示例#1
0
def solve_nlp(prop_name, thrust):
    rho0 = 1.225
    i0_motor0 = 0.04
    V_inf0 = 1
    R_motor0 = 0.05
    T_desired = thrust  #### Thrust constraint

    prop_data = prop_db[prop_name]
    key0 = list(prop_data['dynamic'].keys())[0]
    my_prop = prop_data['dynamic'][key0]['data']
    CT_lut = ca.interpolant('CT', 'bspline', [my_prop.index], my_prop.CT)
    CP_lut = ca.interpolant('CP', 'bspline', [my_prop.index], my_prop.CP)
    eta_lut = ca.interpolant('CP', 'bspline', [my_prop.index], my_prop.eta)
    eta_prop_lut = ca.interpolant('eta', 'bspline', [my_prop.index],
                                  my_prop.eta)
    Q_prop_lut = ca.substitute(Q_prop, CP, CP_lut(J))
    T_prop_lut = ca.substitute(T_prop, CT, CT_lut(J))

    states = ca.vertcat(rpm_prop, v_batt, Kv_motor)
    params = ca.vertcat(rho, r_prop_in, i0_motor, V_inf, R_motor)
    p0 = [rho0, prop_data['D'] / 2, i0_motor0, V_inf0, R_motor0]

    f_Q_prop = ca.Function('Q_prop', [states, params], [Q_prop_lut])
    f_Q_motor = ca.Function('Q_motor', [states, params], [Q_motor])
    f_eta_motor = ca.Function('eta_motor', [states, params], [eta_motor])
    f_eta_prop = ca.Function('eta_prop', [states, params], [eta_prop_lut(J)])
    f_eta = ca.Function('eta', [states, params], [eta_prop_lut(J) * eta_motor])
    f_T_prop = ca.Function('T_prop', [states, params], [T_prop_lut])

    #%%

    nlp = {
        'f':
        -f_eta(states, p0),
        'x':
        states,
        'g':
        ca.substitute(ca.vertcat(Q_prop_lut - Q_motor, T_prop_lut - T_desired),
                      params, p0)
    }
    S = ca.nlpsol('eff_max', 'ipopt', nlp, {
        'print_time': 0,
        'ipopt': {
            'sb': 'yes',
            'print_level': 0,
        }
    })
    res = S(x0=[1000, 5, 1000], lbg=[0, 0], ubg=[0, 0])
    stats = S.stats()

    if stats['success']:
        print('\n')
        print('propeller -> ' + prop_name, res['x'], res['g'], -res['f'])
        print('\n')
        v0 = float(res['x'][1])
        kv0 = float(res['x'][2])
        if -res['f'] > 0.3:
            rpm_sweep(prop_name, v0, kv0, i0_motor0, V_inf0, R_motor0)

    return res, stats
示例#2
0
def rpm_sweep(prop_name, v0, kv0, i0_motor0, V_inf0, R_motor0):
    prop_data = prop_db[prop_name]
    key0 = list(prop_data['dynamic'].keys())[0]
    my_prop = prop_data['dynamic'][key0]['data']
    CT_lut = ca.interpolant('CT','bspline',[my_prop.index],my_prop.CT)
    CP_lut = ca.interpolant('CP','bspline',[my_prop.index],my_prop.CP)
    eta_lut = ca.interpolant('CP','bspline',[my_prop.index],my_prop.eta)
    eta_prop_lut = ca.interpolant('eta','bspline',[my_prop.index],my_prop.eta)
    Q_prop_lut = ca.substitute(Q_prop, CP, CP_lut(J))
    T_prop_lut = ca.substitute(T_prop, CT, CT_lut(J))

    states = ca.vertcat(rpm_prop)
    params = ca.vertcat(rho, r_prop_in, v_batt, Kv_motor, i0_motor, V_inf, R_motor)

    p0 = [1.225, prop_data['D']/2, v0, kv0, i0_motor0, V_inf0, R_motor0]

    f_Q_prop = ca.Function('Q_prop', [states, params], [Q_prop_lut])
    f_Q_motor = ca.Function('Q_motor', [states, params], [Q_motor])
    f_T_prop = ca.Function('T_prop', [states, params], [T_prop_lut])
    f_eta_motor = ca.Function('eta_motor', [states, params], [eta_motor])
    f_eta_prop = ca.Function('eta_prop', [states, params], [eta_prop_lut(J)])
    f_eta = ca.Function('eta', [states, params], [eta_prop_lut(J)*eta_motor])

    rpm = np.array([np.linspace(0, 4000, 1000)])

    plt.figure()
    plt.subplot(311)
    plt.plot(rpm.T, f_Q_motor(rpm, p0).T, label='motor')
    plt.plot(rpm.T, f_Q_prop(rpm, p0).T, label='prop')
    plt.title('prop motor matching')
    plt.legend()
    plt.ylabel('torque, N-m')
    plt.grid(True)

    plt.subplot(312)
    plt.plot(rpm.T, f_T_prop(rpm, p0).T, label='prop')
    plt.legend()
    plt.ylabel('thrust, N')
    plt.grid(True)

    plt.subplot(313)
    plt.plot(rpm.T, f_eta_motor(rpm, p0).T, label='motor')
    plt.plot(rpm.T, f_eta_prop(rpm, p0).T, label='prop')
    plt.plot(rpm.T, f_eta(rpm, p0).T, label='total')
    plt.xlabel('prop angular velocity, rpm')
    plt.ylabel('efficiency')
    plt.grid(True)
    plt.legend()
    plt.gca().set_ylim(0, 1)
    plt.show()
示例#3
0
    def solve_grid(self):
        """
        Implements the gridding algorithm by solving the optimization problem 
        for each point in the grid.
        """

        print("Solving grid...")

        for n in range(int(self.sim_time / self.dt)):
            print("Iteration: ", n, "/", int(self.sim_time / self.dt))
            # Get cost at grid point
            # Hint: take inspiration from Gridder class
            # for ...
            #     for ...

            # Update cost to go
            J_flat = self.J[:, :, :, :, n]
            J_flat = J_flat.ravel(order='F')

            if self.DEBUG:
                print("U[:,:,", n, "]:\n ", self.U[:, :, n])
                print("J[:,:,:,:,", n, "]:\n ", J_flat)

            # Update cost-to-go policy
            self.Jtogo = ca.interpolant('new_cost', 'bspline',
                                        [self.x1, self.x2, self.x3, self.x4],
                                        J_flat, {"algorithm": "smooth_linear"})
            self.Jtogo_updated = True

        print("Finished!")

        pass
示例#4
0
    def create_table2D(name, row_label, col_label, data, abs_row=False, abs_col=False, interp_method=INTERP_DEFAULT):
        """
        Creates a table interpolation function with x as rows and y as columns
        """
        assert data[0, 0] == 0
        row_grid = data[1:, 0]
        col_grid = data[0, 1:]
        table_data = data[1:, 1:]

        interp = ca.interpolant(name + '_interp', interp_method, [row_grid, col_grid],
                                table_data.ravel(order='F'))
        x = ca.MX.sym('x')
        y = ca.MX.sym('y')
        if abs_row:
            xs = ca.fabs(x)
        else:
            xs = x
        if abs_col:
            ys = ca.fabs(y)
        else:
            ys = y
        func = ca.Function('Cx', [x, y], [interp(ca.vertcat(xs, ys))], [row_label, col_label], [name])

        # check
        for i, x in enumerate(row_grid):
            for j, y in enumerate(col_grid):
                assert ca.fabs(func(x, y) - table_data[i, j]) < TABLE_CHECK_TOL

        return func
示例#5
0
 def cubic_spline(self, step=40):
     # Loading waypoints from csv file
     # input_file = rospy.get_param("~wp_file")
     input_file = "/home/lva/data_file/wp-for-mpcc.csv"
     data = genfromtxt(input_file, delimiter=',')
     x_list = data[:, 0]
     y_list = data[:, 1]
     self.wp_len = len(x_list)
     l_list = np.arange(0, self.wp_len, 1)
     self.L = int(self.wp_len / step) * step
     self.cs_x = ca.interpolant('cs_x', 'bspline', [l_list[::step]],
                                x_list[::step])
     self.cs_y = ca.interpolant('cs_y', 'bspline', [l_list[::step]],
                                y_list[::step])
     th = ca.MX.sym('th')
     # Tangent angle
     self.Phi = ca.Function('Phi', [th], [
         ca.arctan(
             ca.jacobian(self.cs_y(th), th) /
             ca.jacobian(self.cs_x(th), th))
     ])
     print(self.L)
示例#6
0
 def create_Cz():
     alpha_deg = ca.MX.sym('alpha_deg')
     beta_deg = ca.MX.sym('beta_deg')
     elev_deg = ca.MX.sym('elev_deg')
     data = np.array([
         [-10,   -5,      0,      5,     10,      15,     20,     25,     30,     35,     40,     45],
         [0.770,  0.241, -0.100, -0.416, -0.731, -1.053, -1.366, -1.646, -1.917, -2.120, -2.248, -2.229]
     ])
     interp = ca.interpolant('Cz_interp', INTERP_DEFAULT, [data[0, :]],
                             data[1, :])
     return ca.Function('Cz',
                        [alpha_deg, beta_deg, elev_deg],
                        [interp(alpha_deg)*(1 - (beta_deg/57.3)**2) - 0.19*elev_deg/25.0],
                        ['alpha_deg', 'beta_deg', 'elev_deg'], ['Cz'])
示例#7
0
 def create_damping():
     data = np.array([
         [-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45],  # alpha, deg
         [
             -0.267, -0.110, 0.308, 1.34, 2.08, 2.91, 2.76, 2.05, 1.50,
             1.49, 1.83, 1.21
         ],  # CXq
         [
             0.882, 0.852, 0.876, 0.958, 0.962, 0.974, 0.819, 0.483, 0.590,
             1.21, -0.493, -1.04
         ],  # CYr
         [
             -0.108, -0.108, -0.188, 0.110, 0.258, 0.226, 0.344, 0.362,
             0.611, 0.529, 0.298, -2.27
         ],  # CYp
         [
             -8.80, -25.8, -28.9, -31.4, -31.2, -30.7, -27.7, -28.2, -29.0,
             -29.8, -38.3, -35.3
         ],  # CZq
         [
             -0.126, -0.026, 0.063, 0.113, 0.208, 0.230, 0.319, 0.437,
             0.680, 0.100, 0.447, -0.330
         ],  # Clr
         [
             -0.360, -0.359, -0.443, -0.420, -0.383, -0.375, -0.329, -0.294,
             -0.230, -0.210, -0.120, -0.100
         ],  # Clp
         [
             -7.21, -0.540, -5.23, -5.26, -6.11, -6.64, -5.69, -6.00, -6.20,
             -6.40, -6.60, -6.00
         ],  # Cmq
         [
             -0.380, -0.363, -0.378, -0.386, -0.370, -0.453, -0.550, -0.582,
             -0.595, -0.637, -1.02, -0.840
         ],  # Cnr
         [
             0.061, 0.052, 0.052, -0.012, -0.013, -0.024, 0.050, 0.150,
             0.130, 0.158, 0.240, 0.150
         ]
     ])  # Cnp
     names = ['CXq', 'CYr', 'CYp', 'CZq', 'Clr', 'Clp', 'Cmq', 'Cnr', 'Cnp']
     for i, name in enumerate(names):
         tables[name] = ca.interpolant('{:s}_interp'.format(name),
                                       INTERP_DEFAULT, [data[0, :]],
                                       data[i + 1, :])
         # check
         for j, x in enumerate(data[0, :]):
             assert ca.fabs(tables[name](x) -
                            data[i + 1, j]) < TABLE_CHECK_TOL
示例#8
0
    def __init__(self, deltaT=0):
        """

            :param deltaT: Temperature differential w.r.t. ISA conditions
            :type deltaT: float, optional

            :returns: None

        """
        self.deltaT = deltaT

        z = np.arange(0, 20.5e3, 500)
        T = np.maximum(T0_MSL + lapse_rate_troposphere * z,
                       T_tropopause * np.ones_like(z))

        P_tropo = P0_MSL * (T / T0_MSL)**(-g / Rg / lapse_rate_troposphere)
        P_pause = P_tropo[22] * np.exp(-g / Rg / T * (z - h_tropopause))
        P = np.hstack([P_tropo[:23], P_pause[23:]])
        z_I = np.arange(0, 20.5e3, 341)
        T_I = np.maximum(T0_MSL + lapse_rate_troposphere * z_I,
                         T_tropopause * np.ones_like(z_I))

        self.IP = interpolant('P', 'bspline', [z], P, {})
        self.IT = interpolant('T', 'bspline', [z_I], T_I, {})
示例#9
0
    def solve_grid(self):
        """
        Implements the gridding algorithm by solving the optimization problem 
        for each point in the grid.
        """
        print("Solving grid...")

        for n in range(int(self.sim_time / self.dt)):
            print("Time-step: ", "{:.2f}".format(n * self.dt), "/",
                  self.sim_time)

            # Get cost at grid point
            for i in range(len(self.x1)):
                for j in range(len(self.x2)):

                    x = np.array([self.x1[i], self.x2[j]])

                    u, cost = self.solve_dp(x)

                    if self.use_nonlinear_controller is False:
                        self.U[i, j, n] = u
                    else:
                        # Modify grid to account for virtual input v
                        a0 = self.model.a0
                        b0 = self.model.b0
                        self.U[i, j,
                               n] = (1 / ca.cos(x[0]) *
                                     (a0 / b0 * (ca.sin(x[0]) - x[0]) + u))

                    self.J[i, j, n] = cost

            # Update cost to go
            if self.DEBUG:
                print("U[:,:,", n, "]:\n ", self.U[:, :, n])
                print("J[:,:,", n, "]:\n ", self.J[:, :, n])
            J_flat = self.J[:, :, n]
            J_flat = J_flat.ravel(order='F')

            # Update cost-to-go policy
            self.Jtogo = ca.interpolant('new_cost', 'bspline',
                                        [self.x1, self.x2], J_flat,
                                        {"algorithm": "smooth_linear"})
            self.Jtogo_updated = True

        print("Finished!")

        pass
示例#10
0
    def solve_grid(self):
        """
        Implements the gridding algorithm by solving the optimization problem 
        for each point in the grid.
        """

        print("Solving grid...")

        for n in range(int(self.sim_time / self.dt)):
            print("Iteration: ", n, "/", int(self.sim_time / self.dt))
            # Get cost at grid point
            for i in range(len(self.x1)):
                for j in range(len(self.x2)):
                    for k in range(len(self.x3)):
                        for l in range(len(self.x4)):

                            x = np.array([
                                self.x1[i], self.x2[j], self.x3[k], self.x4[l]
                            ])

                            u, cost = self.solve_dp(x)

                            self.U[i, j, k, l, n] = u

                            self.J[i, j, k, l, n] = cost

            # Update cost to go
            J_flat = self.J[:, :, :, :, n]
            J_flat = J_flat.ravel(order='F')

            if self.DEBUG:
                print("U[:,:,", n, "]:\n ", self.U[:, :, n])
                print("J[:,:,:,:,", n, "]:\n ", J_flat)

            # Update cost-to-go policy
            self.Jtogo = ca.interpolant('new_cost', 'bspline',
                                        [self.x1, self.x2, self.x3, self.x4],
                                        J_flat, {"algorithm": "smooth_linear"})
            self.Jtogo_updated = True

        print("Finished!")

        pass
示例#11
0
    def finite_time_dp(self, x, t):
        """
        Retrieves the optimal control for a given state and time-step.

        :param x: current state
        :type x: numpy array
        :param t: time step
        :type t: float
        :return: optimal control input
        :rtype: float
        """

        n = int(self.sim_time / self.dt) - int(t / self.dt) - 1

        U_flat = self.U[:, :, :, :, n].ravel(order="F")
        self.sample_u = ca.interpolant('new_cost', 'bspline',
                                       [self.x1, self.x2, self.x3, self.x4],
                                       U_flat, {"algorithm": "smooth_linear"})

        u = self.sample_u(x.T)

        # Log cost and energy
        self.log_cost(x, u)
        return u
示例#12
0
    def _setup_model(self):

        # States

        self.x = ca.MX.sym("x", self.nx)

        T_hts = self.x[self.x_index["T_hts"]]
        T_lts = self.x[self.x_index["T_lts"]]

        T_fpsc = self.x[self.x_index["T_fpsc"]]
        T_fpsc_s = self.x[self.x_index["T_fpsc_s"]]
        T_vtsc = self.x[self.x_index["T_vtsc"]]
        T_vtsc_s = self.x[self.x_index["T_vtsc_s"]]

        T_pscf = self.x[self.x_index["T_pscf"]]
        T_pscr = self.x[self.x_index["T_pscr"]]

        T_shx_psc = self.x[self.x_index["T_shx_psc"]]
        T_shx_ssc = self.x[self.x_index["T_shx_ssc"]]

        T_fcu_a = self.x[self.x_index["T_fcu_a"]]
        T_fcu_w = self.x[self.x_index["T_fcu_w"]]

        T_r_c = self.x[self.x_index["T_r_c"]]
        T_r_a = self.x[self.x_index["T_r_a"]]

        dT_amb = self.x[self.x_aux_index["dT_amb"]]
        dI_vtsc = self.x[self.x_aux_index["dI_vtsc"]]
        dI_fpsc = self.x[self.x_aux_index["dI_fpsc"]]

        Qdot_n_c = self.x[self.x_aux_index["Qdot_n_c"]]
        Qdot_n_a = self.x[self.x_aux_index["Qdot_n_a"]]

        dalpha_vtsc = self.x[self.x_aux_index["dalpha_vtsc"]]
        dalpha_fpsc = self.x[self.x_aux_index["dalpha_fpsc"]]

        # Discrete controls

        self.b = ca.MX.sym("b", self.nb)

        b_ac = self.b[self.b_index["b_ac"]]
        b_fc = self.b[self.b_index["b_fc"]]

        # Continuous controls

        self.u = ca.MX.sym("u", self.nu)

        v_ppsc = self.u[self.u_index["v_ppsc"]]
        p_mpsc = self.u[self.u_index["p_mpsc"]]
        v_plc = self.u[self.u_index["v_plc"]]
        v_pssc = self.u[self.u_index["v_pssc"]]

        mdot_o_hts_b = self.u[self.u_index["mdot_o_hts_b"]]
        mdot_i_hts_b = self.u[self.u_index["mdot_i_hts_b"]]

        # Time-varying parameters

        self.c = ca.MX.sym("c", self.nc)

        T_amb = self.c[self.c_index["T_amb"]] + dT_amb
        I_vtsc = self.c[self.c_index["I_vtsc"]] + dI_vtsc
        I_fpsc = self.c[self.c_index["I_fpsc"]] + dI_fpsc
        I_r_dir = self.c[self.c_index["I_r_dir"]]
        I_r_diff = self.c[self.c_index["I_r_diff"]]

        # Process noise

        self.w = ca.MX.sym("w", self.nw)

        w_dT_amb = self.w[self.w_index["dT_amb"]]
        w_dI_vtsc = self.w[self.w_index["dI_vtsc"]]
        w_dI_fpsc = self.w[self.w_index["dI_fpsc"]]

        w_Qdot_n_c = self.w[self.w_index["Qdot_n_c"]]
        w_Qdot_n_a = self.w[self.w_index["Qdot_n_a"]]

        w_dalpha_vtsc = self.w[self.w_index["dalpha_vtsc"]]
        w_dalpha_fpsc = self.w[self.w_index["dalpha_fpsc"]]

        # Modeling

        f = []

        # Grey box ACM model

        char_curve_acm = ca.veccat(1.0, \
            T_lts[0], T_hts[0], (T_amb + self.p["dT_rc"]), \
            T_lts[0]**2, T_hts[0]**2, (T_amb + self.p["dT_rc"])**2, \
            T_lts[0] * T_hts[0], T_lts[0] * (T_amb + self.p["dT_rc"]), \
            T_hts[0] * (T_amb + self.p["dT_rc"]), \
            T_lts[0] * T_hts[0] * (T_amb + self.p["dT_rc"]))


        params_COP_ac = np.asarray([2.03268, -0.116526, -0.0165648, \
            -0.043367, -0.00074309, -0.000105659, -0.00172085, \
            0.00113422, 0.00540221, 0.00116735, -3.87996e-05])

        params_Qdot_ac_lt = np.asarray([-5.6924, 1.12102, 0.291654, \
            -0.484546, -0.00585722, -0.00140483, 0.00795341, \
            0.00399118, -0.0287113, -0.00221606, 5.42825e-05])

        COP_ac = ca.mtimes(np.atleast_2d(params_COP_ac), char_curve_acm)
        Qdot_ac_lt = ca.mtimes(np.atleast_2d(params_Qdot_ac_lt),
                               char_curve_acm) * 1e3

        T_ac_ht = T_hts[0] - ((Qdot_ac_lt / COP_ac) /
                              (self.p["mdot_ac_ht"] * self.p["c_w"]))
        T_ac_lt = T_lts[0] - (Qdot_ac_lt /
                              (self.p["mdot_ac_lt"] * self.p["c_w"]))

        # Free cooling

        T_fc_lt = T_amb + self.p["dT_rc"]

        # HT storage model

        mdot_ssc = self.p["mdot_ssc_max"] * v_pssc

        m_hts = (self.p["V_hts"] * self.p["rho_w"]) / T_hts.numel()

        mdot_hts_t_s = mdot_ssc - b_ac * self.p["mdot_ac_ht"]
        mdot_hts_t_sbar = ca.sqrt(mdot_hts_t_s**2 + self.p["eps_hts"])

        mdot_hts_b_s = mdot_i_hts_b - mdot_o_hts_b
        mdot_hts_b_sbar = ca.sqrt(mdot_hts_b_s**2 + self.p["eps_hts"])

        f.append( \

            (1.0 / m_hts) * ( \

                mdot_ssc * T_shx_ssc[-1] \
                - b_ac * self.p["mdot_ac_ht"] * T_hts[0] \
                - (mdot_hts_t_s * ((T_hts[0] + T_hts[1]) / 2.0) \
                   + mdot_hts_t_sbar * ((T_hts[0] - T_hts[1]) / 2.0)) \
                - (self.p["lambda_hts"][0] / self.p["c_w"] * (T_hts[0] - T_amb))) \
            )


        f.append( \

                (1.0 / m_hts) * ( \

                    (b_ac * self.p["mdot_ac_ht"] - mdot_i_hts_b) * T_ac_ht
                    - (mdot_ssc - mdot_o_hts_b) * T_hts[1]
                    + (mdot_hts_t_s * ((T_hts[0] + T_hts[1]) / 2.0) + mdot_hts_t_sbar * ((T_hts[0] - T_hts[1]) / 2.0))
                    + (mdot_hts_b_s * ((T_hts[2] + T_hts[1]) / 2.0) + mdot_hts_b_sbar * ((T_hts[2] - T_hts[1]) / 2.0))
                    - (self.p["lambda_hts"][3] / self.p["c_w"] * (T_hts[1] - T_amb)))
            )


        f.append( \

            (1.0 / m_hts) * ( \

                mdot_hts_b_s * (((T_hts[-1] + T_hts[-2]) / 2.0) - ((T_hts[-2] + T_hts[-3]) / 2.0)) \
                   + mdot_hts_b_sbar * (((T_hts[-1] - T_hts[-2]) / 2.0) - ((T_hts[-2] - T_hts[-3]) / 2.0))
                - (self.p["lambda_hts"][-2] / self.p["c_w"] * (T_hts[-2] - T_amb)))
            )


        f.append( \

                (1.0 / m_hts) * ( \

                mdot_i_hts_b * T_ac_ht
                - mdot_o_hts_b * T_hts[-1]
                - (mdot_hts_b_s * ((T_hts[-1] + T_hts[-2]) / 2.0) + mdot_hts_b_sbar * ((T_hts[-1] - T_hts[-2]) / 2.0))
                - (self.p["lambda_hts"][-1] / self.p["c_w"] * (T_hts[-1] - T_amb)))

            )

        # LT storage model

        mdot_lc = self.p["mdot_lc_max"] * v_plc

        m_lts = (self.p["V_lts"] * self.p["rho_w"]) / T_lts.numel()

        f.append( \

            (1.0 / m_lts) * ( \
                mdot_lc * T_fcu_w \
                - (1.0 - b_ac - b_fc) * mdot_lc * T_lts[0] \
                + b_ac * (self.p["mdot_ac_lt"] - mdot_lc) * T_lts[1] \
                - b_ac * self.p["mdot_ac_lt"] * T_lts[0]
                + b_fc * (self.p["mdot_fc_lt"] - mdot_lc) * T_lts[1] \
                - b_fc * self.p["mdot_fc_lt"] * T_lts[0])
            )

        f.append( \

            (1.0 / m_lts) * ( \
                (1.0 - b_ac - b_fc) * mdot_lc * T_lts[-2] \
                - mdot_lc * T_lts[-1] \
                + b_ac * self.p["mdot_ac_lt"] * T_ac_lt \
                - b_ac * (self.p["mdot_ac_lt"] - mdot_lc) * T_lts[-1]
                + b_fc * self.p["mdot_fc_lt"] * T_fc_lt
                - b_fc * (self.p["mdot_fc_lt"] - mdot_lc) * T_lts[-1])
            )

        # Flat plate collectors

        data_v_ppsc = [-0.1, 0.0, 0.4, 0.6, 0.8, 1.0, 1.1]
        data_p_mpsc = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

        data_mdot_fpsc = np.array([
            0.00116667, 0., 0.02765, 0.03511667, 0.04258333, 0.04993333,
            0.04993333, 0.00116667, 0., 0.02765, 0.03511667, 0.04258333,
            0.04993333, 0.04993333, 0.0035, 0., 0.08343, 0.11165333, 0.13568,
            0.15895333, 0.15895333, 0.005, 0., 0.12508167, 0.16568, 0.20563333,
            0.2397, 0.2397, 0.0055, 0., 0.13999333, 0.1859, 0.22790167,
            0.26488, 0.26488, 0.006, 0., 0.14969167, 0.19844, 0.24394167,
            0.28695333, 0.28695333, 0.00633333, 0., 0.15706667, 0.21070833,
            0.25807, 0.310775, 0.310775, 0.0075, 0., 0.17047833, 0.229775,
            0.28826667, 0.34190833, 0.34190833, 0.0095, 0., 0.20687333,
            0.27500667, 0.331775, 0.37235333, 0.37235333, 0.013, 0.,
            0.24111667, 0.31581, 0.38300833, 0.44705167, 0.44705167, 0.013, 0.,
            0.24111667, 0.31581, 0.38300833, 0.44705167, 0.44705167
        ])

        iota_mdot_fpsc = ca.interpolant('iota_mdot_fpsc', 'bspline', [data_v_ppsc, data_p_mpsc], \
            data_mdot_fpsc)

        mdot_fpsc = iota_mdot_fpsc(ca.veccat(v_ppsc, p_mpsc))

        Qdot_fpsc = self.p["eta_fpsc"] * self.p["A_fpsc"] * I_fpsc
        Qdot_fpsc_amb = (self.p["alpha_fpsc"] +
                         dalpha_fpsc) * self.p["A_fpsc"] * (T_fpsc - T_amb)

        f.append( \
            (1.0 / self.p["C_fpsc"]) * \
            (mdot_fpsc * self.p["c_sl"] * (T_pscf - T_fpsc) + \
                Qdot_fpsc - Qdot_fpsc_amb))


        f.append((1.0 / (self.p["V_fpsc_s"] * self.p["rho_sl"] * self.p["c_sl"])) * ( \
                mdot_fpsc * self.p["c_sl"] * (T_fpsc - T_fpsc_s) - \
                self.p["lambda_fpsc_s"] * (T_fpsc_s - T_amb))
            )

        # Tube collectors

        data_mdot_vtsc = np.array([
            0.0155, 0., 0.36735, 0.46655, 0.56575, 0.6634, 0.6634, 0.0155, 0.,
            0.36735, 0.46655, 0.56575, 0.6634, 0.6634, 0.01316667, 0., 0.32157,
            0.41501333, 0.50432, 0.59438, 0.59438, 0.01166667, 0., 0.29325167,
            0.37932, 0.4577, 0.54363333, 0.54363333, 0.01116667, 0.,
            0.28167333, 0.3641, 0.44043167, 0.52345333, 0.52345333, 0.01066667,
            0., 0.271975, 0.34822667, 0.42439167, 0.50138, 0.50138, 0.01033333,
            0., 0.25626667, 0.33095833, 0.39859667, 0.464225, 0.464225,
            0.00916667, 0., 0.217855, 0.275225, 0.3384, 0.39975833, 0.39975833,
            0.00716667, 0., 0.15479333, 0.19832667, 0.243225, 0.30098, 0.30098,
            0.00366667, 0., 0.06721667, 0.08752333, 0.10865833, 0.13128167,
            0.13128167, 0.00366667, 0., 0.06721667, 0.08752333, 0.10865833,
            0.13128167, 0.13128167
        ])

        iota_mdot_vtsc = ca.interpolant('iota_mdot_vtsc', 'bspline', [data_v_ppsc, data_p_mpsc], \
            data_mdot_vtsc)

        mdot_vtsc = iota_mdot_vtsc(ca.veccat(v_ppsc, p_mpsc))

        Qdot_vtsc = self.p["eta_vtsc"] * self.p["A_vtsc"] * I_vtsc
        Qdot_vtsc_amb = (self.p["alpha_vtsc"] +
                         dalpha_vtsc) * self.p["A_vtsc"] * (T_vtsc - T_amb)

        f.append( \
            (1.0 / self.p["C_vtsc"]) * \
            (mdot_vtsc * self.p["c_sl"] * (T_pscf - T_vtsc) + \
                Qdot_vtsc - Qdot_vtsc_amb))

        f.append((1.0 / (self.p["V_vtsc_s"] * self.p["rho_sl"] * self.p["c_sl"])) * ( \
                mdot_vtsc * self.p["c_sl"] * (T_vtsc - T_vtsc_s) - \
                self.p["lambda_vtsc_s"] * (T_vtsc_s - T_amb))
            )

        # Pipes connecting solar collectors and solar heat exchanger

        f.append(1.0 / self.p["C_psc"] * ((mdot_fpsc + mdot_vtsc) * \
            self.p["c_sl"] * (T_shx_psc[-1] - T_pscf) - \
            self.p["lambda_psc"] * (T_pscf - T_amb)))

        f.append(1.0 / self.p["C_psc"] * (mdot_fpsc * self.p["c_sl"] * T_fpsc_s \
           + mdot_vtsc * self.p["c_sl"] * T_vtsc_s \
           - (mdot_fpsc + mdot_vtsc) * self.p["c_sl"] * T_pscr \
           - self.p["lambda_psc"] * (T_pscr - T_amb)))

        # Solar heat exchanger

        m_shx_psc = self.p["V_shx"] * self.p["rho_sl"] / T_shx_psc.numel()
        m_shx_ssc = self.p["V_shx"] * self.p["rho_w"] / T_shx_psc.numel()

        A_shx_k = self.p["A_shx"] / T_shx_psc.numel()

        f.append( \
            (1.0 / (m_shx_psc * self.p["c_sl"])) * ( \
                (mdot_fpsc + mdot_vtsc) \
                * self.p["c_sl"] * (T_pscr - T_shx_psc[0]) \
                - (A_shx_k * self.p["alpha_shx"] * (T_shx_psc[0] - T_shx_ssc[-1]))))

        for k in range(1, T_shx_psc.numel()):

            f.append( \
                (1.0 / (m_shx_psc * self.p["c_sl"])) * ( \
                    (mdot_fpsc + mdot_vtsc) \
                    * self.p["c_sl"] * (T_shx_psc[k-1] - T_shx_psc[k]) \
                    - (A_shx_k * self.p["alpha_shx"] * (T_shx_psc[k] - T_shx_ssc[-1-k]))))

        f.append( \
            (1.0 / (m_shx_ssc * self.p["c_w"])) * ( \
                (mdot_ssc - mdot_o_hts_b) * self.p["c_w"] * (T_hts[1] - T_shx_ssc[0]) \
                + mdot_o_hts_b * self.p["c_w"] * (T_hts[-1] - T_shx_ssc[0]) \
                + (A_shx_k * self.p["alpha_shx"] * (T_shx_psc[-1] - T_shx_ssc[0]))))

        for k in range(1, T_shx_ssc.numel()):

            f.append( \
                (1.0 / (m_shx_ssc * self.p["c_w"])) * ( \
                    mdot_ssc * self.p["c_w"] * (T_shx_ssc[k-1] - T_shx_ssc[k]) \
                    + (A_shx_k * self.p["alpha_shx"] * (T_shx_psc[-1-k] - T_shx_ssc[k]))))

        # Cooling system model

        Qdot_fcu_r = self.p["lambda_fcu"] * (T_fcu_a - T_fcu_w)

        f.append((1.0 / self.p["C_fcu_a"]) * \
            (self.p["c_a"] * self.p["mdot_fcu_a"] * (T_r_a[0] - T_fcu_a) - Qdot_fcu_r))

        f.append((1.0 / self.p["C_fcu_w"]) * \
            (self.p["c_w"] * mdot_lc * (T_lts[-1] - T_fcu_w) + Qdot_fcu_r))

        # Building model

        Qdot_r_a_c = []

        for k in range(3):

            Qdot_r_a_c.append(
                (1.0 / self.p["R_r_a_c"][k]) * (T_r_a[k] - T_r_c[k]))

            f.append((1.0 / self.p["C_r_c"][k]) * (Qdot_r_a_c[k] \
                + (1.0 / self.p["R_r_c_amb"][k]) * (T_amb - T_r_c[k]) \
                + self.p["r_I_dir_c"][k] * I_r_dir + self.p["r_I_diff_c"][k] * I_r_diff \
                + Qdot_n_c[k]))

        Qdot_r_a_a = []
        Qdot_r_a_a.append((1.0 / self.p["R_r_a_a"]) * (T_r_a[1] - T_r_a[0]))
        Qdot_r_a_a.append((1.0 / self.p["R_r_a_a"]) * (T_r_a[2] - T_r_a[1]))

        f.append((1.0 / self.p["C_r_a"]) * (-Qdot_r_a_c[0] \
            + (1.0 / self.p["R_r_a_amb"]) * (T_amb - T_r_a[0]) \
            + Qdot_r_a_a[0] - self.p["r_Qdot_fcu_a"][0] * Qdot_fcu_r \
            + self.p["r_I_dir_a"][0] * I_r_dir + self.p["r_I_diff_a"][0] * I_r_diff \
            + Qdot_n_a[0]))

        f.append((1.0 / self.p["C_r_a"]) * (-Qdot_r_a_c[1] \
            + (1.0 / self.p["R_r_a_amb"]) * (T_amb - T_r_a[1]) \
            - Qdot_r_a_a[0] + Qdot_r_a_a[1] - self.p["r_Qdot_fcu_a"][1] * Qdot_fcu_r \
            + self.p["r_I_dir_a"][1] * I_r_dir + self.p["r_I_diff_a"][1] * I_r_diff \
            + Qdot_n_a[1]))

        f.append((1.0 / self.p["C_r_a"]) * (-Qdot_r_a_c[2] \
            + (1.0 / self.p["R_r_a_amb"]) * (T_amb - T_r_a[2]) \
            - Qdot_r_a_a[1] - self.p["r_Qdot_fcu_a"][2] * Qdot_fcu_r \
            + self.p["r_I_dir_a"][2] * I_r_dir + self.p["r_I_diff_a"][2] * I_r_diff \
            + Qdot_n_a[2]))

        # Ambient data deviations

        f.append((-dT_amb / self.p["tau_T_amb"]) + w_dT_amb)
        f.append((-dI_vtsc / self.p["tau_I_vtsc"]) + w_dI_vtsc)
        f.append((-dI_fpsc / self.p["tau_I_fpsc"]) + w_dI_fpsc)

        # Heat flow noise on building model

        for k in range(3):
            f.append((-Qdot_n_c[k] / self.p["tau_Qdot_n_c"]) + w_Qdot_n_c[k])

        for k in range(3):
            f.append((-Qdot_n_a[k] / self.p["tau_Qdot_n_a"]) + w_Qdot_n_a[k])

        # Heat loss noise for solar collectors

        f.append(w_dalpha_vtsc)
        f.append(w_dalpha_fpsc)

        self.f = ca.veccat(*f)

        # Measurement function

        self.y = ca.MX.sym("y", self.ny)

        h = []

        h.append(T_hts[0])
        h.append(T_hts[1])
        h.append(T_hts[2])
        h.append(T_hts[3])

        h.append(T_lts[0])
        h.append(T_lts[1])

        h.append(T_fpsc_s)
        h.append(T_vtsc_s)

        h.append(T_shx_psc[0])
        h.append(T_shx_psc[3])

        h.append(T_shx_ssc[0])
        h.append(T_shx_ssc[3])

        h.append(T_fcu_w)

        h.append(T_r_c[0])
        h.append(T_r_c[1])
        h.append(T_r_c[2])

        h.append(T_r_a[0])
        h.append(T_r_a[1])
        h.append(T_r_a[2])

        h.append(T_amb)
        h.append(I_vtsc)
        h.append(I_fpsc)

        self.h = ca.veccat(*h)
示例#13
0
    def _convert(self, symbol, t, y, y_dot, inputs):
        """ See :meth:`CasadiConverter.convert()`. """
        if isinstance(
            symbol,
            (
                pybamm.Scalar,
                pybamm.Array,
                pybamm.Time,
                pybamm.InputParameter,
                pybamm.ExternalVariable,
            ),
        ):
            return casadi.MX(symbol.evaluate(t, y, y_dot, inputs))

        elif isinstance(symbol, pybamm.StateVector):
            if y is None:
                raise ValueError("Must provide a 'y' for converting state vectors")
            return casadi.vertcat(*[y[y_slice] for y_slice in symbol.y_slices])

        elif isinstance(symbol, pybamm.StateVectorDot):
            if y_dot is None:
                raise ValueError("Must provide a 'y_dot' for converting state vectors")
            return casadi.vertcat(*[y_dot[y_slice] for y_slice in symbol.y_slices])

        elif isinstance(symbol, pybamm.BinaryOperator):
            left, right = symbol.children
            # process children
            converted_left = self.convert(left, t, y, y_dot, inputs)
            converted_right = self.convert(right, t, y, y_dot, inputs)

            if isinstance(symbol, pybamm.Minimum):
                return casadi.fmin(converted_left, converted_right)
            if isinstance(symbol, pybamm.Maximum):
                return casadi.fmax(converted_left, converted_right)

            # _binary_evaluate defined in derived classes for specific rules
            return symbol._binary_evaluate(converted_left, converted_right)

        elif isinstance(symbol, pybamm.UnaryOperator):
            converted_child = self.convert(symbol.child, t, y, y_dot, inputs)
            if isinstance(symbol, pybamm.AbsoluteValue):
                return casadi.fabs(converted_child)
            return symbol._unary_evaluate(converted_child)

        elif isinstance(symbol, pybamm.Function):
            converted_children = [
                self.convert(child, t, y, y_dot, inputs) for child in symbol.children
            ]
            # Special functions
            if symbol.function == np.min:
                return casadi.mmin(*converted_children)
            elif symbol.function == np.max:
                return casadi.mmax(*converted_children)
            elif symbol.function == np.abs:
                return casadi.fabs(*converted_children)
            elif symbol.function == np.sqrt:
                return casadi.sqrt(*converted_children)
            elif symbol.function == np.sin:
                return casadi.sin(*converted_children)
            elif symbol.function == np.arcsinh:
                return casadi.arcsinh(*converted_children)
            elif symbol.function == np.arccosh:
                return casadi.arccosh(*converted_children)
            elif symbol.function == np.tanh:
                return casadi.tanh(*converted_children)
            elif symbol.function == np.cosh:
                return casadi.cosh(*converted_children)
            elif symbol.function == np.sinh:
                return casadi.sinh(*converted_children)
            elif symbol.function == np.cos:
                return casadi.cos(*converted_children)
            elif symbol.function == np.exp:
                return casadi.exp(*converted_children)
            elif symbol.function == np.log:
                return casadi.log(*converted_children)
            elif symbol.function == np.sign:
                return casadi.sign(*converted_children)
            elif isinstance(symbol.function, (PchipInterpolator, CubicSpline)):
                return casadi.interpolant("LUT", "bspline", [symbol.x], symbol.y)(
                    *converted_children
                )
            elif symbol.function.__name__.startswith("elementwise_grad_of_"):
                differentiating_child_idx = int(symbol.function.__name__[-1])
                # Create dummy symbolic variables in order to differentiate using CasADi
                dummy_vars = [
                    casadi.MX.sym("y_" + str(i)) for i in range(len(converted_children))
                ]
                func_diff = casadi.gradient(
                    symbol.differentiated_function(*dummy_vars),
                    dummy_vars[differentiating_child_idx],
                )
                # Create function and evaluate it using the children
                casadi_func_diff = casadi.Function("func_diff", dummy_vars, [func_diff])
                return casadi_func_diff(*converted_children)
            # Other functions
            else:
                return symbol._function_evaluate(converted_children)
        elif isinstance(symbol, pybamm.Concatenation):
            converted_children = [
                self.convert(child, t, y, y_dot, inputs) for child in symbol.children
            ]
            if isinstance(symbol, (pybamm.NumpyConcatenation, pybamm.SparseStack)):
                return casadi.vertcat(*converted_children)
            # DomainConcatenation specifies a particular ordering for the concatenation,
            # which we must follow
            elif isinstance(symbol, pybamm.DomainConcatenation):
                slice_starts = []
                all_child_vectors = []
                for i in range(symbol.secondary_dimensions_npts):
                    child_vectors = []
                    for child_var, slices in zip(
                        converted_children, symbol._children_slices
                    ):
                        for child_dom, child_slice in slices.items():
                            slice_starts.append(symbol._slices[child_dom][i].start)
                            child_vectors.append(
                                child_var[child_slice[i].start : child_slice[i].stop]
                            )
                    all_child_vectors.extend(
                        [v for _, v in sorted(zip(slice_starts, child_vectors))]
                    )
                return casadi.vertcat(*all_child_vectors)

        else:
            raise TypeError(
                """
                Cannot convert symbol of type '{}' to CasADi. Symbols must all be
                'linear algebra' at this stage.
                """.format(
                    type(symbol)
                )
            )
示例#14
0
def opt_mintime(reftrack: np.ndarray,
                coeffs_x: np.ndarray,
                coeffs_y: np.ndarray,
                normvectors: np.ndarray,
                pars: dict,
                tpamap_path: str,
                tpadata_path: str,
                export_path: str,
                print_debug: bool = False,
                plot_debug: bool = False) -> tuple:
    """
    Created by:
    Fabian Christ

    Documentation:
    The minimum lap time problem is described as an optimal control problem, converted to a nonlinear program using
    direct orthogonal Gauss-Legendre collocation and then solved by the interior-point method IPOPT. Reduced computing
    times are achieved using a curvilinear abscissa approach for track description, algorithmic differentiation using
    the software framework CasADi, and a smoothing of the track input data by approximate spline regression. The
    vehicles behavior is approximated as a double track model with quasi-steady state tire load simplification and
    nonlinear tire model.

    Please refer to our paper for further information:
    Christ, Wischnewski, Heilmeier, Lohmann
    Time-Optimal Trajectory Planning for a Race Car Considering Variable Tire-Road Friction Coefficients

    Inputs:
    reftrack:       track [x_m, y_m, w_tr_right_m, w_tr_left_m]
    coeffs_x:       coefficient matrix of the x splines with size (no_splines x 4)
    coeffs_y:       coefficient matrix of the y splines with size (no_splines x 4)
    normvectors:    array containing normalized normal vectors for every traj. point [x_component, y_component]
    pars:           parameters dictionary
    tpamap_path:    file path to tpa map (required for friction map loading)
    tpadata_path:   file path to tpa data (required for friction map loading)
    export_path:    path to output folder for warm start files and solution files
    print_debug:    determines if debug messages are printed
    plot_debug:     determines if debug plots are shown

    Outputs:
    alpha_opt:      solution vector of the optimization problem containing the lateral shift in m for every point
    v_opt:          velocity profile for the raceline
    """

    # ------------------------------------------------------------------------------------------------------------------
    # PREPARE TRACK INFORMATION ----------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # spline lengths
    spline_lengths_refline = tph.calc_spline_lengths.calc_spline_lengths(
        coeffs_x=coeffs_x, coeffs_y=coeffs_y)

    # calculate heading and curvature (numerically)
    kappa_refline = tph.calc_head_curv_num. \
        calc_head_curv_num(path=reftrack[:, :2],
                           el_lengths=spline_lengths_refline,
                           is_closed=True,
                           stepsize_curv_preview=pars["curv_calc_opts"]["d_preview_curv"],
                           stepsize_curv_review=pars["curv_calc_opts"]["d_review_curv"],
                           stepsize_psi_preview=pars["curv_calc_opts"]["d_preview_head"],
                           stepsize_psi_review=pars["curv_calc_opts"]["d_review_head"])[1]

    # close track
    kappa_refline_cl = np.append(kappa_refline, kappa_refline[0])
    w_tr_left_cl = np.append(reftrack[:, 3], reftrack[0, 3])
    w_tr_right_cl = np.append(reftrack[:, 2], reftrack[0, 2])

    # step size along the reference line
    h = pars["stepsize_opts"]["stepsize_reg"]

    # optimization steps (0, 1, 2 ... end point/start point)
    steps = [i for i in range(kappa_refline_cl.size)]

    # number of control intervals
    N = steps[-1]

    # station along the reference line
    s_opt = np.linspace(0.0, N * h, N + 1)

    # interpolate curvature of reference line in terms of steps
    kappa_interp = ca.interpolant('kappa_interp', 'linear', [steps],
                                  kappa_refline_cl)

    # interpolate track width (left and right to reference line) in terms of steps
    w_tr_left_interp = ca.interpolant('w_tr_left_interp', 'linear', [steps],
                                      w_tr_left_cl)
    w_tr_right_interp = ca.interpolant('w_tr_right_interp', 'linear', [steps],
                                       w_tr_right_cl)

    # describe friction coefficients from friction map with linear equations or gaussian basis functions
    if pars["optim_opts"]["var_friction"] is not None:
        w_mue_fl, w_mue_fr, w_mue_rl, w_mue_rr, center_dist = opt_mintime_traj.src. \
            approx_friction_map.approx_friction_map(reftrack=reftrack,
                                                    normvectors=normvectors,
                                                    tpamap_path=tpamap_path,
                                                    tpadata_path=tpadata_path,
                                                    pars=pars,
                                                    dn=pars["optim_opts"]["dn"],
                                                    n_gauss=pars["optim_opts"]["n_gauss"],
                                                    print_debug=print_debug,
                                                    plot_debug=plot_debug)

    # ------------------------------------------------------------------------------------------------------------------
    # DIRECT GAUSS-LEGENDRE COLLOCATION --------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # degree of interpolating polynomial
    d = 3

    # legendre collocation points
    tau = np.append(0, ca.collocation_points(d, 'legendre'))

    # coefficient matrix for formulating the collocation equation
    C = np.zeros((d + 1, d + 1))

    # coefficient matrix for formulating the collocation equation
    D = np.zeros(d + 1)

    # coefficient matrix for formulating the collocation equation
    B = np.zeros(d + 1)

    # construct polynomial basis
    for j in range(d + 1):
        # construct Lagrange polynomials to get the polynomial basis at the collocation point
        p = np.poly1d([1])
        for r in range(d + 1):
            if r != j:
                p *= np.poly1d([1, -tau[r]]) / (tau[j] - tau[r])

        # evaluate polynomial at the final time to get the coefficients of the continuity equation
        D[j] = p(1.0)

        # evaluate time derivative of polynomial at collocation points to get the coefficients of continuity equation
        p_der = np.polyder(p)
        for r in range(d + 1):
            C[j, r] = p_der(tau[r])

        # evaluate integral of the polynomial to get the coefficients of the quadrature function
        pint = np.polyint(p)
        B[j] = pint(1.0)

    # ------------------------------------------------------------------------------------------------------------------
    # STATE VARIABLES --------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # number of state variables
    nx = 5

    # velocity [m/s]
    v_n = ca.SX.sym('v_n')
    v_s = 50
    v = v_s * v_n

    # side slip angle [rad]
    beta_n = ca.SX.sym('beta_n')
    beta_s = 0.5
    beta = beta_s * beta_n

    # yaw rate [rad/s]
    omega_z_n = ca.SX.sym('omega_z_n')
    omega_z_s = 1
    omega_z = omega_z_s * omega_z_n

    # lateral distance to reference line (positive = left) [m]
    n_n = ca.SX.sym('n_n')
    n_s = 5.0
    n = n_s * n_n

    # relative angle to tangent on reference line [rad]
    xi_n = ca.SX.sym('xi_n')
    xi_s = 1.0
    xi = xi_s * xi_n

    # scaling factors for state variables
    x_s = np.array([v_s, beta_s, omega_z_s, n_s, xi_s])

    # put all states together
    x = ca.vertcat(v_n, beta_n, omega_z_n, n_n, xi_n)

    # ------------------------------------------------------------------------------------------------------------------
    # CONTROL VARIABLES ------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # number of control variables
    nu = 4

    # steer angle [rad]
    delta_n = ca.SX.sym('delta_n')
    delta_s = 0.5
    delta = delta_s * delta_n

    # positive longitudinal force (drive) [N]
    f_drive_n = ca.SX.sym('f_drive_n')
    f_drive_s = 7500.0
    f_drive = f_drive_s * f_drive_n

    # negative longitudinal force (brake) [N]
    f_brake_n = ca.SX.sym('f_brake_n')
    f_brake_s = 20000.0
    f_brake = f_brake_s * f_brake_n

    # lateral wheel load transfer [N]
    gamma_y_n = ca.SX.sym('gamma_y_n')
    gamma_y_s = 5000.0
    gamma_y = gamma_y_s * gamma_y_n

    # scaling factors for control variables
    u_s = np.array([delta_s, f_drive_s, f_brake_s, gamma_y_s])

    # put all controls together
    u = ca.vertcat(delta_n, f_drive_n, f_brake_n, gamma_y_n)

    # ------------------------------------------------------------------------------------------------------------------
    # MODEL EQUATIONS --------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # extract vehicle and tire parameters
    veh = pars["vehicle_params_mintime"]
    tire = pars["tire_params_mintime"]

    # general constants
    g = pars["veh_params"]["g"]
    rho = pars["veh_params"]["rho_air"]
    mass = pars["veh_params"]["mass"]

    # curvature of reference line [rad/m]
    kappa = ca.SX.sym('kappa')

    # drag force [N]
    f_xdrag = pars["veh_params"]["dragcoeff"] * v**2

    # rolling resistance forces [N]
    f_xroll_fl = 0.5 * tire["c_roll"] * mass * g * veh["wheelbase_rear"] / veh[
        "wheelbase"]
    f_xroll_fr = 0.5 * tire["c_roll"] * mass * g * veh["wheelbase_rear"] / veh[
        "wheelbase"]
    f_xroll_rl = 0.5 * tire["c_roll"] * mass * g * veh[
        "wheelbase_front"] / veh["wheelbase"]
    f_xroll_rr = 0.5 * tire["c_roll"] * mass * g * veh[
        "wheelbase_front"] / veh["wheelbase"]
    f_xroll = tire["c_roll"] * mass * g

    # static normal tire forces [N]
    f_zstat_fl = 0.5 * mass * g * veh["wheelbase_rear"] / veh["wheelbase"]
    f_zstat_fr = 0.5 * mass * g * veh["wheelbase_rear"] / veh["wheelbase"]
    f_zstat_rl = 0.5 * mass * g * veh["wheelbase_front"] / veh["wheelbase"]
    f_zstat_rr = 0.5 * mass * g * veh["wheelbase_front"] / veh["wheelbase"]

    # dynamic normal tire forces (aerodynamic downforces) [N]
    f_zlift_fl = 0.5 * 0.5 * veh["clA_front"] * rho * v**2
    f_zlift_fr = 0.5 * 0.5 * veh["clA_front"] * rho * v**2
    f_zlift_rl = 0.5 * 0.5 * veh["clA_rear"] * rho * v**2
    f_zlift_rr = 0.5 * 0.5 * veh["clA_rear"] * rho * v**2

    # dynamic normal tire forces (load transfers) [N]
    f_zdyn_fl = (-0.5 * veh["cog_z"] / veh["wheelbase"] *
                 (f_drive + f_brake - f_xdrag - f_xroll) -
                 veh["k_roll"] * gamma_y)
    f_zdyn_fr = (-0.5 * veh["cog_z"] / veh["wheelbase"] *
                 (f_drive + f_brake - f_xdrag - f_xroll) +
                 veh["k_roll"] * gamma_y)
    f_zdyn_rl = (0.5 * veh["cog_z"] / veh["wheelbase"] *
                 (f_drive + f_brake - f_xdrag - f_xroll) -
                 (1.0 - veh["k_roll"]) * gamma_y)
    f_zdyn_rr = (0.5 * veh["cog_z"] / veh["wheelbase"] *
                 (f_drive + f_brake - f_xdrag - f_xroll) +
                 (1.0 - veh["k_roll"]) * gamma_y)

    # sum of all normal tire forces [N]
    f_z_fl = f_zstat_fl + f_zlift_fl + f_zdyn_fl
    f_z_fr = f_zstat_fr + f_zlift_fr + f_zdyn_fr
    f_z_rl = f_zstat_rl + f_zlift_rl + f_zdyn_rl
    f_z_rr = f_zstat_rr + f_zlift_rr + f_zdyn_rr

    # slip angles [rad]
    alpha_fl = delta - ca.atan(
        (v * ca.sin(beta) + veh["wheelbase_front"] * omega_z) /
        (v * ca.cos(beta) - 0.5 * veh["track_width_front"] * omega_z))
    alpha_fr = delta - ca.atan(
        (v * ca.sin(beta) + veh["wheelbase_front"] * omega_z) /
        (v * ca.cos(beta) + 0.5 * veh["track_width_front"] * omega_z))
    alpha_rl = ca.atan(
        (-v * ca.sin(beta) + veh["wheelbase_rear"] * omega_z) /
        (v * ca.cos(beta) - 0.5 * veh["track_width_rear"] * omega_z))
    alpha_rr = ca.atan(
        (-v * ca.sin(beta) + veh["wheelbase_rear"] * omega_z) /
        (v * ca.cos(beta) + 0.5 * veh["track_width_rear"] * omega_z))

    # lateral tire forces [N]
    f_y_fl = (pars["optim_opts"]["mue"] * f_z_fl *
              (1 + tire["eps_front"] * f_z_fl / tire["f_z0"]) *
              ca.sin(tire["C_front"] *
                     ca.atan(tire["B_front"] * alpha_fl - tire["E_front"] *
                             (tire["B_front"] * alpha_fl -
                              ca.atan(tire["B_front"] * alpha_fl)))))
    f_y_fr = (pars["optim_opts"]["mue"] * f_z_fr *
              (1 + tire["eps_front"] * f_z_fr / tire["f_z0"]) *
              ca.sin(tire["C_front"] *
                     ca.atan(tire["B_front"] * alpha_fr - tire["E_front"] *
                             (tire["B_front"] * alpha_fr -
                              ca.atan(tire["B_front"] * alpha_fr)))))
    f_y_rl = (pars["optim_opts"]["mue"] * f_z_rl *
              (1 + tire["eps_rear"] * f_z_rl / tire["f_z0"]) *
              ca.sin(tire["C_rear"] *
                     ca.atan(tire["B_rear"] * alpha_rl - tire["E_rear"] *
                             (tire["B_rear"] * alpha_rl -
                              ca.atan(tire["B_rear"] * alpha_rl)))))
    f_y_rr = (pars["optim_opts"]["mue"] * f_z_rr *
              (1 + tire["eps_rear"] * f_z_rr / tire["f_z0"]) *
              ca.sin(tire["C_rear"] *
                     ca.atan(tire["B_rear"] * alpha_rr - tire["E_rear"] *
                             (tire["B_rear"] * alpha_rr -
                              ca.atan(tire["B_rear"] * alpha_rr)))))

    # longitudinal tire forces [N]
    f_x_fl = 0.5 * f_drive * veh["k_drive_front"] + 0.5 * f_brake * veh[
        "k_brake_front"] - f_xroll_fl
    f_x_fr = 0.5 * f_drive * veh["k_drive_front"] + 0.5 * f_brake * veh[
        "k_brake_front"] - f_xroll_fr
    f_x_rl = 0.5 * f_drive * (1 - veh["k_drive_front"]) + 0.5 * f_brake * (
        1 - veh["k_brake_front"]) - f_xroll_rl
    f_x_rr = 0.5 * f_drive * (1 - veh["k_drive_front"]) + 0.5 * f_brake * (
        1 - veh["k_brake_front"]) - f_xroll_rr

    # longitudinal acceleration [m/s²]
    ax = (f_x_rl + f_x_rr + (f_x_fl + f_x_fr) * ca.cos(delta) -
          (f_y_fl + f_y_fr) * ca.sin(delta) -
          pars["veh_params"]["dragcoeff"] * v**2) / mass

    # lateral acceleration [m/s²]
    ay = ((f_x_fl + f_x_fr) * ca.sin(delta) + f_y_rl + f_y_rr +
          (f_y_fl + f_y_fr) * ca.cos(delta)) / mass

    # time-distance scaling factor (dt/ds)
    sf = (1.0 - n * kappa) / (v * (ca.cos(xi + beta)))

    # model equations for two track model (ordinary differential equations)
    dv = (sf / mass) * (
        (f_x_rl + f_x_rr) * ca.cos(beta) +
        (f_x_fl + f_x_fr) * ca.cos(delta - beta) +
        (f_y_rl + f_y_rr) * ca.sin(beta) -
        (f_y_fl + f_y_fr) * ca.sin(delta - beta) - f_xdrag * ca.cos(beta))

    dbeta = sf * (
        -omega_z +
        (-(f_x_rl + f_x_rr) * ca.sin(beta) +
         (f_x_fl + f_x_fr) * ca.sin(delta - beta) +
         (f_y_rl + f_y_rr) * ca.cos(beta) +
         (f_y_fl + f_y_fr) * ca.cos(delta - beta) + f_xdrag * ca.sin(beta)) /
        (mass * v))

    domega_z = (sf / veh["I_z"]) * (
        (f_x_rr - f_x_rl) * veh["track_width_rear"] / 2 -
        (f_y_rl + f_y_rr) * veh["wheelbase_rear"] +
        ((f_x_fr - f_x_fl) * ca.cos(delta) +
         (f_y_fl - f_y_fr) * ca.sin(delta)) * veh["track_width_front"] / 2 +
        ((f_y_fl + f_y_fr) * ca.cos(delta) +
         (f_x_fl + f_x_fr) * ca.sin(delta)) * veh["track_width_front"])

    dn = sf * v * ca.sin(xi + beta)

    dxi = sf * omega_z - kappa

    # put all ODEs together
    dx = ca.vertcat(dv, dbeta, domega_z, dn, dxi) / x_s

    # ------------------------------------------------------------------------------------------------------------------
    # CONTROL BOUNDARIES -----------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    delta_min = -veh["delta_max"] / delta_s  # min. steer angle [rad]
    delta_max = veh["delta_max"] / delta_s  # max. steer angle [rad]
    f_drive_min = 0.0  # min. longitudinal drive force [N]
    f_drive_max = veh[
        "f_drive_max"] / f_drive_s  # max. longitudinal drive force [N]
    f_brake_min = -veh[
        "f_brake_max"] / f_brake_s  # min. longitudinal brake force [N]
    f_brake_max = 0.0  # max. longitudinal brake force [N]
    gamma_y_min = -np.inf  # min. lateral wheel load transfer [N]
    gamma_y_max = np.inf  # max. lateral wheel load transfer [N]

    # ------------------------------------------------------------------------------------------------------------------
    # STATE BOUNDARIES -------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    v_min = 1.0 / v_s  # min. velocity [m/s]
    v_max = pars["optim_opts"]["v_max"] / v_s  # max. velocity [m/s]
    beta_min = -0.5 * np.pi / beta_s  # min. side slip angle [rad]
    beta_max = 0.5 * np.pi / beta_s  # max. side slip angle [rad]
    omega_z_min = -0.5 * np.pi / omega_z_s  # min. yaw rate [rad/s]
    omega_z_max = 0.5 * np.pi / omega_z_s  # max. yaw rate [rad/s]
    xi_min = -0.5 * np.pi / xi_s  # min. relative angle to tangent on reference line [rad]
    xi_max = 0.5 * np.pi / xi_s  # max. relative angle to tangent on reference line [rad]

    # ------------------------------------------------------------------------------------------------------------------
    # INITIAL GUESS FOR DECISION VARIABLES -----------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------
    v_guess = 20.0 / v_s

    # ------------------------------------------------------------------------------------------------------------------
    # HELPER FUNCTIONS -------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # continuous time dynamics
    f_dyn = ca.Function('f_dyn', [x, u, kappa], [dx, sf], ['x', 'u', 'kappa'],
                        ['dx', 'sf'])

    # longitudinal tire forces [N]
    f_fx = ca.Function('f_fx', [x, u], [f_x_fl, f_x_fr, f_x_rl, f_x_rr],
                       ['x', 'u'], ['f_x_fl', 'f_x_fr', 'f_x_rl', 'f_x_rr'])
    # lateral tire forces [N]
    f_fy = ca.Function('f_fy', [x, u], [f_y_fl, f_y_fr, f_y_rl, f_y_rr],
                       ['x', 'u'], ['f_y_fl', 'f_y_fr', 'f_y_rl', 'f_y_rr'])
    # vertical tire forces [N]
    f_fz = ca.Function('f_fz', [x, u], [f_z_fl, f_z_fr, f_z_rl, f_z_rr],
                       ['x', 'u'], ['f_z_fl', 'f_z_fr', 'f_z_rl', 'f_z_rr'])

    # longitudinal and lateral acceleration [m/s²]
    f_a = ca.Function('f_a', [x, u], [ax, ay], ['x', 'u'], ['ax', 'ay'])

    # ------------------------------------------------------------------------------------------------------------------
    # FORMULATE NONLINEAR PROGRAM --------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # initialize NLP vectors
    w = []
    w0 = []
    lbw = []
    ubw = []
    J = 0
    g = []
    lbg = []
    ubg = []

    # initialize ouput vectors
    x_opt = []
    u_opt = []
    dt_opt = []
    tf_opt = []
    ax_opt = []
    ay_opt = []
    ec_opt = []

    # initialize control vectors (for regularization)
    delta_p = []
    F_p = []

    # boundary constraint: lift initial conditions
    Xk = ca.MX.sym('X0', nx)
    w.append(Xk)
    n_min = (-w_tr_right_interp(0) + pars["optim_opts"]["width_opt"] / 2) / n_s
    n_max = (w_tr_left_interp(0) - pars["optim_opts"]["width_opt"] / 2) / n_s
    lbw.append([v_min, beta_min, omega_z_min, n_min, xi_min])
    ubw.append([v_max, beta_max, omega_z_max, n_max, xi_max])
    w0.append([v_guess, 0.0, 0.0, 0.0, 0.0])
    x_opt.append(Xk * x_s)

    # loop along the racetrack and formulate path constraints & system dynamic
    for k in range(N):
        # add decision variables for the control
        Uk = ca.MX.sym('U_' + str(k), nu)
        w.append(Uk)
        lbw.append([delta_min, f_drive_min, f_brake_min, gamma_y_min])
        ubw.append([delta_max, f_drive_max, f_brake_max, gamma_y_max])
        w0.append([0.0] * nu)

        # add decision variables for the state at collocation points
        Xc = []
        for j in range(d):
            Xkj = ca.MX.sym('X_' + str(k) + '_' + str(j), nx)
            Xc.append(Xkj)
            w.append(Xkj)
            lbw.append([-np.inf] * nx)
            ubw.append([np.inf] * nx)
            w0.append([v_guess, 0.0, 0.0, 0.0, 0.0])

        # loop over all collocation points
        Xk_end = D[0] * Xk
        sf_opt = []
        for j in range(1, d + 1):
            # calculate the state derivative at the collocation point
            xp = C[0, j] * Xk
            for r in range(d):
                xp = xp + C[r + 1, j] * Xc[r]

            # interpolate kappa at the collocation point
            kappa_col = kappa_interp(k + tau[j])

            # append collocation equations (system dynamic)
            fj, qj = f_dyn(Xc[j - 1], Uk, kappa_col)
            g.append(h * fj - xp)
            lbg.append([0.0] * nx)
            ubg.append([0.0] * nx)

            # add contribution to the end state
            Xk_end = Xk_end + D[j] * Xc[j - 1]

            # add contribution to quadrature function
            J = J + B[j] * qj * h

            # add contribution to scaling factor (for calculating lap time)
            sf_opt.append(B[j] * qj * h)

        # calculate used energy
        dt_opt.append(sf_opt[0] + sf_opt[1] + sf_opt[2])
        ec_opt.append(Xk[0] * v_s * Uk[1] * f_drive_s * dt_opt[-1])

        # add new decision variables for state at end of the collocation interval
        Xk = ca.MX.sym('X_' + str(k + 1), nx)
        w.append(Xk)
        n_min = (-w_tr_right_interp(k + 1) +
                 pars["optim_opts"]["width_opt"] / 2.0) / n_s
        n_max = (w_tr_left_interp(k + 1) -
                 pars["optim_opts"]["width_opt"] / 2.0) / n_s
        lbw.append([v_min, beta_min, omega_z_min, n_min, xi_min])
        ubw.append([v_max, beta_max, omega_z_max, n_max, xi_max])
        w0.append([v_guess, 0.0, 0.0, 0.0, 0.0])

        # add equality constraint
        g.append(Xk_end - Xk)
        lbg.append([0.0] * nx)
        ubg.append([0.0] * nx)

        # get tire forces
        f_x_flk, f_x_frk, f_x_rlk, f_x_rrk = f_fx(Xk, Uk)
        f_y_flk, f_y_frk, f_y_rlk, f_y_rrk = f_fy(Xk, Uk)
        f_z_flk, f_z_frk, f_z_rlk, f_z_rrk = f_fz(Xk, Uk)

        # get accelerations (longitudinal + lateral)
        axk, ayk = f_a(Xk, Uk)

        # path constraint: limitied engine power
        g.append(Xk[0] * Uk[1])
        lbg.append([-np.inf])
        ubg.append([veh["power_max"] / (f_drive_s * v_s)])

        # get constant friction coefficient
        if pars["optim_opts"]["var_friction"] is None:
            mue_fl = pars["optim_opts"]["mue"]
            mue_fr = pars["optim_opts"]["mue"]
            mue_rl = pars["optim_opts"]["mue"]
            mue_rr = pars["optim_opts"]["mue"]

        # calculate variable friction coefficients along the reference line (regression with linear equations)
        elif pars["optim_opts"]["var_friction"] == "linear":
            # friction coefficient for each tire
            mue_fl = w_mue_fl[k + 1, 0] * Xk[3] * n_s + w_mue_fl[k + 1, 1]
            mue_fr = w_mue_fr[k + 1, 0] * Xk[3] * n_s + w_mue_fr[k + 1, 1]
            mue_rl = w_mue_rl[k + 1, 0] * Xk[3] * n_s + w_mue_rl[k + 1, 1]
            mue_rr = w_mue_rr[k + 1, 0] * Xk[3] * n_s + w_mue_rr[k + 1, 1]

        # calculate variable friction coefficients along the reference line (regression with gaussian basis functions)
        elif pars["optim_opts"]["var_friction"] == "gauss":
            # gaussian basis functions
            sigma = 2.0 * center_dist[k + 1, 0]
            n_gauss = pars["optim_opts"]["n_gauss"]
            n_q = np.linspace(-n_gauss, n_gauss,
                              2 * n_gauss + 1) * center_dist[k + 1, 0]

            gauss_basis = []
            for i in range(2 * n_gauss + 1):
                gauss_basis.append(
                    ca.exp(-(Xk[3] * n_s - n_q[i])**2 / (2 * (sigma**2))))
            gauss_basis = ca.vertcat(*gauss_basis)

            mue_fl = ca.dot(w_mue_fl[k + 1, :-1],
                            gauss_basis) + w_mue_fl[k + 1, -1]
            mue_fr = ca.dot(w_mue_fr[k + 1, :-1],
                            gauss_basis) + w_mue_fr[k + 1, -1]
            mue_rl = ca.dot(w_mue_rl[k + 1, :-1],
                            gauss_basis) + w_mue_rl[k + 1, -1]
            mue_rr = ca.dot(w_mue_rr[k + 1, :-1],
                            gauss_basis) + w_mue_rr[k + 1, -1]

        else:
            raise ValueError("No friction coefficients are available!")

        # path constraint: Kamm's Circle for each wheel
        g.append(((f_x_flk / (mue_fl * f_z_flk))**2 + (f_y_flk /
                                                       (mue_fl * f_z_flk))**2))
        g.append(((f_x_frk / (mue_fr * f_z_frk))**2 + (f_y_frk /
                                                       (mue_fr * f_z_frk))**2))
        g.append(((f_x_rlk / (mue_rl * f_z_rlk))**2 + (f_y_rlk /
                                                       (mue_rl * f_z_rlk))**2))
        g.append(((f_x_rrk / (mue_rr * f_z_rrk))**2 + (f_y_rrk /
                                                       (mue_rr * f_z_rrk))**2))
        lbg.append([0.0] * 4)
        ubg.append([1.0] * 4)

        # path constraint: lateral wheel load transfer
        g.append((
            (f_y_flk + f_y_frk) * ca.cos(Uk[0] * delta_s) + f_y_rlk + f_y_rrk +
            (f_x_flk + f_x_frk) * ca.sin(Uk[0] * delta_s)) * veh["cog_z"] /
                 ((veh["track_width_front"] + veh["track_width_rear"]) / 2) -
                 Uk[3] * gamma_y_s)
        lbg.append([0.0])
        ubg.append([0.0])

        # path constraint: f_drive * f_brake == 0 (no simultaneous operation of brake and accelerator pedal)
        g.append(Uk[1] * Uk[2])
        lbg.append([-20000.0 / (f_drive_s * f_brake_s)])
        ubg.append([0.0])

        # path constraint: actor dynamic
        if k > 0:
            sigma = (1 - kappa_interp(k) * Xk[3] * n_s) / (Xk[0] * v_s)
            g.append((Uk - w[1 + (k - 1) * nx]) /
                     (pars["stepsize_opts"]["stepsize_reg"] * sigma))
            lbg.append([
                delta_min / (veh["t_delta"]), -np.inf,
                f_brake_min / (veh["t_brake"]), -np.inf
            ])
            ubg.append([
                delta_max / (veh["t_delta"]), f_drive_max / (veh["t_drive"]),
                np.inf, np.inf
            ])

        # path constraint: safe trajectories with acceleration ellipse
        if pars["optim_opts"]["safe_traj"]:
            g.append((ca.fmax(axk, 0) / pars["optim_opts"]["ax_pos_safe"])**2 +
                     (ayk / pars["optim_opts"]["ay_safe"])**2)
            g.append((ca.fmin(axk, 0) / pars["optim_opts"]["ax_neg_safe"])**2 +
                     (ayk / pars["optim_opts"]["ay_safe"])**2)
            lbg.append([0.0] * 2)
            ubg.append([1.0] * 2)

        # append controls (for regularization)
        delta_p.append(Uk[0] * delta_s)
        F_p.append(Uk[1] * f_drive_s / 10000.0 + Uk[2] * f_brake_s / 10000.0)

        # append outputs
        x_opt.append(Xk * x_s)
        u_opt.append(Uk * u_s)
        tf_opt.extend([f_x_flk, f_y_flk, f_z_flk, f_x_frk, f_y_frk, f_z_frk])
        tf_opt.extend([f_x_rlk, f_y_rlk, f_z_rlk, f_x_rrk, f_y_rrk, f_z_rrk])
        ax_opt.append(axk)
        ay_opt.append(ayk)

    # boundary constraint: start states = final states
    g.append(w[0] - Xk)
    lbg.append([0.0] * nx)
    ubg.append([0.0] * nx)

    # path constraint: limited energy consumption
    if pars["optim_opts"]["limit_energy"]:
        g.append(ca.sum1(ca.vertcat(*ec_opt)) / 3600000.0)
        lbg.append([0])
        ubg.append([pars["optim_opts"]["energy_limit"]])

    # formulate differentiation matrix (for regularization)
    diff_matrix = np.eye(N)
    for i in range(N - 1):
        diff_matrix[i, i + 1] = -1.0
    diff_matrix[N - 1, 0] = -1.0

    # regularization (delta)
    delta_p = ca.vertcat(*delta_p)
    Jp_delta = ca.mtimes(ca.MX(diff_matrix), delta_p)
    Jp_delta = ca.dot(Jp_delta, Jp_delta)

    # regularization (f_drive + f_brake)
    F_p = ca.vertcat(*F_p)
    Jp_f = ca.mtimes(ca.MX(diff_matrix), F_p)
    Jp_f = ca.dot(Jp_f, Jp_f)

    # formulate objective
    J = J + pars["optim_opts"]["penalty_F"] * Jp_f + pars["optim_opts"][
        "penalty_delta"] * Jp_delta

    # concatenate NLP vectors
    w = ca.vertcat(*w)
    g = ca.vertcat(*g)
    w0 = np.concatenate(w0)
    lbw = np.concatenate(lbw)
    ubw = np.concatenate(ubw)
    lbg = np.concatenate(lbg)
    ubg = np.concatenate(ubg)

    # concatenate output vectors
    x_opt = ca.vertcat(*x_opt)
    u_opt = ca.vertcat(*u_opt)
    tf_opt = ca.vertcat(*tf_opt)
    dt_opt = ca.vertcat(*dt_opt)
    ax_opt = ca.vertcat(*ax_opt)
    ay_opt = ca.vertcat(*ay_opt)
    ec_opt = ca.vertcat(*ec_opt)

    # ------------------------------------------------------------------------------------------------------------------
    # CREATE NLP SOLVER ------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # fill nlp structure
    nlp = {'f': J, 'x': w, 'g': g}

    # solver options
    opts = {
        "expand": True,
        "verbose": print_debug,
        "ipopt.max_iter": 2000,
        "ipopt.tol": 1e-7
    }

    # solver options for warm start
    if pars["optim_opts"]["warm_start"]:
        opts_warm_start = {
            "ipopt.warm_start_init_point": "yes",
            "ipopt.warm_start_bound_push": 1e-9,
            "ipopt.warm_start_mult_bound_push": 1e-9,
            "ipopt.warm_start_slack_bound_push": 1e-9,
            "ipopt.mu_init": 1e-9
        }
        opts.update(opts_warm_start)

    # load warm start files
    if pars["optim_opts"]["warm_start"]:
        try:
            w0 = np.loadtxt(os.path.join(export_path, 'w0.csv'))
            lam_x0 = np.loadtxt(os.path.join(export_path, 'lam_x0.csv'))
            lam_g0 = np.loadtxt(os.path.join(export_path, 'lam_g0.csv'))
        except IOError:
            print('\033[91m' + 'WARNING: Failed to load warm start files!' +
                  '\033[0m')
            sys.exit(1)

    # check warm start files
    if pars["optim_opts"]["warm_start"] and not len(w0) == len(lbw):
        print(
            '\033[91m' +
            'WARNING: Warm start files do not fit to the dimension of the NLP!'
            + '\033[0m')
        sys.exit(1)

    # create solver instance
    solver = ca.nlpsol("solver", "ipopt", nlp, opts)

    # ------------------------------------------------------------------------------------------------------------------
    # SOLVE NLP --------------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # start time measure
    t0 = time.perf_counter()

    # solve NLP
    if pars["optim_opts"]["warm_start"]:
        sol = solver(x0=w0,
                     lbx=lbw,
                     ubx=ubw,
                     lbg=lbg,
                     ubg=ubg,
                     lam_x0=lam_x0,
                     lam_g0=lam_g0)
    else:
        sol = solver(x0=w0, lbx=lbw, ubx=ubw, lbg=lbg, ubg=ubg)

    # end time measure
    tend = time.perf_counter()

    # ------------------------------------------------------------------------------------------------------------------
    # EXTRACT SOLUTION -------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # helper function to extract solution for state variables, control variables, tire forces, time
    f_sol = ca.Function(
        'f_sol', [w], [x_opt, u_opt, tf_opt, dt_opt, ax_opt, ay_opt, ec_opt],
        ['w'],
        ['x_opt', 'u_opt', 'tf_opt', 'dt_opt', 'ax_opt', 'ay_opt', 'ec_opt'])

    # extract solution
    x_opt, u_opt, tf_opt, dt_opt, ax_opt, ay_opt, ec_opt = f_sol(sol['x'])

    # solution for state variables
    x_opt = np.reshape(x_opt, (N + 1, nx))

    # solution for control variables
    u_opt = np.reshape(u_opt, (N, nu))

    # solution for tire forces
    tf_opt = np.append(tf_opt[-12:], tf_opt[:])
    tf_opt = np.reshape(tf_opt, (N + 1, 12))

    # solution for time
    t_opt = np.hstack((0.0, np.cumsum(dt_opt)))

    # solution for acceleration
    ax_opt = np.append(ax_opt[-1], ax_opt)
    ay_opt = np.append(ay_opt[-1], ay_opt)
    atot_opt = np.sqrt(np.power(ax_opt, 2) + np.power(ay_opt, 2))

    # solution for energy consumption
    ec_opt_cum = np.hstack((0.0, np.cumsum(ec_opt))) / 3600.0

    # ------------------------------------------------------------------------------------------------------------------
    # EXPORT SOLUTION --------------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    # export data to CSVs
    opt_mintime_traj.src.export_mintime_solution.export_mintime_solution(
        file_path=export_path,
        s=s_opt,
        t=t_opt,
        x=x_opt,
        u=u_opt,
        tf=tf_opt,
        ax=ax_opt,
        ay=ay_opt,
        atot=atot_opt,
        w0=sol["x"],
        lam_x0=sol["lam_x"],
        lam_g0=sol["lam_g"])

    # ------------------------------------------------------------------------------------------------------------------
    # PLOT & PRINT RESULTS ---------------------------------------------------------------------------------------------
    # ------------------------------------------------------------------------------------------------------------------

    if plot_debug:
        opt_mintime_traj.src.result_plots_mintime.result_plots_mintime(
            pars=pars,
            reftrack=reftrack,
            s=s_opt,
            t=t_opt,
            x=x_opt,
            u=u_opt,
            ax=ax_opt,
            ay=ay_opt,
            atot=atot_opt,
            tf=tf_opt,
            ec=ec_opt_cum)

    if print_debug:
        print("INFO: Laptime: %.3fs" % t_opt[-1])
        print("INFO: NLP solving time: %.3fs" % (tend - t0))
        print("INFO: Maximum abs(ay): %.2fm/s2" % np.amax(ay_opt))
        print("INFO: Maximum ax: %.2fm/s2" % np.amax(ax_opt))
        print("INFO: Minimum ax: %.2fm/s2" % np.amin(ax_opt))
        print("INFO: Maximum total acc: %.2fm/s2" % np.amax(atot_opt))
        print('INFO: Energy consumption: %.3fWh' % ec_opt_cum[-1])

    return -x_opt[:-1, 3], x_opt[:-1, 0]
示例#15
0
def rpm_sweep(prop_name, v0, kv0, i0_motor0, V_inf0, R_motor0):
    prop_data = prop_db[prop_name]
    key0 = list(prop_data['dynamic'].keys())[0]
    my_prop = prop_data['dynamic'][key0]['data']
    CT_lut = ca.interpolant('CT', 'bspline', [my_prop.index], my_prop.CT)
    CP_lut = ca.interpolant('CP', 'bspline', [my_prop.index], my_prop.CP)
    eta_lut = ca.interpolant('CP', 'bspline', [my_prop.index], my_prop.eta)
    eta_prop_lut = ca.interpolant('eta', 'bspline', [my_prop.index],
                                  my_prop.eta)
    Q_prop_lut = ca.substitute(Q_prop, CP, CP_lut(J))
    T_prop_lut = ca.substitute(T_prop, CT, CT_lut(J))

    states = ca.vertcat(rpm_prop)
    params = ca.vertcat(rho, r_prop_in, v_batt, Kv_motor, i0_motor, V_inf,
                        R_motor)

    p0 = [1.225, prop_data['D'] / 2, v0, kv0, i0_motor0, V_inf0, R_motor0]

    f_Q_prop = ca.Function('Q_prop', [states, params], [Q_prop_lut])
    f_Q_motor = ca.Function('Q_motor', [states, params], [Q_motor])
    f_T_prop = ca.Function('T_prop', [states, params], [T_prop_lut])
    f_eta_motor = ca.Function('eta_motor', [states, params], [eta_motor])
    f_eta_prop = ca.Function('eta_prop', [states, params], [eta_prop_lut(J)])
    f_eta = ca.Function('eta', [states, params], [eta_prop_lut(J) * eta_motor])

    rpm = np.array([np.linspace(0, 4000, 1000)])

    plt.figure()
    plt.subplot(311)
    plt.plot(rpm.T, f_Q_motor(rpm, p0).T, label='motor')
    plt.plot(rpm.T, f_Q_prop(rpm, p0).T, label='prop')
    plt.title('prop motor matching')
    plt.legend()
    plt.ylabel('torque, N-m')
    plt.grid(True)

    plt.subplot(312)
    plt.plot(rpm.T, f_T_prop(rpm, p0).T, label='prop')
    plt.legend()
    plt.ylabel('thrust, N')
    plt.grid(True)

    plt.subplot(313)
    plt.plot(rpm.T, f_eta_motor(rpm, p0).T, label='motor')
    plt.plot(rpm.T, f_eta_prop(rpm, p0).T, label='prop')
    plt.plot(rpm.T, f_eta(rpm, p0).T, label='total')
    plt.xlabel('prop angular velocity, rpm')
    plt.ylabel('efficiency')
    plt.grid(True)
    plt.legend()
    plt.gca().set_ylim(0, 1)
    plt.show()

    ## scipy.sparse.csc_matrix is said to be better by casadi author
    f_eta_prop_array = np.array(f_eta_prop(rpm, p0))[0]
    max_eta_prop = np.nanmax(f_eta_prop_array)
    index = np.where(f_eta_prop_array == max_eta_prop)
    omega = rpm[0][index][0]
    T = np.array(f_T_prop(omega, p0))[0]
    Q = np.array(f_Q_prop(omega, p0))[0]

    display(Math(r'\eta_{prop, max} = ' + str(max_eta_prop) \
        + r'\ at\ \Omega =\ ' + str(omega) + r'\ \frac{rev}{min}'))

    ## TODO get ideal motor properties in a dictionary and store them, including motor eta
    data = {
        'prop_name': prop_name,
        'max_eta_prop': max_eta_prop,
        'omega': omega,
        'T': T,
        'Q': Q
    }

    store(data)
    def __interpolate__(self):
        self.x_B = []
        self.dx_B = []
        self.z_B = []
        self.dz_B = []
        self.q_H = []
        self.dq_H = []
        self.q_K = []
        self.dq_K = []
        self.u_K = []
        self.u_H = []

        if self.debug:
            if self.var_dt:
                self.dt = self.opti.debug.value(self.h)
            else:
                self.dt = self.h

            for i in range(self.N):
                self.x_B.append(self.opti.debug.value(self.states[0, i]))
                self.z_B.append(self.opti.debug.value(self.states[1, i]))
                self.q_H.append(self.opti.debug.value(self.states[2, i]))
                self.q_K.append(self.opti.debug.value(self.states[3, i]))

                self.dx_B.append(self.opti.debug.value(self.dstates[0, i]))
                self.dz_B.append(self.opti.debug.value(self.dstates[1, i]))
                self.dq_H.append(self.opti.debug.value(self.dstates[2, i]))
                self.dq_K.append(self.opti.debug.value(self.dstates[3, i]))

                self.u_H.append(self.opti.debug.value(self.actions[0, i]))
                self.u_K.append(self.opti.debug.value(self.actions[1, i]))
        else:
            if self.var_dt:
                self.dt = self.solution.value(self.h)
            else:
                self.dt = self.h

            for i in range(self.N):
                self.x_B.append(self.solution.value(self.states[0, i]))
                self.z_B.append(self.solution.value(self.states[1, i]))
                self.q_H.append(self.solution.value(self.states[2, i]))
                self.q_K.append(self.solution.value(self.states[3, i]))

                self.dx_B.append(self.solution.value(self.dstates[0, i]))
                self.dz_B.append(self.solution.value(self.dstates[1, i]))
                self.dq_H.append(self.solution.value(self.dstates[2, i]))
                self.dq_K.append(self.solution.value(self.dstates[3, i]))

                self.u_H.append(self.solution.value(self.actions[0, i]))
                self.u_K.append(self.solution.value(self.actions[1, i]))

        self.k = self.model.dt / 8
        self.t = np.linspace(0, self.N * self.dt,
                             int(self.N * self.dt / self.k))
        print(self.dt)
        self.t_points = np.linspace(0, self.N * self.dt, self.N)

        x_B_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.x_B)
        self.x_B_spline = x_B_spline_function(self.t)
        z_B_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.z_B)
        self.z_B_spline = z_B_spline_function(self.t)
        q_H_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.q_H)
        self.q_H_spline = q_H_spline_function(self.t)
        q_K_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.q_K)
        self.q_K_spline = q_K_spline_function(self.t)

        dx_B_spline_function = ca.interpolant('LUT', 'bspline',
                                              [self.t_points], self.dx_B)
        self.dx_B_spline = dx_B_spline_function(self.t)
        dz_B_spline_function = ca.interpolant('LUT', 'bspline',
                                              [self.t_points], self.dz_B)
        self.dz_B_spline = dz_B_spline_function(self.t)
        dq_H_spline_function = ca.interpolant('LUT', 'bspline',
                                              [self.t_points], self.dq_H)
        self.dq_H_spline = dq_H_spline_function(self.t)
        dq_K_spline_function = ca.interpolant('LUT', 'bspline',
                                              [self.t_points], self.dq_K)
        self.dq_K_spline = dq_K_spline_function(self.t)

        self.__plot__()
示例#17
0
 def lin_interpolant(self, x: np.ndarray, y: np.ndarray) -> ca.interpolant:
     """Creates a differentiable Casadi interpolant object to linearly interpolate y from x"""
     return ca.interpolant('LUT', 'linear', [x], y)
示例#18
0
from sys import path

# temp intallation folder of CasADi (pre-compiled version)
path.append(r"/home/theo/software/tools/CasADi/test/casadi-linux-py27-58aa427")

import casadi as ca
import numpy as np

xgrid = np.linspace(1,6,6)
V = [-1,-1,-2,-3,0,2]
lut = ca.interpolant('LUT','bspline',[xgrid],V)
print(lut(2.5))

#############################################
xgrid = np.linspace(-5,5,11)
ygrid = np.linspace(-4,4,9)
X,Y = np.meshgrid(xgrid,ygrid,indexing='ij')
R = np.sqrt(5*X**2 + Y**2)+ 1
data = np.sin(R)/R
data_flat = data.ravel(order='F')

print data.shape

dataXY = np.array([X,Y])
dataXY_flat = dataXY.ravel(order='F')

print dataXY_flat.shape
# lut = ca.interpolant('name','bspline',[xgrid,ygrid],data_flat)
lut = ca.interpolant('name','bspline',data_flat, [X,Y])

print(lut([0.5,1]))
示例#19
0
env_map = RaceMap('RaceTrack1020')
s = env_map.start
e = env_map.end
path_finder = PathFinder(env_map.obs_hm._check_line, env_map.start,
                         env_map.end)
path = path_finder.run_search(5)
# env_map.obs_hm.show_map(True, path)

xgrid = np.linspace(0, 100, 100)
ygrid = np.linspace(0, 100, 100)
# flat_track = track.ravel(order='F')
flat_track = env_map.obs_hm.race_map
flat_track = flat_track.ravel('F')
flat_track = [1 if flat_track[i] else 0 for i in range(len(flat_track))]
lut = ca.interpolant('lut', 'bspline', [xgrid, ygrid], flat_track)

print(lut([90, 48]))
print(lut([48, 90]))

N = len(path)

x = ca.MX.sym('x', N)
y = ca.MX.sym('y', N)
th = ca.MX.sym('th', N)
ds = ca.MX.sym('ds', N)

nlp = {\
    'x': ca.vertcat(x, y, th, ds),
    'f': ca.sum1(ds) ,#+ ca.sumsqr(th[1:] - th[:-1]) * 1000, # a curve term will be added here
    # 'f': ca.sumsqr(th[1:] - th[:-1]),
示例#20
0
tunnel_s1 = np.linspace(0, 1, tlength1)

bx = ocp.parameter(NB)
by = ocp.parameter(NB)
br = ocp.parameter(NB)

ocp.set_value(bx, shifted_midpoints_x)
ocp.set_value(by, shifted_midpoints_y)
ocp.set_value(br, shifted_radii)

ocp.subject_to(
    ocp.at_tf(s_obs) <= 1
)  # effect unclear === the path given is long = first ocp iteration will not get there if dt is small

obs_spline_x = interpolant('x', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})
obs_spline_y = interpolant('y', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})
obs_spline_r = interpolant('r', 'bspline', [tunnel_s1], 1, {
    "algorithm": "smooth_linear",
    "smooth_linear_frac": 0.49
})

ocp.subject_to(x > 0)

ocp.subject_to((x - obs_spline_x(s_obs, bx))**2 +
               (y - obs_spline_y(s_obs, by))**2 -
               (obs_spline_r(s_obs, br))**2 < 0)
示例#21
0
def prepare(prop_name, V_inf0, thrust_required, margin, max_volts):
    prop_data = prop_db[prop_name]
    key0 = list(prop_data['dynamic'].keys())[0]
    my_prop = prop_data['dynamic'][key0]['data']
    CT_lut = ca.interpolant('CT', 'bspline', [my_prop.index], my_prop.CT)
    CP_lut = ca.interpolant('CP', 'bspline', [my_prop.index], my_prop.CP)

    eta_prop_lut = ca.interpolant('eta', 'bspline', [my_prop.index],
                                  my_prop.eta)
    Q_prop_lut = ca.substitute(Q_prop, CP, CP_lut(J))
    T_prop_lut = ca.substitute(T_prop, CT, CT_lut(J))

    states = ca.vertcat(rpm_prop)
    params = ca.vertcat(rho, r_prop_in, V_inf)

    p0 = [1.225, prop_data['D'] / 2, V_inf0]

    f_Q_prop = ca.Function('Q_prop', [states, params], [Q_prop_lut])
    f_T_prop = ca.Function('T_prop', [states, params], [T_prop_lut])
    f_eta_prop = ca.Function('eta_prop', [states, params], [eta_prop_lut(J)])
    f_thrustC_prop = ca.Function('CT_prop', [states, params], [CT_lut(J)])
    f_powerC_prop = ca.Function('CP_prop', [states, params], [CP_lut(J)])

    rpm = np.array([np.linspace(1, 5000, 1000)])
    #ct_J = np.around([V_inf0/(r*rpm_to_rps*prop_data['D']) for r in ct_rpm[0]], decimals=4)

    fig = plt.figure(figsize=(8, 8))
    ###ax1 = plt.subplot(511)
    ###plt.plot(rpm.T, f_Q_prop(rpm, p0).T, label='prop')
    #plt.plot(motor_omega, Q_m, '--', label='motor')
    ###plt.ylabel('torque, N-m')
    ###plt.legend()
    ###plt.grid(True)

    #ax2 = plt.subplot(512)
    #plt.plot(rpm.T, f_T_prop(rpm, p0).T, label='prop')
    #plt.ylabel('thrust, N')
    #plt.grid(True)

    #ax3 = plt.subplot(513)
    #plt.plot(rpm.T, f_eta_prop(rpm, p0).T, label='prop')
    #plt.xlabel('prop angular velocity, rpm')
    #plt.ylabel('efficiency')
    #plt.grid(True)

    ax4 = plt.subplot(514)
    plt.plot(rpm.T, f_thrustC_prop(rpm, p0).T, label='prop')
    plt.xlabel('Advance Ratio not')
    plt.ylabel('CT')
    plt.grid(True)

    ax5 = plt.subplot(515)
    plt.plot(rpm.T, f_powerC_prop(rpm, p0).T, label='prop')
    plt.xlabel('Advance Ratio not')
    plt.ylabel('CP')
    plt.grid(True)

    #ax1.set_ylim([0, 0.01])
    #ax1.set_xlim([1,3000])

    #ax2.set_ylim([0, 0.5])
    #ax2.set_xlim([1,3000])

    #ax3.set_ylim([0, 1])
    #ax3.set_xlim([1,3000])

    ax4.set_ylim([0, 0.2])
    ax4.set_xlim([3000, 1])

    ax5.set_ylim([0, 0.2])
    ax5.set_xlim([3000, 1])
    plt.show()

    ## scipy.sparse.csc_matrix is said to be better by casadi author
    f_eta_prop_array = np.array(f_eta_prop(rpm, p0))[0]
    max_eta_prop = np.nanmax(f_eta_prop_array)
    index = np.where(f_eta_prop_array == max_eta_prop)
    omega = rpm[0][index][0]
    T = np.array(f_T_prop(omega, p0))[0]
    Q = np.array(f_Q_prop(omega, p0))[0]

    ## values at required thrust
    T_array = np.array(f_T_prop(rpm, p0))[0]
    proximity = (T_array - thrust_required)**2
    index1 = np.where(proximity == np.nanmin(proximity))
    T_required = T_array[index1]

    omega_required = rpm[0][index1][0]
    eta_required = f_eta_prop_array[index1]
    Q_required = np.array(f_Q_prop(rpm, p0))[0][index1]

    rpm_proximity = (eta_required - max_eta_prop)**2

    if T_required > thrust_required - margin:

        motordat = md.prepare_m(Q_required, omega_required, max_volts)

        #motor0 = list(motordat.keys())[0]
        #motor_omega = motordat[motor0]['omega'] / rpm_to_rps
        ##plot Q_m vs Q_prop??


        data = {'prop_name': prop_name, 'max_eta_prop': max_eta_prop, 'omega_max': omega, 'T_max': T,\
                'Q_max': Q, 'diameter [in]': prop_data['D'], 'T_required': T_required, 'omega_required': omega_required,\
                    'eta_required': eta_required, 'Q_required': Q_required, 'rpm_proximity': rpm_proximity}
        plot(data, motordat)
        store(data)
示例#22
0
    def __interpolate__(self):
        self.x1 = []
        self.dx1 = []
        self.x2 = []
        self.dx2 = []
        self.x3 = []
        self.dx3 = []
        self.u1 = []
        self.u2 = []

        if self.debug:
            if self.var_dt:
                self.dt = self.opti.debug.value(self.h)
            else:
                self.dt = self.h

            for i in range(self.N):
                self.x1.append(self.opti.debug.value(self.states[i][0]))
                self.x2.append(self.opti.debug.value(self.states[i][1]))
                self.x3.append(self.opti.debug.value(self.states[i][2]))

                self.dx1.append(self.solution.value(self.dstates[i][0]))
                self.dx2.append(self.solution.value(self.dstates[i][1]))
                self.dx3.append(self.solution.value(self.dstates[i][2]))

                self.u1.append(self.opti.debug.value(self.actions[i][0]))
                self.u2.append(self.opti.debug.value(self.actions[i][1]))
        else:
            if self.var_dt:
                self.dt = self.solution.value(self.h)
            else:
                self.dt = self.h

            for i in range(self.N):
                self.x1.append(self.solution.value(self.states[i][0]))
                self.x2.append(self.solution.value(self.states[i][1]))
                self.x3.append(self.solution.value(self.states[i][2]))

                self.dx1.append(self.solution.value(self.dstates[i][0]))
                self.dx2.append(self.solution.value(self.dstates[i][1]))
                self.dx3.append(self.solution.value(self.dstates[i][2]))

                self.u1.append(self.solution.value(self.actions[i][0]))
                self.u2.append(self.solution.value(self.actions[i][1]))

        self.k = self.dt / 4
        self.t = np.linspace(0, self.T, int(self.T / self.k))

        self.t_points = np.linspace(0, self.N * self.dt, self.N)

        x1_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                            self.x1)
        self.x1_spline = x1_spline_function(self.t)

        x2_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                            self.x2)
        self.x2_spline = x2_spline_function(self.t)

        x3_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                            self.x3)
        self.x3_spline = x3_spline_function(self.t)

        dx1_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.dx1)
        self.dx1_spline = dx1_spline_function(self.t)

        dx2_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.dx2)
        self.dx2_spline = dx2_spline_function(self.t)

        dx3_spline_function = ca.interpolant('LUT', 'bspline', [self.t_points],
                                             self.dx3)
        self.dx3_spline = dx3_spline_function(self.t)

        self.__plot__()
示例#23
0
def interpn(points: Tuple[_onp.ndarray],
            values: _onp.ndarray,
            xi: _onp.ndarray,
            method: str = "linear",
            bounds_error=True,
            fill_value=_onp.NaN) -> _onp.ndarray:
    """
    Performs multidimensional interpolation on regular grids. Analogue to scipy.interpolate.interpn().

    See syntax here: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interpn.html

    Args:

        points: The points defining the regular grid in n dimensions. Tuple of coordinates of each axis.

        values: The data on the regular grid in n dimensions.

        xi: The coordinates to sample the gridded data at.

        method: The method of interpolation to perform. one of:

            * "bspline" (Note: differentiable and suitable for optimization - made of piecewise-cubics. For other
            applications, other interpolators may be faster. Not monotonicity-preserving - may overshoot.)

            * "linear" (Note: differentiable, but not suitable for use in optimization w/o subgradient treatment due
            to C1-discontinuity)

            * "nearest" (Note: NOT differentiable, don't use in optimization. Fast.)

        bounds_error: If True, when interpolated values are requested outside of the domain of the input data,
        a ValueError is raised. If False, then fill_value is used.

        fill_value: If provided, the value to use for points outside of the interpolation domain. If None,
        values outside the domain are extrapolated.

    Returns: Interpolated values at input coordinates.

    """
    ### Check input types for points and values
    if is_casadi_type([points, values], recursive=True):
        raise TypeError(
            "The underlying dataset (points, values) must consist of NumPy arrays."
        )

    ### Check dimensions of points
    for points_axis in points:
        points_axis = array(points_axis)
        if not len(points_axis.shape) == 1:
            raise ValueError(
                "`points` must consist of a tuple of 1D ndarrays defining the coordinates of each axis."
            )

    ### Check dimensions of values
    implied_values_shape = tuple(len(points_axis) for points_axis in points)
    if not values.shape == implied_values_shape:
        raise ValueError(f"""
        The shape of `values` should be {implied_values_shape}. 
        """)

    if (  ### NumPy implementation
            not is_casadi_type([points, values, xi], recursive=True)) and (
                (method == "linear") or (method == "nearest")):
        xi = _onp.array(xi).reshape((-1, len(implied_values_shape)))
        return _interpolate.interpn(points=points,
                                    values=values,
                                    xi=xi,
                                    method=method,
                                    bounds_error=bounds_error,
                                    fill_value=fill_value)

    elif (  ### CasADi implementation
        (method == "linear") or (method == "bspline")):
        ### Add handling to patch a specific bug in CasADi that occurs when `values` is all zeros.
        ### For more information, see: https://github.com/casadi/casadi/issues/2837
        if method == "bspline" and all(values == 0):
            return zeros_like(xi)

        ### If xi is an int or float, promote it to an array
        if isinstance(xi, int) or isinstance(xi, float):
            xi = array([xi])

        ### If xi is a NumPy array and 1D, convert it to 2D for this.
        if not is_casadi_type(xi, recursive=False) and len(xi.shape) != 2:
            xi = _onp.reshape(xi, (-1, 1))

        ### Check that xi is now 2D
        if not len(xi.shape) == 2:
            raise ValueError(
                "`xi` must have the shape (n_points, n_dimensions)!")

        ### Transpose xi so that xi.shape is [n_points, n_dimensions].
        n_dimensions = len(points)
        if not len(points) in xi.shape:
            raise ValueError(
                "`xi` must have the shape (n_points, n_dimensions)!")

        if not xi.shape[1] == n_dimensions:
            xi = xi.T
            assert xi.shape[1] == n_dimensions

        ### Calculate the minimum and maximum values along each axis.
        axis_values_min = [_onp.min(axis_values) for axis_values in points]
        axis_values_max = [_onp.max(axis_values) for axis_values in points]

        ### If fill_value is None, project the xi back onto the nearest point in the domain.
        if fill_value is None:
            for axis in range(n_dimensions):

                xi[:, axis] = where(xi[:, axis] > axis_values_max[axis],
                                    axis_values_max[axis], xi[:, axis])
                xi[:, axis] = where(xi[:, axis] < axis_values_min[axis],
                                    axis_values_min[axis], xi[:, axis])

        ### Check bounds_error
        if bounds_error:
            if isinstance(xi, _cas.MX):
                raise ValueError(
                    "Can't have the `bounds_error` flag as True if `xi` is of cas.MX type."
                )

            for axis in range(n_dimensions):

                if any(
                        logical_or(xi[:, axis] > axis_values_max[axis],
                                   xi[:, axis] < axis_values_min[axis])):
                    raise ValueError(
                        f"One of the requested xi is out of bounds in dimension {axis}"
                    )

        ### Do the interpolation
        values_flattened = _onp.ravel(values, order='F')
        interpolator = _cas.interpolant('Interpolator', method, points,
                                        values_flattened)

        fi = interpolator(xi.T).T

        ### If fill_value is a scalar, replace all out-of-bounds xi with that value.
        if fill_value is not None:
            for axis in range(n_dimensions):

                fi = where(xi[:, axis] > axis_values_max[axis], fill_value, fi)
                fi = where(xi[:, axis] < axis_values_min[axis], fill_value, fi)

        ### If DM output (i.e. a numeric value), convert that back to an array
        if isinstance(fi, _cas.DM):
            if fi.shape == (1, 1):
                return float(fi)
            else:
                return _onp.array(fi, dtype=float).reshape(-1)

        return fi

    else:
        raise ValueError("Bad value of `method`!")
示例#24
0
    def exitExpression(self, tree):
        if isinstance(tree.operator, ast.ComponentRef):
            op = tree.operator.name
        else:
            op = tree.operator

        if op == '*':
            op = 'mtimes'  # .* differs from *
        if op.startswith('.'):
            op = op[1:]

        logger.debug('exitExpression')

        n_operands = len(tree.operands)
        if op == 'der':
            v = self.get_mx(tree.operands[0])
            src = self.get_derivative(v)
        elif op == '-' and n_operands == 1:
            src = -self.get_mx(tree.operands[0])
        elif op == 'not' and n_operands == 1:
            src = ca.if_else(self.get_mx(tree.operands[0]), 0, 1, True)
        elif op == 'mtimes':
            assert n_operands >= 2
            src = self.get_mx(tree.operands[0])
            for i in tree.operands[1:]:
                src = ca.mtimes(src, self.get_mx(i))
        elif op == 'transpose' and n_operands == 1:
            src = self.get_mx(tree.operands[0]).T
        elif op == 'sum' and n_operands == 1:
            v = self.get_mx(tree.operands[0])
            src = ca.sum1(v)
        elif op == 'linspace' and n_operands == 3:
            a = self.get_mx(tree.operands[0])
            b = self.get_mx(tree.operands[1])
            n_steps = self.get_integer(tree.operands[2])
            src = ca.linspace(a, b, n_steps)
        elif op == 'fill' and n_operands == 2:
            val = self.get_mx(tree.operands[0])
            n_row = self.get_integer(tree.operands[1])
            src = val * ca.DM.ones(n_row)
        elif op == 'fill' and n_operands == 3:
            val = self.get_mx(tree.operands[0])
            n_row = self.get_integer(tree.operands[1])
            n_col = self.get_integer(tree.operands[2])
            src = val * ca.DM.ones(n_row, n_col)
        elif op == 'zeros' and n_operands == 1:
            n_row = self.get_integer(tree.operands[0])
            src = ca.DM.zeros(n_row)
        elif op == 'zeros' and n_operands == 2:
            n_row = self.get_integer(tree.operands[0])
            n_col = self.get_integer(tree.operands[1])
            src = ca.DM.zeros(n_row, n_col)
        elif op == 'ones' and n_operands == 1:
            n_row = self.get_integer(tree.operands[0])
            src = ca.DM.ones(n_row)
        elif op == 'ones' and n_operands == 2:
            n_row = self.get_integer(tree.operands[0])
            n_col = self.get_integer(tree.operands[1])
            src = ca.DM.ones(n_row, n_col)
        elif op == 'identity' and n_operands == 1:
            n = self.get_integer(tree.operands[0])
            src = ca.DM.eye(n)
        elif op == 'diagonal' and n_operands == 1:
            diag = self.get_mx(tree.operands[0])
            n = len(diag)
            indices = list(range(n))
            src = ca.DM.triplet(indices, indices, diag, n, n)
        elif op == 'cat':
            axis = self.get_integer(tree.operands[0])
            assert axis == 1, "Currently only concatenation on first axis is supported"

            entries = []
            for sym in [self.get_mx(op) for op in tree.operands[1:]]:
                if isinstance(sym, list):
                    for e in sym:
                        entries.append(e)
                else:
                    entries.append(sym)
            src = ca.vertcat(*entries)
        elif op == 'delay' and n_operands == 2:
            expr = self.get_mx(tree.operands[0])
            duration = self.get_mx(tree.operands[1])

            src = _new_mx('_pymoca_delay_{}'.format(self.delay_counter), *expr.size())
            self.delay_counter += 1

            for f in self.for_loops:
                syms = set(ca.symvar(expr))
                if syms.intersection(f.indexed_symbols):
                    f.register_indexed_symbol(src, lambda i: i, True, tree.operands[0], f.index_variable)

            self.model.delay_states.append(src.name())
            self.model.inputs.append(Variable(src))

            delay_argument = DelayArgument(expr, duration)
            self.model.delay_arguments.append(delay_argument)
        elif op == '_pymoca_interp1d' and n_operands >= 3 and n_operands <= 4:
            entered_class = self.entered_classes[-1]
            if isinstance(tree.operands[0], ast.ComponentRef):
                xp = self.get_mx(entered_class.symbols[tree.operands[0].name].value)
            else:
                xp = self.get_mx(tree.operands[0])
            if isinstance(tree.operands[1], ast.ComponentRef):
                yp = self.get_mx(entered_class.symbols[tree.operands[1].name].value)
            else:
                yp = self.get_mx(tree.operands[1])
            arg = self.get_mx(tree.operands[2])
            if n_operands == 4:
                assert isinstance(tree.operands[3], ast.Primary)
                mode = tree.operands[3].value
            else:
                mode = 'linear'
            func = ca.interpolant('interpolant', mode, [xp], yp)
            src = func(arg)
        elif op == '_pymoca_interp2d' and n_operands >= 5 and n_operands <= 6:
            entered_class = self.entered_classes[-1]
            if isinstance(tree.operands[0], ast.ComponentRef):
                xp = self.get_mx(entered_class.symbols[tree.operands[0].name].value)
            else:
                xp = self.get_mx(tree.operands[0])
            if isinstance(tree.operands[1], ast.ComponentRef):
                yp = self.get_mx(entered_class.symbols[tree.operands[1].name].value)
            else:
                yp = self.get_mx(tree.operands[1])
            if isinstance(tree.operands[2], ast.ComponentRef):
                zp = self.get_mx(entered_class.symbols[tree.operands[2].name].value)
            else:
                zp = self.get_mx(tree.operands[2])
            arg_1 = self.get_mx(tree.operands[3])
            arg_2 = self.get_mx(tree.operands[4])
            if n_operands == 6:
                assert isinstance(tree.operands[5], ast.Primary)
                mode = tree.operands[5].value
            else:
                mode = 'linear'
            func = ca.interpolant('interpolant', mode, [xp, yp], np.array(zp).ravel(order='F'))
            src = func(ca.vertcat(arg_1, arg_2))
        elif op in OP_MAP and n_operands == 2:
            lhs = ca.MX(self.get_mx(tree.operands[0]))
            rhs = ca.MX(self.get_mx(tree.operands[1]))
            lhs_op = getattr(lhs, OP_MAP[op])
            src = lhs_op(rhs)
        elif op in OP_MAP and n_operands == 1:
            lhs = ca.MX(self.get_mx(tree.operands[0]))
            lhs_op = getattr(lhs, OP_MAP[op])
            src = lhs_op()
        else:
            src = ca.MX(self.get_mx(tree.operands[0]))
            # Check for built-in operations, such as the
            # elementary functions, first.
            if hasattr(src, op) and n_operands <= 2:
                if n_operands == 1:
                    src = ca.MX(self.get_mx(tree.operands[0]))
                    src = getattr(src, op)()
                else:
                    lhs = ca.MX(self.get_mx(tree.operands[0]))
                    rhs = ca.MX(self.get_mx(tree.operands[1]))
                    lhs_op = getattr(lhs, op)
                    src = lhs_op(rhs)
            else:
                func = self.get_function(op)
                src = ca.vertcat(*func.call([self.get_mx(operand) for operand in tree.operands], *self.function_mode))

        self.src[tree] = src
示例#25
0
    def exitExpression(self, tree):
        if isinstance(tree.operator, ast.ComponentRef):
            op = tree.operator.name
        else:
            op = tree.operator

        if op == '*':
            op = 'mtimes'  # .* differs from *
        if op.startswith('.'):
            op = op[1:]

        logger.debug('exitExpression')

        n_operands = len(tree.operands)
        if op == 'der':
            v = self.get_mx(tree.operands[0])
            src = self.get_derivative(v)
        elif op == '-' and n_operands == 1:
            src = -self.get_mx(tree.operands[0])
        elif op == 'not' and n_operands == 1:
            src = ca.if_else(self.get_mx(tree.operands[0]), 0, 1, True)
        elif op == 'mtimes':
            assert n_operands >= 2
            src = self.get_mx(tree.operands[0])
            for i in tree.operands[1:]:
                src = ca.mtimes(src, self.get_mx(i))
        elif op == 'transpose' and n_operands == 1:
            src = self.get_mx(tree.operands[0]).T
        elif op == 'sum' and n_operands == 1:
            v = self.get_mx(tree.operands[0])
            src = ca.sum1(v)
        elif op == 'linspace' and n_operands == 3:
            a = self.get_mx(tree.operands[0])
            b = self.get_mx(tree.operands[1])
            n_steps = self.get_integer(tree.operands[2])
            src = ca.linspace(a, b, n_steps)
        elif op == 'fill' and n_operands == 2:
            val = self.get_mx(tree.operands[0])
            n_row = self.get_integer(tree.operands[1])
            src = val * ca.DM.ones(n_row)
        elif op == 'fill' and n_operands == 3:
            val = self.get_mx(tree.operands[0])
            n_row = self.get_integer(tree.operands[1])
            n_col = self.get_integer(tree.operands[2])
            src = val * ca.DM.ones(n_row, n_col)
        elif op == 'zeros' and n_operands == 1:
            n_row = self.get_integer(tree.operands[0])
            src = ca.DM.zeros(n_row)
        elif op == 'zeros' and n_operands == 2:
            n_row = self.get_integer(tree.operands[0])
            n_col = self.get_integer(tree.operands[1])
            src = ca.DM.zeros(n_row, n_col)
        elif op == 'ones' and n_operands == 1:
            n_row = self.get_integer(tree.operands[0])
            src = ca.DM.ones(n_row)
        elif op == 'ones' and n_operands == 2:
            n_row = self.get_integer(tree.operands[0])
            n_col = self.get_integer(tree.operands[1])
            src = ca.DM.ones(n_row, n_col)
        elif op == 'identity' and n_operands == 1:
            n = self.get_integer(tree.operands[0])
            src = ca.DM.eye(n)
        elif op == 'diagonal' and n_operands == 1:
            diag = self.get_mx(tree.operands[0])
            n = len(diag)
            indices = list(range(n))
            src = ca.DM.triplet(indices, indices, diag, n, n)
        elif op == 'cat':
            axis = self.get_integer(tree.operands[0])
            assert axis == 1, "Currently only concatenation on first axis is supported"

            entries = []
            for sym in [self.get_mx(op) for op in tree.operands[1:]]:
                if isinstance(sym, list):
                    for e in sym:
                        entries.append(e)
                else:
                    entries.append(sym)
            src = ca.vertcat(*entries)
        elif op == 'delay' and n_operands == 2:
            expr = self.get_mx(tree.operands[0])
            duration = self.get_mx(tree.operands[1])

            src = _new_mx('_pymoca_delay_{}'.format(self.delay_counter), *expr.size())
            self.delay_counter += 1

            for f in self.for_loops:
                syms = set(ca.symvar(expr))
                if syms.intersection(f.indexed_symbols):
                    f.register_indexed_symbol(src, lambda i: i, True, tree.operands[0], f.index_variable)

            self.model.delay_states.append(src.name())
            self.model.inputs.append(Variable(src))

            delay_argument = DelayArgument(expr, duration)
            self.model.delay_arguments.append(delay_argument)
        elif op == '_pymoca_interp1d' and n_operands >= 3 and n_operands <= 4:
            entered_class = self.entered_classes[-1]
            if isinstance(tree.operands[0], ast.ComponentRef):
                xp = self.get_mx(entered_class.symbols[tree.operands[0].name].value)
            else:
                xp = self.get_mx(tree.operands[0])
            if isinstance(tree.operands[1], ast.ComponentRef):
                yp = self.get_mx(entered_class.symbols[tree.operands[1].name].value)
            else:
                yp = self.get_mx(tree.operands[1])
            arg = self.get_mx(tree.operands[2])
            if n_operands == 4:
                assert isinstance(tree.operands[3], ast.Primary)
                mode = tree.operands[3].value
            else:
                mode = 'linear'
            func = ca.interpolant('interpolant', mode, [xp], yp)
            src = func(arg)
        elif op == '_pymoca_interp2d' and n_operands >= 5 and n_operands <= 6:
            entered_class = self.entered_classes[-1]
            if isinstance(tree.operands[0], ast.ComponentRef):
                xp = self.get_mx(entered_class.symbols[tree.operands[0].name].value)
            else:
                xp = self.get_mx(tree.operands[0])
            if isinstance(tree.operands[1], ast.ComponentRef):
                yp = self.get_mx(entered_class.symbols[tree.operands[1].name].value)
            else:
                yp = self.get_mx(tree.operands[1])
            if isinstance(tree.operands[2], ast.ComponentRef):
                zp = self.get_mx(entered_class.symbols[tree.operands[2].name].value)
            else:
                zp = self.get_mx(tree.operands[2])
            arg_1 = self.get_mx(tree.operands[3])
            arg_2 = self.get_mx(tree.operands[4])
            if n_operands == 6:
                assert isinstance(tree.operands[5], ast.Primary)
                mode = tree.operands[5].value
            else:
                mode = 'linear'
            func = ca.interpolant('interpolant', mode, [xp, yp], np.array(zp).ravel(order='F'))
            src = func(ca.vertcat(arg_1, arg_2))
        elif op in OP_MAP and n_operands == 2:
            lhs = ca.MX(self.get_mx(tree.operands[0]))
            rhs = ca.MX(self.get_mx(tree.operands[1]))
            lhs_op = getattr(lhs, OP_MAP[op])
            src = lhs_op(rhs)
        elif op in OP_MAP and n_operands == 1:
            lhs = ca.MX(self.get_mx(tree.operands[0]))
            lhs_op = getattr(lhs, OP_MAP[op])
            src = lhs_op()
        else:
            src = ca.MX(self.get_mx(tree.operands[0]))
            # Check for built-in operations, such as the
            # elementary functions, first.
            if hasattr(src, op) and n_operands <= 2:
                if n_operands == 1:
                    src = ca.MX(self.get_mx(tree.operands[0]))
                    src = getattr(src, op)()
                else:
                    lhs = ca.MX(self.get_mx(tree.operands[0]))
                    rhs = ca.MX(self.get_mx(tree.operands[1]))
                    lhs_op = getattr(lhs, op)
                    src = lhs_op(rhs)
            else:
                try: # Check if there is a component named as the operation. In that case we are dealing with a time access
                    # Should we check for symbol as well?
                    v = self.get_mx(ast.ComponentRef(name=op))
                    t = self.get_mx(tree.operands[0])
                    src = self.get_symbol_time_access(v, t)

                except KeyError:
                    func = self.get_function(op)
                    src = ca.vertcat(*func.call([self.get_mx(operand) for operand in tree.operands], *self.function_mode))

        self.src[tree] = src
示例#26
0
def MinCurvatureTrajectory(track, obs_map=None):
    w_min = -track[:, 4] * 0.9
    w_max = track[:, 5] * 0.9
    nvecs = track[:, 2:4]
    th_ns = [lib.get_bearing([0, 0], nvecs[i, 0:2]) for i in range(len(nvecs))]

    xgrid = np.arange(0, obs_map.shape[1])
    ygrid = np.arange(0, obs_map.shape[0])

    data_flat = np.array(obs_map).ravel(order='F')

    lut = ca.interpolant('lut', 'bspline', [xgrid, ygrid], data_flat)

    print(lut([10, 20]))

    n_max = 3
    N = len(track)

    n_f_a = ca.MX.sym('n_f', N)
    n_f = ca.MX.sym('n_f', N - 1)
    th_f = ca.MX.sym('n_f', N - 1)

    x0_f = ca.MX.sym('x0_f', N - 1)
    x1_f = ca.MX.sym('x1_f', N - 1)
    y0_f = ca.MX.sym('y0_f', N - 1)
    y1_f = ca.MX.sym('y1_f', N - 1)
    th1_f = ca.MX.sym('y1_f', N - 1)
    th2_f = ca.MX.sym('y1_f', N - 1)
    th1_f1 = ca.MX.sym('y1_f', N - 2)
    th2_f1 = ca.MX.sym('y1_f', N - 2)

    o_x_s = ca.Function('o_x', [n_f], [track[:-1, 0] + nvecs[:-1, 0] * n_f])
    o_y_s = ca.Function('o_y', [n_f], [track[:-1, 1] + nvecs[:-1, 1] * n_f])
    o_x_e = ca.Function('o_x', [n_f], [track[1:, 0] + nvecs[1:, 0] * n_f])
    o_y_e = ca.Function('o_y', [n_f], [track[1:, 1] + nvecs[1:, 1] * n_f])

    dis = ca.Function('dis', [x0_f, x1_f, y0_f, y1_f],
                      [ca.sqrt((x1_f - x0_f)**2 + (y1_f - y0_f)**2)])

    track_length = ca.Function('length', [n_f_a], [
        dis(o_x_s(n_f_a[:-1]), o_x_e(n_f_a[1:]), o_y_s(n_f_a[:-1]),
            o_y_e(n_f_a[1:]))
    ])

    real = ca.Function(
        'real', [th1_f, th2_f],
        [ca.cos(th1_f) * ca.cos(th2_f) + ca.sin(th1_f) * ca.sin(th2_f)])
    im = ca.Function(
        'im', [th1_f, th2_f],
        [-ca.cos(th1_f) * ca.sin(th2_f) + ca.sin(th1_f) * ca.cos(th2_f)])

    sub_cmplx = ca.Function('a_cpx', [th1_f, th2_f],
                            [ca.atan2(im(th1_f, th2_f), real(th1_f, th2_f))])

    get_th_n = ca.Function(
        'gth', [th_f],
        [sub_cmplx(ca.pi * np.ones(N - 1), sub_cmplx(th_f, th_ns[:-1]))])
    d_n = ca.Function('d_n', [n_f_a, th_f],
                      [track_length(n_f_a) / ca.tan(get_th_n(th_f))])

    # objective
    real1 = ca.Function(
        'real1', [th1_f1, th2_f1],
        [ca.cos(th1_f1) * ca.cos(th2_f1) + ca.sin(th1_f1) * ca.sin(th2_f1)])
    im1 = ca.Function(
        'im1', [th1_f1, th2_f1],
        [-ca.cos(th1_f1) * ca.sin(th2_f1) + ca.sin(th1_f1) * ca.cos(th2_f1)])

    sub_cmplx1 = ca.Function(
        'a_cpx1', [th1_f1, th2_f1],
        [ca.atan2(im1(th1_f1, th2_f1), real1(th1_f1, th2_f1))])

    # define symbols
    n = ca.MX.sym('n', N)
    th = ca.MX.sym('th', N - 1)

    nlp = {\
    'x': ca.vertcat(n, th),
    'f': ca.sumsqr(sub_cmplx1(th[1:], th[:-1])),
    # 'f': ca.sumsqr(track_length(n)),
    'g': ca.vertcat(
                # dynamic constraints
                n[1:] - (n[:-1] + d_n(n, th)),
                # lut(ca.horzcat(o_x_s(n[:-1]), o_y_s(n[:-1])).T).T,

                # boundary constraints
                n[0], #th[0],
                n[-1], #th[-1],
            ) \

    }

    S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt': {'print_level': 5}})
    # S = ca.nlpsol('S', 'ipopt', nlp, {'ipopt':{'print_level':0}})

    ones = np.ones(N)
    n0 = ones * 0

    th0 = []
    for i in range(N - 1):
        th_00 = lib.get_bearing(track[i, 0:2], track[i + 1, 0:2])
        th0.append(th_00)

    th0 = np.array(th0)

    x0 = ca.vertcat(n0, th0)

    # lbx = [-n_max] * N + [-np.pi]*(N-1)
    # ubx = [n_max] * N + [np.pi]*(N-1)
    lbx = list(w_min) + [-np.pi] * (N - 1)
    ubx = list(w_max) + [np.pi] * (N - 1)

    r = S(x0=x0, lbg=0, ubg=0, lbx=lbx, ubx=ubx)

    x_opt = r['x']

    n_set = np.array(x_opt[:N])
    thetas = np.array(x_opt[1 * N:2 * (N - 1)])

    # lib.plot_race_line(np.array(track), n_set, wait=True)

    return n_set