示例#1
0
 def multi_group_by_as_map(self, key=None):
     from .map import Map
     key_to_grp = defaultdict(list)
     for elem in self:
         for k in key(elem):
             key_to_grp[k].append(elem)
     return Map(key_to_grp)
示例#2
0
    def group_by_as_map(self, key_func=None):
        '''Group values in to a Map by the value of key function evaluation
        result.

        Comparing to ``group_by_as_stream``, there're some pros and cons.

        Pros:

        * Elements don't need to be sorted by the key function first.
          You can call ``map_group_by`` anytime and correct grouping result.

        Cons:

        * Key function has to be evaluated to a hashable value.

        * Not Lazy-evaluating. Consume more memory while grouping.
          Yield a group as soon as possible.

        >>> Stream.range(10).group_by_as_map(key_func=lambda n: n % 3)
        Map({0: Array([0, 3, 6, 9]), 1: Array([1, 4, 7]), 2: Array([2, 5, 8])})


        '''

        from .map import Map
        key_to_grp = defaultdict(Array)
        for elem in self:
            key_to_grp[key_func(elem)].append(elem)
        return Map(key_to_grp)
示例#3
0
    def value_counts(self):
        '''Get a Counter instance of elements counts

        Returns
        -------
        Map[E, int]
        '''
        from carriage import Map
        return Map(Counter(self))
示例#4
0
    def to_map(self):
        '''Convert to a Map

        >>> Stream.range(5, 10, 2).zip_index().to_map()
        Map({5: 0, 7: 1, 9: 2})

        Returns
        -------
        Map
        '''
        from .map import Map
        return Map(self)