示例#1
0
    def extract_phys(self, df_raw, tp_type=None):
        """Given df of raw data and list of decoding databases, create new def with
        physical values (no duplicate signals and optionally filtered/rebaselined)
        """
        import can_decoder
        import pandas as pd

        df_phys = pd.DataFrame()
        for db in self.db_list:
            df_decoder = can_decoder.DataFrameDecoder(db)

            if tp_type != None:
                df_phys_tp = pd.DataFrame()
                for length, group in df_raw.groupby("DataLength"):
                    df_phys_group = df_decoder.decode_frame(group)
                    df_phys_tp = df_phys_tp.append(df_phys_group)

                df_phys = df_phys.append(df_phys_tp.sort_index())
            else:
                df_phys = df_phys.append(df_decoder.decode_frame(df_raw))

        # remove duplicates in case multiple DBC files contain identical signals
        df_phys["datetime"] = df_phys.index
        df_phys = df_phys.drop_duplicates(keep="first")
        df_phys = df_phys.drop("datetime", 1)

        # optionally filter and rebaseline the data
        df_phys = self.filter_signals(df_phys)
        df_phys = self.rebaseline_data(df_phys)

        return df_phys

# specify which devices to process (from local folder or S3 bucket)
devices = ["LOG/958D2219"]

# specify which time period to fetch log files for
start = datetime(year=2020, month=1, day=13, hour=0, minute=0, tzinfo=timezone.utc)
stop = datetime(year=2099, month=1, day=1, tzinfo=timezone.utc)

# specify DBC path
dbc_path = r"CSS-Electronics-SAE-J1939-DEMO.dbc"

# ---------------------------------------------------
# initialize DBC converter and file loader
db = can_decoder.load_dbc(dbc_path)
df_decoder = can_decoder.DataFrameDecoder(db)

# fs = setup_fs_s3()
fs = setup_fs()

# List log files based on inputs
log_files = canedge_browser.get_log_files(fs, devices, start_date=start, stop_date=stop)
print(f"Found a total of {len(log_files)} log files")

df_concat = []

for log_file in log_files:
    # open log file, get device id and extract dataframe with raw CAN data
    print(f"\nProcessing log file: {log_file}")
    with fs.open(log_file, "rb") as handle:
        mdf_file = mdf_iter.MdfFile(handle)