print('Shpae of y: {}'.format(y.shape)) print('Shpae of y_sc: {}'.format(sc_y.shape)) for trr in tr_ratio: for rs in r_state: print(' Working on random state: {}'.format(rs)) X_train, X_test, y_train, y_test, scaling_y_train, \ scaling_y_test, metadata_train, metadata_test = \ train_test_split(X, y, sc_y, metadata, \ train_size=trr, random_state=rs) MLGP = OMGP(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, kernel_recipe=kernel_recipe, scaling=True, scaling_params={ 'alpha': sc.slope, 'gamma': sc.intercept }, scaling_y_train=scaling_y_train, scaling_y_test=scaling_y_test) MLGP.run_GP() trr_data[trr][rs] = MLGP.__dict__ trr_data[trr][rs]['metadata_train'] = metadata_train trr_data[trr][rs]['metadata_test'] = metadata_test if not os.path.exists('gp_scaling_{0}_{1}'.format(ads1, ads2)): os.mkdir('gp_scaling_{0}_{1}'.format(ads1, ads2)) np.save('gp_scaling_{0}_{1}/{1}_rsdata.npy'.format(ads1, ads2), trr_data)
r_data = {rs: {} for rs in r_state} print('Shpae of y: {}'.format(y.shape)) print('Shpae of y_sc: {}'.format(sc_y.shape)) for rs in r_state: print(' Working on random state: {}'.format(rs)) X_train, X_test, y_train, y_test, scaling_y_train, scaling_y_test, \ metadata_train, metadata_test = \ train_test_split(X, y, sc_y, metadata, \ train_size=0.80, random_state=rs) MLGP = OMGP(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, kernel_recipe=kernel_recipe, scaling=True, scaling_params={ 'alpha': sc.slope, 'gamma': sc.intercept }, scaling_y_train=scaling_y_train, scaling_y_test=scaling_y_test) MLGP.run_GP() r_data[rs] = MLGP.__dict__ r_data[rs]['metadata_train'] = metadata_train r_data[rs]['metadata_test'] = metadata_test np.save('gp_scaling_{0}_{1}/{1}_rsdata.npy'.format(ads1, ads2), r_data) #LC = MLGP.plot_learning_curve() #LC.savefig('gp_scaling_{0}_{1}/{1}_learning_curve.png'.format(ads1, ads2)) PP = MLGP.parity_plot(data='train')
'noise_level': 0.1, 'noise_level_bounds': (1e-5, 1e5) } } r_state = [10, 20, 42, 80, 150, 200, 300, 400] #r_state = [42] r_data = {rs: {} for rs in r_state} for rs in r_state: print(' Working on random state: {}'.format(rs)) X_train, X_test, y_train, y_test, metadata_train, metadata_test = \ train_test_split(X, y, metadata, train_size=0.80, random_state=rs) MLGP = OMGP(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, kernel_recipe=kernel_recipe) MLGP.run_GP() r_data[rs] = MLGP.__dict__ r_data[rs]['metadata_train'] = metadata_train r_data[rs]['metadata_test'] = metadata_test if not os.path.exists('run_{}'.format(ads)): os.mkdir('run_{}'.format(ads)) np.save('run_{0}/{0}_rsdata.npy'.format(ads), r_data) #LC = MLGP.plot_learning_curve() #LC.savefig('run_{0}/{0}_learning_curve.png'.format(ads)) PP = MLGP.parity_plot(data='train')
'WhiteKernel': { 'noise_level': 0.1, 'noise_level_bounds': (1e-5, 1e5) } } r_state = [15, 25, 45] trr_data = {tr: {rs: {} for rs in r_state} for tr in tr_ratio} for trr in tr_ratio: for rs in r_state: print(' Working on random state: {}'.format(rs)) X_train, X_test, y_train, y_test, metadata_train, metadata_test = \ train_test_split(X, y, metadata, train_size=trr, random_state=rs) MLGP = OMGP(X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test, kernel_recipe=kernel_recipe) MLGP.run_GP() trr_data[trr][rs] = MLGP.__dict__ trr_data[trr][rs]['metadata_train'] = metadata_train trr_data[trr][rs]['metadata_test'] = metadata_test prev_data = np.load('run_{0}/{0}_rsdata.npy'.format(adsorbate))[()] for trr in tr_ratio: prev_data[trr] = trr_data[trr] np.save('run_{0}/{0}_rsdata.npy'.format(adsorbate), prev_data)