示例#1
0
	def __init__(self, name='', Nnodes=0, logic=None, sg=None, stg=None, stg_r=None, _ef=None, attractors=None,
			constants={}, Nconstants=0, keep_constants=False,
			bin2num=binstate_to_statenum, num2bin=statenum_to_binstate,
			verbose=False, *args, **kwargs):

		self.name = name 							# Name of the Network
		self.Nnodes = Nnodes 						# Number of Nodes
		self.logic = logic 							# A dict that contains the network logic {<id>:{'name':<string>,'in':<list-input-node-id>,'out':<list-output-transitions>},..}
		self._sg = sg 								# Structure-Graph (SG)
		self._stg = stg 							# State-Transition-Graph (STG)
		self._stg_r = stg_r 						# State-Transition-Graph Reachability dict (STG-R)
		self._eg = None 							# Effective Graph, computed from the effective connectivity
		self._attractors = attractors 				# Network Attractors
		#
		self.keep_constants = keep_constants		# Keep/Include constants in some of the computations
		self.constants = constants 					# A dict that contains of constant variables in the network
		self.Nconstants = len(constants)			# Number of constant variables
		#
		self.Nstates = 2**Nnodes 					# Number of possible states in the network 2^N
		#
		self.verbose = verbose
		
		# Intanciate BooleanNodes
		self.nodes = list()
		for i in range(Nnodes):
			name = logic[i]['name']
			k = len(logic[i]['in'])
			inputs = [logic[j]['name'] for j in logic[i]['in']]
			outputs = logic[i]['out']
			node = BooleanNode(name=name, k=k, inputs=inputs, outputs=outputs)
			self.nodes.append(node)
		#
		self.bin2num = bin2num						# Helper function. Converts binstate to statenum. It gets updated by `_update_trans_func`
		self.num2bin = num2bin						# Helper function. Converts statenum to binstate. It gets updated by `_update_trans_func`
		self._update_trans_func() 					# Updates helper functions and other variables
from tqdm import tqdm
from ..binarize import to_binary
from cana.boolean_node import BooleanNode

# set up variables
n_inputs = 2**2
n_rules = 2**(2**2)
df_dict = []

for rule in tqdm(range(n_rules)):
    canal = {}  # becomes row of dataframe
    arr = to_binary(rule, digits=4)
    print(arr)

    # use dit to calculate decomposition
    bn = BooleanNode.from_output_list(outputs=arr, name=rule)
    ks = bn.input_symmetry()
    kr = bn.input_redundancy()
    sym0, sym1 = bn.input_symmetry(mode='input')
    red0, red1 = bn.input_redundancy(mode='input')

    # update the dictionary with the PI values
    canal['rule'] = rule
    canal['kr*'] = kr
    canal['ks*'] = ks
    canal['r(0)'] = red0
    canal['r(1)'] = red1
    canal['s(0)'] = sym0
    canal['s(1)'] = sym1

    df_dict.append(canal)
from cana.boolean_node import BooleanNode
from ..binarize import to_binary
from ..plotting_functions.display_tables import plot_look_up_table, plot_schemata

rules = [2, 3, 4, 6]

# rule 7
rule = 7
digits = 4
arr2 = to_binary(rule, digits)
bn = BooleanNode.from_output_list(arr2)
bn.input_symmetry()

plot_look_up_table(rule, bn, snakemake.output.redlut)
plot_schemata(rule, bn, snakemake.output.redwc)

# rule 3
rule = 3
digits = 4
arr2 = to_binary(rule, digits)
bn = BooleanNode.from_output_list(arr2)
bn.input_symmetry()

plot_look_up_table(rule, bn, snakemake.output.unqlut)
plot_schemata(rule, bn, snakemake.output.unqwc)

# rule 1
rule = 1
digits = 4
arr2 = to_binary(rule, digits)
bn = BooleanNode.from_output_list(arr2)
示例#4
0
from cana.boolean_node import BooleanNode
from binarize import to_binary
from boolean_minimization_stats import find_permutability, find_wildcards, powerset

rule = 23
output = to_binary(rule)
inputs = 3
print(output)
node = BooleanNode.from_output_list(output, name=str(rule),
                                    inputs=['0', '1', '2'])

# extract redescriptions
ts = list(node.ts_coverage().values())

# find all potential group invarient enputs (subsets of cardinality > 1)
possible_ts = list(powerset(inputs))[inputs:]
ts_dict = {sub: 0 for sub in possible_ts}

for inp in ts:
    print(inp)

for inp in ts:
    if len(inp) > 0:  # the entries that cannot be redescribed are len zero
        # combine the two lists of permutable inputs, I dont care if its zero or 1
        ones = inp[0][1].copy()
        zeros = inp[0][2].copy()
        gi_enputs = ones + zeros
        # iterate over each and increase the group invariant enputs that exist
        if len(gi_enputs) >= 1:
            for gi in gi_enputs:
                ts_dict[tuple(gi)] += 1
示例#5
0
from tqdm import tqdm
from binarize import to_binary
from literal_distribution_thing import LiteralDistribution
from cana.boolean_node import BooleanNode

# set up variables
n_inputs = 2**3
n_rules = 2**8
df_dict = []

# figure out what isn't working
failing_rules = []

for rule in tqdm(range(n_rules)):
    pis = {}  # becomes row of dataframe
    output = to_binary(rule, 8)
    bn = BooleanNode.from_output_list(outputs=output)
    ld = LiteralDistribution(bn)
    pis = ld.run_distribute_literals()
    pis['rule'] = rule
    df_dict.append(pis)

# write out the dataframe
df = pd.DataFrame(df_dict)
df_fout = open('data/eca_decompositions/boolean.csv', 'w')
df.to_csv(df_fout)
df_fout.close()

with open('data/eca_decompositions/failing_rules.txt', 'w') as ff:
    text = '\n'.join(failing_rules)
    ff.write(text)