted_distorted_grid, cols, rows, 84.5, 57.5
    )

    print("initial config:")
    print(config)
    print("dot config:")
    print(dot_config)

    expectations = np.zeros((len(undistorted_grid), 2), np.float32)
    for i in range(rows):
        for j in range(cols):
            expectations[i * cols + j, 0] = 84.5 - (0.5 * j)
            expectations[i * cols + j, 1] = 57.5 - (0.5 * i)

    assess_points_transform_to_given_absolute_accuracy(
        dot_config, distorted_grid, expectations, 0.02
    )
chess_grid_cols = 8
dot_grid_rows = 116
dot_grid_cols = 170
dot_spacing = 0.5
corner_only_homography = False

dot_grid_width = (dot_grid_cols - 1) * dot_spacing
dot_grid_height = (dot_grid_rows - 1) * dot_spacing


def distance(p1, p2):
    return math.hypot(p1[0] - p2[0], p1[1] - p2[1])


# Determine a rough lens distortion correction using the chessboard image
chess_config = calib.Config()
configured = chess_config.populate_lens_parameters_from_chessboard(
    chessboard_image_path, chess_grid_rows, chess_grid_cols
)

if not configured:
    print(
        "Could not determine lens correction properties from {}".format(
            chessboard_image_path
        )
    )
    exit()

params = cv.SimpleBlobDetector_Params()
params.minArea = 50
params.maxArea = 1000
示例#15
0
def assess_config(image_path, dot_image, distorted_grid,
                  corner_only_homography):
    sparse_rows = rows // 2
    sparse_cols = cols // 2
    sparse_grid = np.zeros((sparse_rows * sparse_cols, 1, 2), np.float32)
    for i in range(sparse_rows):
        for j in range(sparse_cols):
            sparse_grid[i * sparse_cols + j, 0,
                        0] = distorted_grid[(i * 2) * cols + (j * 2), 0, 0]
            sparse_grid[i * sparse_cols + j, 0,
                        1] = distorted_grid[(i * 2) * cols + (j * 2), 0, 1]

    h, w = dot_image.shape[:2]
    dot_config = calib.Config()
    dot_config.populate_lens_parameters_from_grid(sparse_grid, sparse_cols,
                                                  sparse_rows, w, h)

    undistorted_distorted_grid = cv.undistortPoints(
        distorted_grid,
        dot_config.distorted_camera_matrix,
        dot_config.distortion_coefficients,
        P=dot_config.undistorted_camera_matrix,
    )

    dot_config.populate_keystone_and_real_parameters_from_grid(
        undistorted_distorted_grid,
        cols,
        rows,
        84.5,
        57.5,
        corners_only=corner_only_homography,
    )

    expectations = np.zeros((len(distorted_grid), 2), np.float32)
    for i in range(rows):
        for j in range(cols):
            expectations[i * cols + j, 0] = 84.5 - (0.5 * j)
            expectations[i * cols + j, 1] = 57.5 - (0.5 * i)

    corrected_points = calib.correct_points(
        distorted_grid, dot_config,
        calib.Correction.lens_keystone_and_real_coordinates)

    distances = []
    distance_hist = {}
    highest = 0
    for i in range(len(corrected_points)):
        original = distorted_grid[i, 0]
        point = corrected_points[i, 0]
        expectation = expectations[i]
        assert len(point) == 2
        dist = distance(point, expectation)
        if dist > highest:
            highest = dist
            print("new highest: px{} res{} exp{} dist{}".format(
                original, point, expectation, dist))
        distances.append(dist)
        microns = math.ceil(dist * 1000)
        if microns in distance_hist:
            distance_hist[microns] += 1
        else:
            distance_hist[microns] = 1

    print("image: {} corners_only_homography: {}".format(
        image_path, corner_only_homography))
    print("average deviation:\n{}mm".format(sum(distances) / len(distances)))
    print("max deviation:\n{}mm".format(max(distances)))
    print("deviation spread:")
    pprint(distance_hist)
示例#16
0
def search_for_best_config():

    chess_config = calib.Config()
    chess_config.populate_lens_parameters_from_chessboard(
        "sample_images/002h.bmp", 6, 8)

    params = cv.SimpleBlobDetector_Params()
    params.minArea = 50
    params.maxArea = 1000
    params.filterByArea = True
    params.minCircularity = 0.2
    params.filterByCircularity = True
    params.blobColor = 0
    params.filterByColor = True
    dot_detector = cv.SimpleBlobDetector_create(params)

    for image_path in (
            "sample_images/distcor_01_cleaned.bmp",
            "sample_images/distcor_02_cleaned.bmp",
            "sample_images/distcor_03_cleaned.bmp",
            "sample_images/distcor_04_cleaned.bmp",
            "sample_images/distcor_05_cleaned.bmp",
            "sample_images/distcor_06_cleaned.bmp",
            "sample_images/distcor_07_cleaned.bmp",
            "sample_images/distcor_08_cleaned.bmp",
            "sample_images/distcor_09_cleaned.bmp",
            "sample_images/distcor_10_cleaned.bmp",
            "sample_images/distcor_11_cleaned.bmp",
    ):
        dot_image = cv.imread(image_path)
        undistorted_dot_image = calib.correct_image(
            dot_image, chess_config, calib.Correction.lens_distortion)

        found, undistorted_grid = cv.findCirclesGrid(
            undistorted_dot_image,
            (cols, rows),
            cv.CALIB_CB_SYMMETRIC_GRID + cv.CALIB_CB_CLUSTERING,
            dot_detector,
            cv.CirclesGridFinderParameters(),
        )

        if not found:
            print("Could not find dot grid in {}".format(image_path))
            continue

        distorted_points = np.array(
            [[point]
             for point in cv.KeyPoint_convert(dot_detector.detect(dot_image))],
            np.float32,
        )
        transformed_points = cv.undistortPoints(
            distorted_points,
            chess_config.distorted_camera_matrix,
            chess_config.distortion_coefficients,
            P=chess_config.undistorted_camera_matrix,
        )
        distorted_grid = np.zeros(undistorted_grid.shape,
                                  undistorted_grid.dtype)
        for i in range(len(undistorted_grid)):
            if i % 100 == 0:
                print("progress: {}/{}".format(i, cols * rows), end="\r")
            # get the point at i in the grid
            grid_member = undistorted_grid[i]
            # find the nearest member of transformed_points
            nearest_distance = sys.float_info.max
            original_point = None
            for j in range(len(transformed_points)):
                transformed_point = transformed_points[j]
                separation = distance(grid_member[0], transformed_point[0])
                if separation < nearest_distance:
                    nearest_distance = separation
                    original_point = distorted_points[j]
                if separation < 1:
                    break
            # get the untransformed point that matches the transformed_point
            assert original_point is not None
            # set it to position i in the new grid
            distorted_grid[i, 0, 0] = original_point[0, 0]
            distorted_grid[i, 0, 1] = original_point[0, 1]

        for corner_only_homography in (True, False):
            assess_config(image_path, dot_image, distorted_grid,
                          corner_only_homography)