示例#1
0
def read_sample_patterns(dir_path, NX, step):
    if MPI_RANK == 0:
        t0 = timer()
        filenames = [filename for filename in os.listdir(dir_path)]
        logging.debug('Found %d files in the directory %s.' % (len(filenames), dir_path))
        sample_files = []
        for filename in filenames:
            if filename in blacklist:
                continue
            X, Y = idx2XY(int(filename[-9:-4]), NX)
            if X % step[0] == 0 and Y % step[1] == 0:
                sample_files.append(os.path.join(dir_path, filename))
        logging.debug('Selected %d sample files according to step size %s.' % (len(sample_files), step))
        file_groups = split_workload(sample_files, MPI_COMM.size)
    else:
        file_groups = None

    filenames = MPI_COMM.scatter(file_groups, root=0)
    logging.debug('Assigned %d DAT files to read.' % len(filenames))

    t0_loc = timer()
    patterns = read_file(filenames)
    logging.debug('Got %d [local] sample patterns. %g sec' % (len(patterns), timer() - t0_loc))

    patterns = MPI_COMM.gather(patterns, root=0)
    if MPI_RANK == 0:
        patterns = [t for g in patterns for t in g]
        logging.info('Gathered %d sample patterns in total. %g sec' % (len(patterns), timer() - t0))
        return patterns
示例#2
0
    else:
        model = None
    model = MPI_COMM.bcast(model, root=0)

    scoreinds = score_dir(extractor, model, dir_path, limit=None, batch_size=200)

    if MPI_RANK == 0:
        labeler = SeqLabeler(seq_files)
    else:
        labeler = None
    labeler = MPI_COMM.bcast(labeler, root=0)
    scoreinds = relabel(labeler, scoreinds)

    if MPI_RANK == 0:
        Z = np.empty([NY, NX])
        Z[:] = np.nan
        for score, idx in scoreinds:
            if score is not None:
                ix, iy = idx2XY(idx, NX)
                if ix < NY:
                    Z[ix, iy] = score
        logging.debug('Z matrix has %d nans' % sum(1 for row in Z for z in row if np.isnan(z)))
        np.savetxt('Z_au31.txt', Z)
        logging.info('Write Z matrix into Z_au31.txt in ' + os.path.dirname(os.path.abspath(__file__)))

        from plotseq import plot_seq
        # # Z = np.loadtxt('Z.txt')
        plot_seq(Z, step, colormap='jet', filename=scratch + "img/clustering_" + case_name)