def attribute_sampled_shapley_values(text_input_ids: torch.Tensor, target: int, model: BertForSequenceClassification, settings: Dict[str, Any], **kwargs) -> Tuple[np.ndarray, None]: def forward(model_input): pred = model(model_input) return torch.softmax(pred[0], dim=1) svs = ShapleyValueSampling(forward) attributions = svs.attribute(inputs=text_input_ids, target=target, n_samples=settings.get("n_samples", 25)) scores = attributions.cpu().detach().numpy().flatten() return scores, None
def get_shap_attributions(text, tech_tv, tech_bb, true_label): try: model, tokenizer = get_model(settings.MODEL_NAME, settings.MODEL_STAGE) except Exception as e: logger.info(f"wtf is going on here: {e}") ref_token_id = tokenizer.pad_token_id # A token used for generating token reference sep_token_id = ( tokenizer.sep_token_id ) # A token used as a separator between question and text and it is also added to the end of the text. cls_token_id = tokenizer.cls_token_id # A token used for prepending to the concatenated question-text word sequence bert_string = data_utils.stitch_bert_string("", text, tech_tv, tech_bb) input_ids, ref_input_ids, _ = construct_input_ref_pair(tokenizer, bert_string, ref_token_id, sep_token_id, cls_token_id) indices = input_ids[0].detach().tolist() all_tokens = tokenizer.convert_ids_to_tokens(indices) pred = model(input_ids)[0] pred_proba = torch.softmax(pred, dim=1)[0] model_custom = ModelWrapper(model) shap = ShapleyValueSampling(model_custom.custom_forward) attributions = shap.attribute( inputs=input_ids, baselines=ref_input_ids, target=torch.argmax(pred[0]), ) score_vis = viz.VisualizationDataRecord( attributions[0, :], torch.softmax(pred, dim=1)[0][torch.argmax(pred[0]).cpu().numpy().item()], model.config.id2label[torch.argmax(pred[0]).cpu().numpy().item()], true_label, model.config.id2label[torch.argmax(pred[0]).cpu().numpy().item()], attributions.sum(), all_tokens, 0, ) labels = list(model.config.id2label.values()) return score_vis, pred_proba, labels
def main(args): train_loader, test_loader = data_generator(args.data_dir,1) for m in range(len(models)): model_name = "model_{}_NumFeatures_{}".format(models[m],args.NumFeatures) model_filename = args.model_dir + 'm_' + model_name + '.pt' pretrained_model = torch.load(open(model_filename, "rb"),map_location=device) pretrained_model.to(device) if(args.GradFlag): Grad = Saliency(pretrained_model) if(args.IGFlag): IG = IntegratedGradients(pretrained_model) if(args.DLFlag): DL = DeepLift(pretrained_model) if(args.GSFlag): GS = GradientShap(pretrained_model) if(args.DLSFlag): DLS = DeepLiftShap(pretrained_model) if(args.SGFlag): Grad_ = Saliency(pretrained_model) SG = NoiseTunnel(Grad_) if(args.ShapleySamplingFlag): SS = ShapleyValueSampling(pretrained_model) if(args.GSFlag): FP = FeaturePermutation(pretrained_model) if(args.FeatureAblationFlag): FA = FeatureAblation(pretrained_model) if(args.OcclusionFlag): OS = Occlusion(pretrained_model) timeMask=np.zeros((args.NumTimeSteps, args.NumFeatures),dtype=int) featureMask=np.zeros((args.NumTimeSteps, args.NumFeatures),dtype=int) for i in range (args.NumTimeSteps): timeMask[i,:]=i for i in range (args.NumTimeSteps): featureMask[:,i]=i indexes = [[] for i in range(5,10)] for i ,(data, target) in enumerate(test_loader): if(target==5 or target==6 or target==7 or target==8 or target==9): index=target-5 if(len(indexes[index])<1): indexes[index].append(i) for j, index in enumerate(indexes): print(index) # indexes = [[21],[17],[84],[9]] for j, index in enumerate(indexes): print("Getting Saliency for number", j+1) for i, (data, target) in enumerate(test_loader): if(i in index): labels = target.to(device) input = data.reshape(-1, args.NumTimeSteps, args.NumFeatures).to(device) input = Variable(input, volatile=False, requires_grad=True) baseline_single=torch.Tensor(np.random.random(input.shape)).to(device) baseline_multiple=torch.Tensor(np.random.random((input.shape[0]*5,input.shape[1],input.shape[2]))).to(device) inputMask= np.zeros((input.shape)) inputMask[:,:,:]=timeMask inputMask =torch.Tensor(inputMask).to(device) mask_single= torch.Tensor(timeMask).to(device) mask_single=mask_single.reshape(1,args.NumTimeSteps, args.NumFeatures).to(device) Data=data.reshape(args.NumTimeSteps, args.NumFeatures).data.cpu().numpy() target_=int(target.data.cpu().numpy()[0]) plotExampleBox(Data,args.Graph_dir+'Sample_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.GradFlag): attributions = Grad.attribute(input, \ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_Grad_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(Grad,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=None) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_Grad_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.IGFlag): attributions = IG.attribute(input, \ baselines=baseline_single, \ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_IG_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(IG,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_single) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_IG_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.DLFlag): attributions = DL.attribute(input, \ baselines=baseline_single, \ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_DL_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(DL,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_single) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_DL_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.GSFlag): attributions = GS.attribute(input, \ baselines=baseline_multiple, \ stdevs=0.09,\ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_GS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(GS,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_multiple) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_GS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.DLSFlag): attributions = DLS.attribute(input, \ baselines=baseline_multiple, \ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_DLS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(DLS,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_multiple) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_DLS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.SGFlag): attributions = SG.attribute(input, \ target=labels) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_SG_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(SG,input, args.NumFeatures,args.NumTimeSteps, labels) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_SG_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.ShapleySamplingFlag): attributions = SS.attribute(input, \ baselines=baseline_single, \ target=labels,\ feature_mask=inputMask) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_SVS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(SS,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_single,hasFeatureMask=inputMask) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_SVS_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) # if(args.FeaturePermutationFlag): # attributions = FP.attribute(input, \ # target=labels), # # perturbations_per_eval= 1,\ # # feature_mask=mask_single) # saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) # plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_FP',greyScale=True) if(args.FeatureAblationFlag): attributions = FA.attribute(input, \ target=labels) # perturbations_per_eval= input.shape[0],\ # feature_mask=mask_single) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_FA_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(FA,input, args.NumFeatures,args.NumTimeSteps, labels) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_FA_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.OcclusionFlag): attributions = OS.attribute(input, \ sliding_window_shapes=(1,int(args.NumFeatures/10)), target=labels, baselines=baseline_single) saliency_=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,attributions) plotExampleBox(saliency_[0],args.Graph_dir+models[m]+'_FO_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True) if(args.TSRFlag): TSR_attributions = getTwoStepRescaling(OS,input, args.NumFeatures,args.NumTimeSteps, labels,hasBaseline=baseline_single,hasSliding_window_shapes= (1,int(args.NumFeatures/10))) TSR_saliency=Helper.givenAttGetRescaledSaliency(args.NumTimeSteps, args.NumFeatures,TSR_attributions,isTensor=False) plotExampleBox(TSR_saliency,args.Graph_dir+models[m]+'_TSR_FO_MNIST_'+str(target_)+'_index_'+str(i+1),greyScale=True)
def extract_SV(self, X_test): Sv = ShapleyValueSampling(self.net) start = time.time() sv_attr_test = Sv.attribute(X_test.to(self.device)) print("temps train", time.time() - start) return sv_attr_test.detach().cpu().numpy()
# heloc_checkpoint = "cchvae/classifier-heloc.ckpt" heloc_checkpoint = "checkpoints/stl-21-04-21-08-11-33/heloc-epoch=196-loss_validate=0.37-top-validate.ckpt" heloc = pd.read_csv("data/heloc/heloc_dataset_v1_pruned.csv", index_col=False) # print(heloc) heloc_c = pd.read_csv("data/heloc/counterfactuals.csv", header=None, index_col=False) amplified_heloc_c = pd.read_csv("data/heloc/augmented_counterfactuals.csv", index_col=False) heloc_t = heloc["RiskPerformance"].map(lambda target: 1 if target == "Good" else 0) heloc["RiskPerformance"] = heloc_t classifier = SingleTaskLearner.load_from_checkpoint(heloc_checkpoint) sv = ShapleyValueSampling(classifier) heloc_shapley_values = [] labels = Labels(heloc.to_numpy()) targets, predictors = split_normalized(labels.labels) with tqdm(total=len(targets)) as progress_bar: for predictor in predictors.values: inp = torch.tensor(predictor, dtype=torch.float32).unsqueeze(0) attributions = sv.attribute(inp, target=0) heloc_shapley_values.append(attributions) progress_bar.update(1) df = DataFrame(heloc_shapley_values, index=None) df.to_csv("data/heloc/shapley_heloc_pruned.csv")
def run_saliency_methods(saliency_methods, pretrained_model, test_shape, train_loader, test_loader, device, model_type, model_name, saliency_dir, tsr_graph_dir=None, tsr_inputs_to_graph=()): _, num_timesteps, num_features = test_shape run_grad = "Grad" in saliency_methods run_grad_tsr = "Grad_TSR" in saliency_methods run_ig = "IG" in saliency_methods run_ig_tsr = "IG_TSR" in saliency_methods run_dl = "DL" in saliency_methods run_gs = "GS" in saliency_methods run_dls = "DLS" in saliency_methods run_dls_tsr = "DLS_TSR" in saliency_methods run_sg = "SG" in saliency_methods run_shapley_sampling = "ShapleySampling" in saliency_methods run_feature_permutation = "FeaturePermutation" in saliency_methods run_feature_ablation = "FeatureAblation" in saliency_methods run_occlusion = "Occlusion" in saliency_methods run_fit = "FIT" in saliency_methods run_ifit = "IFIT" in saliency_methods run_wfit = "WFIT" in saliency_methods run_iwfit = "IWFIT" in saliency_methods if run_grad or run_grad_tsr: Grad = Saliency(pretrained_model) if run_grad: rescaledGrad = np.zeros(test_shape) if run_grad_tsr: rescaledGrad_TSR = np.zeros(test_shape) if run_ig or run_ig_tsr: IG = IntegratedGradients(pretrained_model) if run_ig: rescaledIG = np.zeros(test_shape) if run_ig_tsr: rescaledIG_TSR = np.zeros(test_shape) if run_dl: rescaledDL = np.zeros(test_shape) DL = DeepLift(pretrained_model) if run_gs: rescaledGS = np.zeros(test_shape) GS = GradientShap(pretrained_model) if run_dls or run_dls_tsr: DLS = DeepLiftShap(pretrained_model) if run_dls: rescaledDLS = np.zeros(test_shape) if run_dls_tsr: rescaledDLS_TSR = np.zeros(test_shape) if run_sg: rescaledSG = np.zeros(test_shape) Grad_ = Saliency(pretrained_model) SG = NoiseTunnel(Grad_) if run_shapley_sampling: rescaledShapleySampling = np.zeros(test_shape) SS = ShapleyValueSampling(pretrained_model) if run_gs: rescaledFeaturePermutation = np.zeros(test_shape) FP = FeaturePermutation(pretrained_model) if run_feature_ablation: rescaledFeatureAblation = np.zeros(test_shape) FA = FeatureAblation(pretrained_model) if run_occlusion: rescaledOcclusion = np.zeros(test_shape) OS = Occlusion(pretrained_model) if run_fit: rescaledFIT = np.zeros(test_shape) FIT = FITExplainer(pretrained_model, ft_dim_last=True) generator = JointFeatureGenerator(num_features, data='none') # TODO: Increase epochs FIT.fit_generator(generator, train_loader, test_loader, n_epochs=300) if run_ifit: rescaledIFIT = np.zeros(test_shape) if run_wfit: rescaledWFIT = np.zeros(test_shape) if run_iwfit: rescaledIWFIT = np.zeros(test_shape) idx = 0 mask = np.zeros((num_timesteps, num_features), dtype=int) for i in range(num_timesteps): mask[i, :] = i for i, (samples, labels) in enumerate(test_loader): input = samples.reshape(-1, num_timesteps, num_features).to(device) input = Variable(input, volatile=False, requires_grad=True) batch_size = input.shape[0] baseline_single = torch.from_numpy(np.random.random( input.shape)).to(device) baseline_multiple = torch.from_numpy( np.random.random((input.shape[0] * 5, input.shape[1], input.shape[2]))).to(device) inputMask = np.zeros((input.shape)) inputMask[:, :, :] = mask inputMask = torch.from_numpy(inputMask).to(device) mask_single = torch.from_numpy(mask).to(device) mask_single = mask_single.reshape(1, num_timesteps, num_features).to(device) labels = torch.tensor(labels.int().tolist()).to(device) if run_grad: attributions = Grad.attribute(input, target=labels) rescaledGrad[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_grad_tsr: rescaledGrad_TSR[idx:idx + batch_size, :, :] = get_tsr_saliency( Grad, input, labels, graph_dir=tsr_graph_dir, graph_name=f'{model_name}_{model_type}_Grad_TSR', inputs_to_graph=tsr_inputs_to_graph, cur_batch=i) if run_ig: attributions = IG.attribute(input, baselines=baseline_single, target=labels) rescaledIG[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_ig_tsr: rescaledIG_TSR[idx:idx + batch_size, :, :] = get_tsr_saliency( IG, input, labels, baseline=baseline_single, graph_dir=tsr_graph_dir, graph_name=f'{model_name}_{model_type}_IG_TSR', inputs_to_graph=tsr_inputs_to_graph, cur_batch=i) if run_dl: attributions = DL.attribute(input, baselines=baseline_single, target=labels) rescaledDL[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_gs: attributions = GS.attribute(input, baselines=baseline_multiple, stdevs=0.09, target=labels) rescaledGS[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_dls: attributions = DLS.attribute(input, baselines=baseline_multiple, target=labels) rescaledDLS[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_dls_tsr: rescaledDLS_TSR[idx:idx + batch_size, :, :] = get_tsr_saliency( DLS, input, labels, baseline=baseline_multiple, graph_dir=tsr_graph_dir, graph_name=f'{model_name}_{model_type}_DLS_TSR', inputs_to_graph=tsr_inputs_to_graph, cur_batch=i) if run_sg: attributions = SG.attribute(input, target=labels) rescaledSG[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_shapley_sampling: attributions = SS.attribute(input, baselines=baseline_single, target=labels, feature_mask=inputMask) rescaledShapleySampling[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_feature_permutation: attributions = FP.attribute(input, target=labels, perturbations_per_eval=input.shape[0], feature_mask=mask_single) rescaledFeaturePermutation[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_feature_ablation: attributions = FA.attribute(input, target=labels) # perturbations_per_eval= input.shape[0],\ # feature_mask=mask_single) rescaledFeatureAblation[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_occlusion: attributions = OS.attribute(input, sliding_window_shapes=(1, num_features), target=labels, baselines=baseline_single) rescaledOcclusion[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_fit: attributions = torch.from_numpy(FIT.attribute(input, labels)) rescaledFIT[idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( num_timesteps, num_features, attributions) if run_ifit: attributions = torch.from_numpy( inverse_fit_attribute(input, pretrained_model, ft_dim_last=True)) rescaledIFIT[idx:idx + batch_size, :, :] = attributions if run_wfit: attributions = torch.from_numpy( wfit_attribute(input, pretrained_model, N=test_shape[1], ft_dim_last=True, single_label=True)) rescaledWFIT[idx:idx + batch_size, :, :] = attributions if run_iwfit: attributions = torch.from_numpy( wfit_attribute(input, pretrained_model, N=test_shape[1], ft_dim_last=True, single_label=True, inverse=True)) rescaledIWFIT[idx:idx + batch_size, :, :] = attributions idx += batch_size if run_grad: print("Saving Grad", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_Grad_rescaled", rescaledGrad) if run_grad_tsr: print("Saving Grad_TSR", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_Grad_TSR_rescaled", rescaledGrad_TSR) if run_ig: print("Saving IG", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_IG_rescaled", rescaledIG) if run_ig_tsr: print("Saving IG_TSR", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_IG_TSR_rescaled", rescaledIG_TSR) if run_dl: print("Saving DL", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_DL_rescaled", rescaledDL) if run_gs: print("Saving GS", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_GS_rescaled", rescaledGS) if run_dls: print("Saving DLS", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_DLS_rescaled", rescaledDLS) if run_dls_tsr: print("Saving DLS_TSR", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_DLS_TSR_rescaled", rescaledDLS_TSR) if run_sg: print("Saving SG", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_SG_rescaled", rescaledSG) if run_shapley_sampling: print("Saving ShapleySampling", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_ShapleySampling_rescaled", rescaledShapleySampling) if run_feature_permutation: print("Saving FeaturePermutation", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_FeaturePermutation_rescaled", rescaledFeaturePermutation) if run_feature_ablation: print("Saving FeatureAblation", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_FeatureAblation_rescaled", rescaledFeatureAblation) if run_occlusion: print("Saving Occlusion", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_Occlusion_rescaled", rescaledOcclusion) if run_fit: print("Saving FIT", model_name + "_" + model_type) np.save(saliency_dir + model_name + "_" + model_type + "_FIT_rescaled", rescaledFIT) if run_ifit: print("Saving IFIT", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_IFIT_rescaled", rescaledIFIT) if run_wfit: print("Saving WFIT", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_WFIT_rescaled", rescaledWFIT) if run_iwfit: print("Saving IWFIT", model_name + "_" + model_type) np.save( saliency_dir + model_name + "_" + model_type + "_IWFIT_rescaled", rescaledIWFIT)
def visualize_maps( model: torch.nn.Module, inputs: Union[Tuple[torch.Tensor, torch.Tensor]], labels: torch.Tensor, title: str, second_occlusion: Tuple[int, int, int] = (1, 2, 2), baselines: Tuple[int, int] = (0, 0), closest: bool = False, ) -> None: """ Visualizes the average of the inputs, or the single input, using various different XAI approaches """ single = inputs[1].ndim == 2 model.zero_grad() model.eval() occ = Occlusion(model) saliency = Saliency(model) saliency = NoiseTunnel(saliency) igrad = IntegratedGradients(model) igrad_2 = NoiseTunnel(igrad) # deep_lift = DeepLift(model) grad_shap = ShapleyValueSampling(model) output = model(inputs[0], inputs[1]) output = F.softmax(output, dim=-1).argmax(dim=1, keepdim=True) labels = F.softmax(labels, dim=-1).argmax(dim=1, keepdim=True) if np.all(labels.cpu().numpy() == 1) and not closest: return if True: targets = labels else: targets = output print(targets) correct = targets.cpu().numpy() == labels.cpu().numpy() # if correct: # return occ_out = occ.attribute( inputs, baselines=baselines, sliding_window_shapes=((1, 5, 5), second_occlusion), target=targets, ) # occ_out2 = occ.attribute(inputs, sliding_window_shapes=((1,20,20), second_occlusion), strides=(8,1), target=targets) saliency_out = saliency.attribute(inputs, nt_type="smoothgrad_sq", n_samples=5, target=targets, abs=False) # igrad_out = igrad.attribute(inputs, target=targets, internal_batch_size=1) igrad_out = igrad_2.attribute( inputs, baselines=baselines, target=targets, n_samples=5, nt_type="smoothgrad_sq", internal_batch_size=1, ) # deep_lift_out = deep_lift.attribute(inputs, target=targets) grad_shap_out = grad_shap.attribute(inputs, baselines=baselines, target=targets) if single: inputs = convert_to_image(inputs) occ_out = convert_to_image(occ_out) saliency_out = convert_to_image(saliency_out) igrad_out = convert_to_image(igrad_out) # grad_shap_out = convert_to_image(grad_shap_out) else: inputs = convert_to_image_multi(inputs) occ_out = convert_to_image_multi(occ_out) saliency_out = convert_to_image_multi(saliency_out) igrad_out = convert_to_image_multi(igrad_out) grad_shap_out = convert_to_image_multi(grad_shap_out) fig, axes = plt.subplots(2, 5) (fig, axes[0, 0]) = visualization.visualize_image_attr( occ_out[0][0], inputs[0][0], title="Original Image", method="original_image", show_colorbar=True, plt_fig_axis=(fig, axes[0, 0]), use_pyplot=False, ) (fig, axes[0, 1]) = visualization.visualize_image_attr( occ_out[0][0], None, sign="all", title="Occ (5x5)", show_colorbar=True, plt_fig_axis=(fig, axes[0, 1]), use_pyplot=False, ) (fig, axes[0, 2]) = visualization.visualize_image_attr( saliency_out[0][0], None, sign="all", title="Saliency", show_colorbar=True, plt_fig_axis=(fig, axes[0, 2]), use_pyplot=False, ) (fig, axes[0, 3]) = visualization.visualize_image_attr( igrad_out[0][0], None, sign="all", title="Integrated Grad", show_colorbar=True, plt_fig_axis=(fig, axes[0, 3]), use_pyplot=False, ) (fig, axes[0, 4]) = visualization.visualize_image_attr( grad_shap_out[0], None, title="GradSHAP", show_colorbar=True, plt_fig_axis=(fig, axes[0, 4]), use_pyplot=False, ) ##### Second Input Labels ######################################################################################### (fig, axes[1, 0]) = visualization.visualize_image_attr( occ_out[1], inputs[1], title="Original Aux", method="original_image", show_colorbar=True, plt_fig_axis=(fig, axes[1, 0]), use_pyplot=False, ) (fig, axes[1, 1]) = visualization.visualize_image_attr( occ_out[1], None, sign="all", title="Occ (1x1)", show_colorbar=True, plt_fig_axis=(fig, axes[1, 1]), use_pyplot=False, ) (fig, axes[1, 2]) = visualization.visualize_image_attr( saliency_out[1], None, sign="all", title="Saliency", show_colorbar=True, plt_fig_axis=(fig, axes[1, 2]), use_pyplot=False, ) (fig, axes[1, 3]) = visualization.visualize_image_attr( igrad_out[1], None, sign="all", title="Integrated Grad", show_colorbar=True, plt_fig_axis=(fig, axes[1, 3]), use_pyplot=False, ) (fig, axes[1, 4]) = visualization.visualize_image_attr( grad_shap_out[1], None, title="GradSHAP", show_colorbar=True, plt_fig_axis=(fig, axes[1, 4]), use_pyplot=False, ) fig.suptitle( title + f" Label: {labels.cpu().numpy()} Pred: {targets.cpu().numpy()}") plt.savefig( f"{title}_{'single' if single else 'multi'}_{'Failed' if correct else 'Success'}_baseline{baselines[0]}.png", dpi=300, ) plt.clf() plt.cla()
def generate_saliency(model_path, saliency_path): checkpoint = torch.load(model_path, map_location=lambda storage, loc: storage) model_args = Namespace(**checkpoint['args']) model_args.batch_size = args.batch_size if args.batch_size != None else \ model_args.batch_size if args.model == 'transformer': transformer_config = BertConfig.from_pretrained( 'bert-base-uncased', num_labels=model_args.labels) modelb = BertForSequenceClassification.from_pretrained( 'bert-base-uncased', config=transformer_config).to(device) modelb.load_state_dict(checkpoint['model']) model = BertModelWrapper(modelb) elif args.model == 'lstm': model = LSTM_MODEL(tokenizer, model_args, n_labels=checkpoint['args']['labels'], device=device).to(device) model.load_state_dict(checkpoint['model']) model.train() model = ModelWrapper(model) else: # model_args.batch_size = 1000 model = CNN_MODEL(tokenizer, model_args, n_labels=checkpoint['args']['labels']).to(device) model.load_state_dict(checkpoint['model']) model.train() model = ModelWrapper(model) ablator = ShapleyValueSampling(model) coll_call = get_collate_fn(dataset=args.dataset, model=args.model) collate_fn = partial(coll_call, tokenizer=tokenizer, device=device, return_attention_masks=False, pad_to_max_length=False) test = get_dataset(args.dataset_dir, mode=args.split) test_dl = DataLoader(batch_size=model_args.batch_size, dataset=test, shuffle=False, collate_fn=collate_fn) # PREDICTIONS predictions_path = model_path + '.predictions' if not os.path.exists(predictions_path): predictions = defaultdict(lambda: []) for batch in tqdm(test_dl, desc='Running test prediction... '): logits = model(batch[0]) logits = logits.detach().cpu().numpy().tolist() predicted = np.argmax(np.array(logits), axis=-1) predictions['class'] += predicted.tolist() predictions['logits'] += logits with open(predictions_path, 'w') as out: json.dump(predictions, out) # COMPUTE SALIENCY saliency_flops = [] with open(saliency_path, 'w') as out_mean: for batch in tqdm(test_dl, desc='Running Saliency Generation...'): class_attr_list = defaultdict(lambda: []) if args.model == 'rnn': additional = batch[-1] else: additional = None if not args.no_time: high.start_counters([events.PAPI_FP_OPS]) token_ids = batch[0].detach().cpu().numpy().tolist() for cls_ in range(args.labels): attributions = ablator.attribute( batch[0].float(), target=cls_, additional_forward_args=additional) attributions = attributions.detach().cpu().numpy().tolist() class_attr_list[cls_] += attributions if not args.no_time: x = sum(high.stop_counters()) saliency_flops.append(x / batch[0].shape[0]) for i in range(len(batch[0])): saliencies = [] for token_i, token_id in enumerate(token_ids[i]): if token_id == tokenizer.pad_token_id: continue token_sal = {'token': tokenizer.ids_to_tokens[token_id]} for cls_ in range(args.labels): token_sal[int( cls_)] = class_attr_list[cls_][i][token_i] saliencies.append(token_sal) out_mean.write(json.dumps({'tokens': saliencies}) + '\n') out_mean.flush() return saliency_flops
def main(args, DatasetsTypes, DataGenerationTypes, models, device): for m in range(len(models)): for x in range(len(DatasetsTypes)): for y in range(len(DataGenerationTypes)): if (DataGenerationTypes[y] == None): args.DataName = DatasetsTypes[x] + "_Box" else: args.DataName = DatasetsTypes[ x] + "_" + DataGenerationTypes[y] Training = np.load(args.data_dir + "SimulatedTrainingData_" + args.DataName + "_F_" + str(args.NumFeatures) + "_TS_" + str(args.NumTimeSteps) + ".npy") TrainingMetaDataset = np.load(args.data_dir + "SimulatedTrainingMetaData_" + args.DataName + "_F_" + str(args.NumFeatures) + "_TS_" + str(args.NumTimeSteps) + ".npy") TrainingLabel = TrainingMetaDataset[:, 0] Testing = np.load(args.data_dir + "SimulatedTestingData_" + args.DataName + "_F_" + str(args.NumFeatures) + "_TS_" + str(args.NumTimeSteps) + ".npy") TestingDataset_MetaData = np.load(args.data_dir + "SimulatedTestingMetaData_" + args.DataName + "_F_" + str(args.NumFeatures) + "_TS_" + str(args.NumTimeSteps) + ".npy") TestingLabel = TestingDataset_MetaData[:, 0] Training = Training.reshape( Training.shape[0], Training.shape[1] * Training.shape[2]) Testing = Testing.reshape(Testing.shape[0], Testing.shape[1] * Testing.shape[2]) scaler = MinMaxScaler() scaler.fit(Training) Training = scaler.transform(Training) Testing = scaler.transform(Testing) TrainingRNN = Training.reshape(Training.shape[0], args.NumTimeSteps, args.NumFeatures) TestingRNN = Testing.reshape(Testing.shape[0], args.NumTimeSteps, args.NumFeatures) train_dataRNN = data_utils.TensorDataset( torch.from_numpy(TrainingRNN), torch.from_numpy(TrainingLabel)) train_loaderRNN = data_utils.DataLoader( train_dataRNN, batch_size=args.batch_size, shuffle=True) test_dataRNN = data_utils.TensorDataset( torch.from_numpy(TestingRNN), torch.from_numpy(TestingLabel)) test_loaderRNN = data_utils.DataLoader( test_dataRNN, batch_size=args.batch_size, shuffle=False) modelName = "Simulated" modelName += args.DataName saveModelName = "../Models/" + models[m] + "/" + modelName saveModelBestName = saveModelName + "_BEST.pkl" pretrained_model = torch.load(saveModelBestName, map_location=device) Test_Acc = checkAccuracy(test_loaderRNN, pretrained_model, args) print('{} {} model BestAcc {:.4f}'.format( args.DataName, models[m], Test_Acc)) if (Test_Acc >= 90): if (args.GradFlag): rescaledGrad = np.zeros((TestingRNN.shape)) Grad = Saliency(pretrained_model) if (args.IGFlag): rescaledIG = np.zeros((TestingRNN.shape)) IG = IntegratedGradients(pretrained_model) if (args.DLFlag): rescaledDL = np.zeros((TestingRNN.shape)) DL = DeepLift(pretrained_model) if (args.GSFlag): rescaledGS = np.zeros((TestingRNN.shape)) GS = GradientShap(pretrained_model) if (args.DLSFlag): rescaledDLS = np.zeros((TestingRNN.shape)) DLS = DeepLiftShap(pretrained_model) if (args.SGFlag): rescaledSG = np.zeros((TestingRNN.shape)) Grad_ = Saliency(pretrained_model) SG = NoiseTunnel(Grad_) if (args.ShapleySamplingFlag): rescaledShapleySampling = np.zeros((TestingRNN.shape)) SS = ShapleyValueSampling(pretrained_model) if (args.GSFlag): rescaledFeaturePermutation = np.zeros( (TestingRNN.shape)) FP = FeaturePermutation(pretrained_model) if (args.FeatureAblationFlag): rescaledFeatureAblation = np.zeros((TestingRNN.shape)) FA = FeatureAblation(pretrained_model) if (args.OcclusionFlag): rescaledOcclusion = np.zeros((TestingRNN.shape)) OS = Occlusion(pretrained_model) idx = 0 mask = np.zeros((args.NumTimeSteps, args.NumFeatures), dtype=int) for i in range(args.NumTimeSteps): mask[i, :] = i for i, (samples, labels) in enumerate(test_loaderRNN): print('[{}/{}] {} {} model accuracy {:.2f}'\ .format(i,len(test_loaderRNN), models[m], args.DataName, Test_Acc)) input = samples.reshape(-1, args.NumTimeSteps, args.NumFeatures).to(device) input = Variable(input, volatile=False, requires_grad=True) batch_size = input.shape[0] baseline_single = torch.from_numpy( np.random.random(input.shape)).to(device) baseline_multiple = torch.from_numpy( np.random.random( (input.shape[0] * 5, input.shape[1], input.shape[2]))).to(device) inputMask = np.zeros((input.shape)) inputMask[:, :, :] = mask inputMask = torch.from_numpy(inputMask).to(device) mask_single = torch.from_numpy(mask).to(device) mask_single = mask_single.reshape( 1, args.NumTimeSteps, args.NumFeatures).to(device) labels = torch.tensor(labels.int().tolist()).to(device) if (args.GradFlag): attributions = Grad.attribute(input, \ target=labels) rescaledGrad[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.IGFlag): attributions = IG.attribute(input, \ baselines=baseline_single, \ target=labels) rescaledIG[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.DLFlag): attributions = DL.attribute(input, \ baselines=baseline_single, \ target=labels) rescaledDL[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.GSFlag): attributions = GS.attribute(input, \ baselines=baseline_multiple, \ stdevs=0.09,\ target=labels) rescaledGS[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.DLSFlag): attributions = DLS.attribute(input, \ baselines=baseline_multiple, \ target=labels) rescaledDLS[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.SGFlag): attributions = SG.attribute(input, \ target=labels) rescaledSG[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.ShapleySamplingFlag): attributions = SS.attribute(input, \ baselines=baseline_single, \ target=labels,\ feature_mask=inputMask) rescaledShapleySampling[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.FeaturePermutationFlag): attributions = FP.attribute(input, \ target=labels, perturbations_per_eval= input.shape[0],\ feature_mask=mask_single) rescaledFeaturePermutation[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.FeatureAblationFlag): attributions = FA.attribute(input, \ target=labels) # perturbations_per_eval= input.shape[0],\ # feature_mask=mask_single) rescaledFeatureAblation[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) if (args.OcclusionFlag): attributions = OS.attribute(input, \ sliding_window_shapes=(1,args.NumFeatures), target=labels, baselines=baseline_single) rescaledOcclusion[ idx:idx + batch_size, :, :] = Helper.givenAttGetRescaledSaliency( args, attributions) idx += batch_size if (args.plot): index = random.randint(0, TestingRNN.shape[0] - 1) plotExampleBox(TestingRNN[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_sample', flip=True) print("Plotting sample", index) if (args.GradFlag): plotExampleBox(rescaledGrad[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_Grad', greyScale=True, flip=True) if (args.IGFlag): plotExampleBox(rescaledIG[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_IG', greyScale=True, flip=True) if (args.DLFlag): plotExampleBox(rescaledDL[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_DL', greyScale=True, flip=True) if (args.GSFlag): plotExampleBox(rescaledGS[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_GS', greyScale=True, flip=True) if (args.DLSFlag): plotExampleBox(rescaledDLS[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_DLS', greyScale=True, flip=True) if (args.SGFlag): plotExampleBox(rescaledSG[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_SG', greyScale=True, flip=True) if (args.ShapleySamplingFlag): plotExampleBox( rescaledShapleySampling[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_ShapleySampling', greyScale=True, flip=True) if (args.FeaturePermutationFlag): plotExampleBox( rescaledFeaturePermutation[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_FeaturePermutation', greyScale=True, flip=True) if (args.FeatureAblationFlag): plotExampleBox( rescaledFeatureAblation[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_FeatureAblation', greyScale=True, flip=True) if (args.OcclusionFlag): plotExampleBox(rescaledOcclusion[index, :, :], args.Saliency_Maps_graphs_dir + args.DataName + "_" + models[m] + '_Occlusion', greyScale=True, flip=True) if (args.save): if (args.GradFlag): print("Saving Grad", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_Grad_rescaled", rescaledGrad) if (args.IGFlag): print("Saving IG", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_IG_rescaled", rescaledIG) if (args.DLFlag): print("Saving DL", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_DL_rescaled", rescaledDL) if (args.GSFlag): print("Saving GS", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_GS_rescaled", rescaledGS) if (args.DLSFlag): print("Saving DLS", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_DLS_rescaled", rescaledDLS) if (args.SGFlag): print("Saving SG", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_SG_rescaled", rescaledSG) if (args.ShapleySamplingFlag): print("Saving ShapleySampling", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_ShapleySampling_rescaled", rescaledShapleySampling) if (args.FeaturePermutationFlag): print("Saving FeaturePermutation", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_FeaturePermutation_rescaled", rescaledFeaturePermutation) if (args.FeatureAblationFlag): print("Saving FeatureAblation", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_FeatureAblation_rescaled", rescaledFeatureAblation) if (args.OcclusionFlag): print("Saving Occlusion", modelName + "_" + models[m]) np.save( args.Saliency_dir + modelName + "_" + models[m] + "_Occlusion_rescaled", rescaledOcclusion) else: logging.basicConfig(filename=args.log_file, level=logging.DEBUG) logging.debug('{} {} model BestAcc {:.4f}'.format( args.DataName, models[m], Test_Acc)) if not os.path.exists(args.ignore_list): with open(args.ignore_list, 'w') as fp: fp.write(args.DataName + '_' + models[m] + '\n') else: with open(args.ignore_list, "a") as fp: fp.write(args.DataName + '_' + models[m] + '\n')