示例#1
0
    def test_model_registration(self):
        @registry.register_model
        class MyModel1(Model):
            pass

        model = registry.model("my_model1")
        self.assertTrue(model is MyModel1)
示例#2
0
    def test_named_registration(self):
        @registry.register_model("model2")
        class MyModel1(Model):
            pass

        model = registry.model("model2")
        self.assertTrue(model is MyModel1)
示例#3
0
文件: main.py 项目: tkasasagi/carpedm
    'train_batch_size': 32,
    'eval_batch_size': 1,
    'data_format': 'channels_last',
    'optimizer': 'sgd',
    'learning_rate': 1e-3,
    'momentum': 0.96,
    'weight_decay': 2e-4,
    'gradient_clipping': None,
    'lr_decay_steps': None,
    'init_dir': None,  # for pre-trained models
    'sync': False
}

# Model hyperparameters and definition
model_hparams = {}
model = registry.model('single_char_baseline')(num_classes=task.num_classes,
                                               **model_hparams)

# Unique job_id
experiment_id = 'example'
shape = re.sub(r'([,])', '_', re.sub(r'([() ])', '', str(args['shape_in'])))
job_id = os.path.join(experiment_id, shape, model.name)
task.job_id = job_id  # Used to check for first model initialization.
job_dir = os.path.join(task.task_log_dir, job_id)

# TensorFlow Configuration
sess_config = tf.ConfigProto(
    allow_soft_placement=True,
    log_device_placement=False,
    intra_op_parallelism_threads=0,
    gpu_options=tf.GPUOptions(force_gpu_compatible=True))
config = tf.estimator.RunConfig(session_config=sess_config,
示例#4
0
 def test_request_unprovided_model(self):
     with self.assertRaisesRegex(LookupError, "never registered"):
         _ = registry.model("not_provided")
示例#5
0
 def test_access_provided_model(self):
     model = registry.model("single_char_baseline")
     self.assertTrue(model is SingleCharBaseline)