def context_gru_and_capsule_net(left_pickle, right_pickle, dropout_rate=0.46):
    Routings = 5
    Num_capsule = 10
    Dim_capsule = 32

    left_maxlen, left_max_features, left_num_features, left_W, left_X_train, left_y_train, left_X_dev, left_y_dev, left_test, y_test = get_feature(
        left_pickle)
    right_maxlen, right_max_features, right_num_features, right_W, right_X_train, right_y_train, right_X_dev, right_y_dev, right_test, y_test = get_feature(
        right_pickle)

    left_sequence = Input(shape=(left_maxlen, ), dtype='int32')
    left_embedded = Embedding(input_dim=left_max_features,
                              output_dim=left_num_features,
                              input_length=left_maxlen,
                              weights=[left_W],
                              trainable=False)(left_sequence)
    left_enc = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(left_embedded)
    left_capsule = Capsule(num_capsule=Num_capsule,
                           dim_capsule=Dim_capsule,
                           routings=Routings,
                           share_weights=True)(left_enc)
    left_output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(
        left_capsule)
    #left_capsule = Flatten()(left_capsule)

    right_sequence = Input(shape=(right_maxlen, ), dtype='int32')
    right_embedded = Embedding(input_dim=right_max_features,
                               output_dim=right_num_features,
                               input_length=right_maxlen,
                               weights=[right_W],
                               trainable=False)(right_sequence)
    right_enc = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(right_embedded)
    right_capsule = Capsule(num_capsule=Num_capsule,
                            dim_capsule=Dim_capsule,
                            routings=Routings,
                            share_weights=True)(right_enc)
    right_output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(
        right_capsule)
    #right_capsule = Flatten()(output_capsule)

    x = Concatenate()([left_output_capsule, right_output_capsule])
    capsule = Dense(128)(x)

    output = Dense(6, activation='softmax')(capsule)
    model = Model(inputs=[left_sequence, right_sequence], outputs=output)

    return model, left_X_train, left_y_train, left_X_dev, left_y_dev, left_test, right_X_train, right_y_train, right_X_dev, \
        right_y_dev, right_test, y_test
def capsule_model(Num_capsule):
    Routings = 20
    Num_capsule = Num_capsule
    Dim_capsule = 120

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True)(x)

    capsule = Flatten()(capsule)
    capsule = Dropout(0.1)(capsule)
    output = Dense(4, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])

    model.summary()
    return model
def gru_and_capsule_net(maxlen, max_features, num_features, W, dropout=0.0):
    Routings = 5
    Num_capsule = 10
    Dim_capsule = 32
    sequence = Input(shape=(maxlen, ), dtype='int32')

    embedded = Embedding(input_dim=max_features,
                         output_dim=num_features,
                         input_length=maxlen,
                         weights=[W],
                         trainable=False)(sequence)
    enc = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout,
            return_sequences=True))(embedded)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True,
                      kernel_size=(3, 1))(enc)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(dropout)(capsule)

    output = Dense(6, activation='softmax')(capsule)
    model = Model(inputs=sequence, outputs=output)
    return model
def capsulnetModel(embeddingMatrix,embedding_dim,hidden_dim, name):
    """Constructs the architecture of the modelEMOTICONS_TOKEN[list_str[index]]
    Input:
        embeddingMatrix : The embedding matrix to be loaded in the embedding layer.
    Output:
        model : A basic LSTM model
    """
    Routings = 5
    Num_capsule = 10
    Dim_capsule = 32
    embedding_layer = Embedding(embeddingMatrix.shape[0],
                                embedding_dim,
                                weights=[embeddingMatrix],
                                input_length=MAX_SEQUENCE_LENGTH,
                                trainable=False)
    sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')
    embedded_sequences = embedding_layer(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule, dim_capsule=Dim_capsule, routings=Routings,
                      share_weights=True, kernel_size=(3, 1))(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)

    output = Dense(NUM_CLASSES, activation='softmax')(capsule)
    model = Model(inputs=sequence_input, outputs=output)

    rmsprop = optimizers.rmsprop(lr=LEARNING_RATE)
    model.compile(loss='categorical_crossentropy',
                  optimizer=rmsprop,
                  metrics=['acc'])
    return model, name
def capsule(maxlen,
            max_features,
            num_features,
            W,
            hidden_dim=160,
            dropout_rate=0.46):

    sequence = Input(shape=(maxlen, ), dtype='int32')

    embedded = Embedding(input_dim=max_features,
                         output_dim=num_features,
                         input_length=maxlen,
                         mask_zero=True,
                         weights=[W],
                         trainable=False)(sequence)
    embedded = Dropout(dropout_rate)(embedded)
    # bi-lstm
    #embedded = GRU(hidden_dim, recurrent_dropout=0.28, return_sequences=True)(embedded)
    enc = GRU(hidden_dim, recurrent_dropout=0.28)(embedded)
    capusleVec = Capsule(num_capsule=6, routings=3, kernel_size=(3, 1))(enc)
    dense = Dense(128, activation="relu")(capusleVec)

    output = Dense(6, activation='softmax')(dense)
    model = Model(inputs=sequence, outputs=output)

    return model
def capsulnet_model(hidden_dim=100):
    Routings = 15
    Num_capsule = 30
    Dim_capsule = 60

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim,
                               return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True,
                      kernel_size=(3, 1))(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    output = Dense(3, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)

    rmsprop = optimizers.rmsprop(lr=0.001)
    model.compile(loss='categorical_crossentropy',
                  optimizer=rmsprop,
                  metrics=['accuracy', f1])

    model.summary()
    return model
def capsulnet_elmo(batch_size, nb_epoch, hidden_dim, num):
    Routings = 15
    Num_capsule = 30
    Dim_capsule = 60

    sequence_input = Input(shape=(maxlen2,), dtype='int32')
    embedded_sequences = Embedding(input_dim=W2.shape[0], output_dim=W2.shape[1], input_length=maxlen2, weights=[W2],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(hidden_dim, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule, dim_capsule=Dim_capsule, routings=Routings, share_weights=True,
                      kernel_size=(3, 1))(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    output = Dense(3, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)

    rmsprop = optimizers.rmsprop(lr=0.001)
    model.compile(loss='categorical_crossentropy', optimizer=rmsprop, metrics=['accuracy', f1])

    class_weight = {0: 1, 1: 2, 2: 6}

    train_num, test_num = X_train2.shape[0], X_test2.shape[0]
    num1 = y_train2.shape[1]

    second_level_train_set = np.zeros((train_num, num1))

    second_level_test_set = np.zeros((test_num, num1))

    test_nfolds_sets = []

    # kf = KFold(n_splits = 2)
    kf = KFold(n_splits=5)

    for i, (train_index, test_index) in enumerate(kf.split(X_train2)):
        x_tra, y_tra = X_train2[train_index], y_train2[train_index]

        x_tst, y_tst = X_train2[test_index], y_train2[test_index]

        model.fit(x_tra, y_tra, validation_data=[x_tst, y_tst], batch_size=batch_size, epochs=nb_epoch, verbose=2,
                  class_weight=class_weight)

        second_level_train_set[test_index] = model.predict(x_tst, batch_size=batch_size)

        test_nfolds_sets.append(model.predict(X_test2))
    for item in test_nfolds_sets:
        second_level_test_set += item

    second_level_test_set = second_level_test_set / 5

    model.save("weights_elmo_capsulnet" + num + ".hdf5")

    y_pred = second_level_test_set

    return y_pred
def capsulenet_gru(num):
    pickle_file = os.path.join('pickle', 'test_trial_train.pickle')

    revs, W, word_idx_map, vocab, maxlen = pickle.load(open(pickle_file, 'rb'))

    X_train, X_trial, X_test, y_train, y_trial, lex_train, lex_trial, lex_test = make_idx_data(revs, word_idx_map, maxlen=maxlen)


    max_features = W.shape[0]

    num_features = W.shape[1]  # 400

    # Keras Model
    Routings = 5
    Num_capsule = 10
    Dim_capsule = 32
    embedding_layer = Embedding(input_dim=max_features, output_dim=num_features, input_length=maxlen, weights=[W],
                                trainable=False)
    sequence_input = Input(shape=(maxlen,), dtype='int32')
    lex_input = Input(shape=(43,), dtype='float32')
    embedded_sequences = embedding_layer(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(128, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(128, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule, dim_capsule=Dim_capsule, routings=Routings,
                      share_weights=True)(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    dense = Concatenate(axis=-1)([capsule, lex_input])
    output = Dense(6, activation='softmax')(dense)
    model = Model(inputs=[sequence_input, lex_input], outputs=output)
    model.compile(
        loss='categorical_crossentropy',
        optimizer='adam',
        metrics=['accuracy'])
    model.fit(x=[X_train, lex_train],
              y=y_train,
              batch_size=830,
              epochs=14,
              validation_data=([X_trial, lex_trial], y_trial))
    model.save('capsulenet_gru_'+ num +'.h5')
示例#9
0
def capsulnet_model(batch_size, nb_epoch, hidden_dim, num):
    Routings = 15
    Num_capsule = 30
    Dim_capsule = 60

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True)(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    output = Dense(2, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])

    model.fit(
        X_train,
        y_train,
        validation_data=[X_dev, y_dev],
        batch_size=batch_size,
        epochs=nb_epoch,
        verbose=2,
        shuffle=False,
    )
    model.save("weights_capsulnet" + num + ".hdf5")
    y_pred = model.predict(X_test, batch_size=batch_size)

    return y_pred
def capsulnet_model(batch_size, nb_epoch, hidden_dim, num):
    Routings = 15
    Num_capsule = 30
    Dim_capsule = 60

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True)(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    output = Dense(2, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])
    # checkpointer = ModelCheckpoint(filepath="weights.hdf5", monitor='val_acc', verbose=1, save_best_only=True)
    # early_stopping = EarlyStopping(monitor='val_acc', patience = 5, verbose=1)
    class_weight = {0: 1, 1: 7}

    train_num, test_num = X_train.shape[0], X_dev.shape[0]
    num1 = y_train.shape[1]

    second_level_train_set = np.zeros((train_num, num1))  # (10556,)

    second_level_test_set = np.zeros((test_num, num1))  # (2684,)

    test_nfolds_sets = []

    kf = KFold(n_splits=5)

    for i, (train_index, test_index) in enumerate(kf.split(X_train)):
        x_tra, y_tra = X_train[train_index], y_train[train_index]

        x_tst, y_tst = X_train[test_index], y_train[test_index]

        # checkpointer = ModelCheckpoint(filepath="weights.hdf5", monitor='val_acc', verbose=1, save_best_only=True)
        early_stopping = EarlyStopping(monitor='val_acc',
                                       patience=8,
                                       verbose=1)

        model.fit(x_tra,
                  y_tra,
                  validation_data=[x_tst, y_tst],
                  batch_size=batch_size,
                  epochs=nb_epoch,
                  verbose=2,
                  class_weight=class_weight,
                  callbacks=[early_stopping])

        second_level_train_set[test_index] = model.predict(
            x_tst, batch_size=batch_size
        )  # (2112,2) could not be broadcast to indexing result of shape (2112,)

        test_nfolds_sets.append(model.predict(X_dev))
    for item in test_nfolds_sets:
        second_level_test_set += item

    second_level_test_set = second_level_test_set / 5

    model.save("weights_BB_capsulnet_lstm" + num + ".hdf5")

    y_pred = second_level_test_set

    return y_pred
示例#11
0
    # Dim_capsule = 120
    Routings = 15
    Num_capsule = 30
    Dim_capsule = 60

    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    embedded_sequences = Embedding(input_dim=max_features,
                                   output_dim=num_features,
                                   input_length=maxlen,
                                   weights=[W],
                                   trainable=False)(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(64, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True)(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)
    output = Dense(2, activation='softmax')(capsule)
    model = Model(inputs=[sequence_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])
    # checkpointer = ModelCheckpoint(filepath="weights.hdf5", monitor='val_acc', verbose=1, save_best_only=True)
    # early_stopping = EarlyStopping(monitor='val_acc', patience = 5, verbose=1)

    model.fit(
        X_train,
        y_train,
    Num_capsule = 10
    Dim_capsule = 32
    embedding_layer = Embedding(input_dim=max_features,
                                output_dim=num_features,
                                input_length=maxlen,
                                weights=[W],
                                trainable=False)
    sequence_input = Input(shape=(maxlen, ), dtype='int32')
    lex_input = Input(shape=(43, ), dtype='float32')
    embedded_sequences = embedding_layer(sequence_input)
    embedded_sequences = SpatialDropout1D(0.1)(embedded_sequences)
    x = Bidirectional(CuDNNGRU(128, return_sequences=True))(embedded_sequences)
    x = Bidirectional(CuDNNGRU(128, return_sequences=True))(x)
    capsule = Capsule(num_capsule=Num_capsule,
                      dim_capsule=Dim_capsule,
                      routings=Routings,
                      share_weights=True,
                      kernel_size=(3, 1))(x)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    capsule = Flatten()(capsule)
    capsule = Dropout(0.4)(capsule)

    dense = Concatenate(axis=-1)([capsule, lex_input])

    output = Dense(6, activation='softmax')(dense)
    model = Model(inputs=[sequence_input, lex_input], outputs=output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy', f1])

    h = train(model, batch_size, nb_epoch, X_train, y_train, X_trial, y_trial,
def interActiveCapsule(left_pickle,
                       right_pickle,
                       hidden_dim=160,
                       dropout_rate=0.46,
                       capsule_dim=32,
                       input_kernel_size=12):
    Routings = 3  #更改
    Num_capsule = 6
    Dim_capsule = capsule_dim

    left_maxlen, left_max_features, left_num_features, left_W, left_X_train, left_y_train, left_X_dev, left_y_dev, left_test, y_test = get_feature(
        left_pickle)
    right_maxlen, right_max_features, right_num_features, right_W, right_X_train, right_y_train, right_X_dev, right_y_dev, right_test, y_test = get_feature(
        right_pickle)

    left_sequence = Input(shape=(left_maxlen, ), dtype='int32')
    left_embedded = Embedding(input_dim=left_max_features,
                              output_dim=left_num_features,
                              input_length=left_maxlen,
                              weights=[left_W],
                              trainable=False)(left_sequence)
    left_embedded = Dropout(dropout_rate)(left_embedded)
    # bi-lstm
    left_embedded = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(left_embedded)
    left_enc = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(left_embedded)

    # left_capsule = Flatten()(left_capsule)

    right_sequence = Input(shape=(right_maxlen, ), dtype='int32')
    right_embedded = Embedding(input_dim=right_max_features,
                               output_dim=right_num_features,
                               input_length=right_maxlen,
                               weights=[right_W],
                               trainable=False)(right_sequence)
    right_embedded = Dropout(dropout_rate)(right_embedded)
    right_embedded = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(right_embedded)
    right_enc = Bidirectional(
        GRU(hidden_dim, recurrent_dropout=dropout_rate,
            return_sequences=True))(right_embedded)
    # output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(capsule)
    # right_capsule = Flatten()(right_capsule)

    #comboVec = Concatenate(axis=1)([left_enc, right_enc])

    interActivateVec = interActivate(hidden_dims=hidden_dim)(
        [left_enc, right_enc])
    print("input_size", interActivateVec)

    tanh_inter_left = Tanh()(interActivateVec)
    inter_trans = TransMatrix()(interActivateVec)
    tanh_inter_right = Tanh()(inter_trans)

    scaledPool_inter_left = MaxPooling1D(pool_size=165)(tanh_inter_left)
    scaledPool_inter_left = Reshape((165, ))(scaledPool_inter_left)

    print("scaledPool_inter_left ", scaledPool_inter_left)
    scaledPool_inter_right = MaxPooling1D(pool_size=165)(tanh_inter_right)
    scaledPool_inter_right = Reshape((165, ))(scaledPool_inter_right)

    softmax_inter_left = Softmax()(scaledPool_inter_left)
    softmax_inter_left = Dropout(dropout_rate)(softmax_inter_left)
    softmax_inter_left_1 = Dense(165, activation="softmax")(softmax_inter_left)
    softmax_inter_left_1 = Dropout(dropout_rate)(softmax_inter_left_1)
    softmax_inter_right = Softmax()(scaledPool_inter_right)
    softmax_inter_right = Dropout(dropout_rate)(softmax_inter_right)
    softmax_inter_right_1 = Dense(165,
                                  activation="softmax")(softmax_inter_right)
    softmax_inter_right_1 = Dropout(dropout_rate)(softmax_inter_right_1)

    softmax_inter_left = Dot(axes=1)([left_enc, softmax_inter_left_1])
    print("softmax_inter_left", softmax_inter_left, left_enc)
    softmax_inter_right = Dot(axes=1)([right_enc, softmax_inter_right_1])
    print("softmax_inter_right", softmax_inter_right, right_enc)

    comboVec = Concatenate(axis=1)([softmax_inter_left, softmax_inter_right])
    comboVec = Reshape((-1, 2 * hidden_dim))(comboVec)
    comboVec_dropout = Dropout(dropout_rate)(comboVec)
    #print("comboVect: ", comboVec)
    #combo_gru = Bidirectional(GRU(hidden_dim,dropout=0.08,return_sequences=True))(comboVec)
    #combo_gru = Bidirectional(GRU(24, dropout=0.08))(combo_gru)
    #combo_gru = Flatten(combo_gru)
    '''
    output1 = Dense(128, activation="relu")(comboVec)
    output1 = Dropout(0.34)(output1)
    output2 = Dense(64, activation="relu")(output1)
    output2 = Dropout(0.25)(output2)
    output3 = Dense(32, activation="relu")(output2)
    output3 = Dropout(0.12)(output3)
    '''

    my2dCapsule = Capsule(routings=Routings,
                          num_capsule=Num_capsule,
                          dim_capsule=Dim_capsule,
                          kernel_size=input_kernel_size)(comboVec_dropout)
    my2dCapsule_dropout = Dropout(dropout_rate)(my2dCapsule)
    print("capsule output: ", my2dCapsule)
    #bilstm_capsule = Bidirectional(LSTM(hidden_dim,recurrent_dropout=0.34,return_sequences=True))(my2dCapsule)
    #bilstm_capsule = Bidirectional(LSTM(hidden_dim,recurrent_dropout=0.34, return_sequences=True))(bilstm_capsule)
    #attentioned_capsule = AttentionM()(bilstm_capsule)
    output_capsule = Lambda(lambda x: K.sqrt(K.sum(K.square(x), 2)))(
        my2dCapsule_dropout)
    #my2dCapsule = Flatten()(my2dCapsule)
    output = Dense(6, activation="softmax")(output_capsule)

    print("output: ", output)

    model = Model(inputs=[left_sequence, right_sequence], outputs=output)

    return model, left_X_train, left_y_train, left_X_dev, left_y_dev, left_test, right_X_train, right_y_train, right_X_dev, \
           right_y_dev, right_test, y_test