def _test_pipeline_output_after_initialize(self):
        """
        Assert that calling pipeline_output after initialize raises correctly.
        """
        def initialize(context):
            attach_pipeline(Pipeline(), 'test')
            pipeline_output('test')
            raise AssertionError("Shouldn't make it past pipeline_output()")

        def handle_data(context, data):
            raise AssertionError("Shouldn't make it past initialize!")

        def before_trading_start(context, data):
            raise AssertionError("Shouldn't make it past initialize!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(PipelineOutputDuringInitialize):
            algo.run(self.data_portal)
    def _test_get_output_nonexistent_pipeline(self):
        """
        Assert that calling add_pipeline after initialize raises appropriately.
        """
        def initialize(context):
            attach_pipeline(Pipeline(), 'test')

        def handle_data(context, data):
            raise AssertionError("Shouldn't make it past before_trading_start")

        def before_trading_start(context, data):
            pipeline_output('not_test')
            raise AssertionError("Shouldn't make it past pipeline_output!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(NoSuchPipeline):
            algo.run(self.data_portal)
示例#3
0
    def test_get_output_nonexistent_pipeline(self):
        """
        Assert that calling add_pipeline after initialize raises appropriately.
        """
        def initialize(context):
            attach_pipeline(Pipeline(), 'test')

        def handle_data(context, data):
            raise AssertionError("Shouldn't make it past before_trading_start")

        def before_trading_start(context, data):
            pipeline_output('not_test')
            raise AssertionError("Shouldn't make it past pipeline_output!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(NoSuchPipeline):
            algo.run(self.data_portal)
示例#4
0
    def test_pipeline_output_after_initialize(self):
        """
        Assert that calling pipeline_output after initialize raises correctly.
        """
        def initialize(context):
            attach_pipeline(Pipeline(), 'test')
            pipeline_output('test')
            raise AssertionError("Shouldn't make it past pipeline_output()")

        def handle_data(context, data):
            raise AssertionError("Shouldn't make it past initialize!")

        def before_trading_start(context, data):
            raise AssertionError("Shouldn't make it past initialize!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(PipelineOutputDuringInitialize):
            algo.run(self.data_portal)
示例#5
0
    def test_assets_appear_on_correct_days(self, test_name, chunks):
        """
        Assert that assets appear at correct times during a backtest, with
        correctly-adjusted close price values.
        """

        if chunks == 'all_but_one_day':
            chunks = (
                self.dates.get_loc(self.last_asset_end) -
                self.dates.get_loc(self.first_asset_start)
            ) - 1
        elif chunks == 'custom_iter':
            chunks = []
            st = np.random.RandomState(12345)
            remaining = (
                self.dates.get_loc(self.last_asset_end) -
                self.dates.get_loc(self.first_asset_start)
            )
            while remaining > 0:
                chunk = st.randint(3)
                chunks.append(chunk)
                remaining -= chunk

        def initialize(context):
            p = attach_pipeline(Pipeline(), 'test', chunks=chunks)
            p.add(USEquityPricing.close.latest, 'close')

        def handle_data(context, data):
            results = pipeline_output('test')
            date = get_datetime().normalize()
            for asset in self.assets:
                # Assets should appear iff they exist today and yesterday.
                exists_today = self.exists(date, asset)
                existed_yesterday = self.exists(date - self.trading_day, asset)
                if exists_today and existed_yesterday:
                    latest = results.loc[asset, 'close']
                    self.assertEqual(latest, self.expected_close(date, asset))
                else:
                    self.assertNotIn(asset, results.index)

        before_trading_start = handle_data

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start,
            end=self.last_asset_end,
            env=self.env,
        )

        # Run for a week in the middle of our data.
        algo.run(self.data_portal)
    def _test_assets_appear_on_correct_days(self, test_name, chunks):
        """
        Assert that assets appear at correct times during a backtest, with
        correctly-adjusted close price values.
        """

        if chunks == 'all_but_one_day':
            chunks = (self.dates.get_loc(self.last_asset_end) -
                      self.dates.get_loc(self.first_asset_start)) - 1
        elif chunks == 'custom_iter':
            chunks = []
            st = np.random.RandomState(12345)
            remaining = (self.dates.get_loc(self.last_asset_end) -
                         self.dates.get_loc(self.first_asset_start))
            while remaining > 0:
                chunk = st.randint(3)
                chunks.append(chunk)
                remaining -= chunk

        def initialize(context):
            p = attach_pipeline(Pipeline(), 'test', chunks=chunks)
            p.add(USEquityPricing.close.latest, 'close')

        def handle_data(context, data):
            results = pipeline_output('test')
            date = get_datetime().normalize()
            for asset in self.assets:
                # Assets should appear iff they exist today and yesterday.
                exists_today = self.exists(date, asset)
                existed_yesterday = self.exists(date - self.trading_day, asset)
                if exists_today and existed_yesterday:
                    latest = results.loc[asset, 'close']
                    self.assertEqual(latest, self.expected_close(date, asset))
                else:
                    self.assertNotIn(asset, results.index)

        before_trading_start = handle_data

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start,
            end=self.last_asset_end,
            env=self.env,
        )

        # Run for a week in the middle of our data.
        algo.run(self.data_portal)
示例#7
0
    def test_pipeline_beyond_daily_bars(self):
        """
        Ensure that we can run an algo with pipeline beyond the max date
        of the daily bars.
        """

        # For ensuring we call before_trading_start.
        count = [0]

        current_day = self.trading_calendar.next_session_label(
            self.pipeline_loader.raw_price_loader.last_available_dt,
        )

        def initialize(context):
            pipeline = attach_pipeline(Pipeline(), 'test')

            vwap = VWAP(window_length=10)
            pipeline.add(vwap, 'vwap')

            # Nothing should have prices less than 0.
            pipeline.set_screen(vwap < 0)

        def handle_data(context, data):
            pass

        def before_trading_start(context, data):
            context.results = pipeline_output('test')
            self.assertTrue(context.results.empty)
            count[0] += 1

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[0],
            end=current_day,
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            overwrite_sim_params=False,
        )

        self.assertTrue(count[0] > 0)
示例#8
0
    def test_pipeline_beyond_daily_bars(self):
        """
        Ensure that we can run an algo with pipeline beyond the max date
        of the daily bars.
        """

        # For ensuring we call before_trading_start.
        count = [0]

        current_day = self.trading_calendar.next_session_label(
            self.pipeline_loader.raw_price_loader.last_available_dt, )

        def initialize(context):
            pipeline = attach_pipeline(Pipeline(), 'test')

            vwap = VWAP(window_length=10)
            pipeline.add(vwap, 'vwap')

            # Nothing should have prices less than 0.
            pipeline.set_screen(vwap < 0)

        def handle_data(context, data):
            pass

        def before_trading_start(context, data):
            context.results = pipeline_output('test')
            self.assertTrue(context.results.empty)
            count[0] += 1

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[0],
            end=current_day,
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            overwrite_sim_params=False,
        )

        self.assertTrue(count[0] > 0)
    def _create_generator(self, sim_params):
        if self.perf_tracker is None:
            self.perf_tracker = get_algo_object(algo_name=self.algo_namespace,
                                                key='perf_tracker')

        # Call the simulation trading algorithm for side-effects:
        # it creates the perf tracker
        TradingAlgorithm._create_generator(self, sim_params)
        self.trading_client = ExchangeAlgorithmExecutor(
            self,
            sim_params,
            self.data_portal,
            self._create_clock(),
            self._create_benchmark_source(),
            self.restrictions,
            universe_func=self._calculate_universe)

        return self.trading_client.transform()
示例#10
0
    def test_empty_pipeline(self):

        # For ensuring we call before_trading_start.
        count = [0]

        def initialize(context):
            pipeline = attach_pipeline(Pipeline(), 'test')

            vwap = VWAP(window_length=10)
            pipeline.add(vwap, 'vwap')

            # Nothing should have prices less than 0.
            pipeline.set_screen(vwap < 0)

        def handle_data(context, data):
            pass

        def before_trading_start(context, data):
            context.results = pipeline_output('test')
            self.assertTrue(context.results.empty)
            count[0] += 1

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[0],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            overwrite_sim_params=False,
        )

        self.assertTrue(count[0] > 0)
示例#11
0
    def test_empty_pipeline(self):

        # For ensuring we call before_trading_start.
        count = [0]

        def initialize(context):
            pipeline = attach_pipeline(Pipeline(), 'test')

            vwap = VWAP(window_length=10)
            pipeline.add(vwap, 'vwap')

            # Nothing should have prices less than 0.
            pipeline.set_screen(vwap < 0)

        def handle_data(context, data):
            pass

        def before_trading_start(context, data):
            context.results = pipeline_output('test')
            self.assertTrue(context.results.empty)
            count[0] += 1

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[0],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            overwrite_sim_params=False,
        )

        self.assertTrue(count[0] > 0)
    def _test_attach_pipeline_after_initialize(self):
        """
        Assert that calling attach_pipeline after initialize raises correctly.
        """
        def initialize(context):
            pass

        def late_attach(context, data):
            attach_pipeline(Pipeline(), 'test')
            raise AssertionError("Shouldn't make it past attach_pipeline!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=late_attach,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(AttachPipelineAfterInitialize):
            algo.run(self.data_portal)

        def barf(context, data):
            raise AssertionError("Shouldn't make it past before_trading_start")

        algo = TradingAlgorithm(
            initialize=initialize,
            before_trading_start=late_attach,
            handle_data=barf,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(AttachPipelineAfterInitialize):
            algo.run(self.data_portal)
示例#13
0
    def test_attach_pipeline_after_initialize(self):
        """
        Assert that calling attach_pipeline after initialize raises correctly.
        """
        def initialize(context):
            pass

        def late_attach(context, data):
            attach_pipeline(Pipeline(), 'test')
            raise AssertionError("Shouldn't make it past attach_pipeline!")

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=late_attach,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(AttachPipelineAfterInitialize):
            algo.run(self.data_portal)

        def barf(context, data):
            raise AssertionError("Shouldn't make it past before_trading_start")

        algo = TradingAlgorithm(
            initialize=initialize,
            before_trading_start=late_attach,
            handle_data=barf,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.first_asset_start - self.trading_day,
            end=self.last_asset_end + self.trading_day,
            env=self.env,
        )

        with self.assertRaises(AttachPipelineAfterInitialize):
            algo.run(self.data_portal)
示例#14
0
def _run(handle_data, initialize, before_trading_start, analyze, algofile,
         algotext, defines, data_frequency, capital_base, data, bundle,
         bundle_timestamp, start, end, output, print_algo, local_namespace,
         environ):
    """Run a backtest for the given algorithm.

    This is shared between the cli and :func:`catalyst.run_algo`.
    """
    if algotext is not None:
        if local_namespace:
            ip = get_ipython()  # noqa
            namespace = ip.user_ns
        else:
            namespace = {}

        for assign in defines:
            try:
                name, value = assign.split('=', 2)
            except ValueError:
                raise ValueError(
                    'invalid define %r, should be of the form name=value' %
                    assign, )
            try:
                # evaluate in the same namespace so names may refer to
                # eachother
                namespace[name] = eval(value, namespace)
            except Exception as e:
                raise ValueError(
                    'failed to execute definition for name %r: %s' %
                    (name, e), )
    elif defines:
        raise _RunAlgoError(
            'cannot pass define without `algotext`',
            "cannot pass '-D' / '--define' without '-t' / '--algotext'",
        )
    else:
        namespace = {}
        if algofile is not None:
            algotext = algofile.read()

    if print_algo:
        if PYGMENTS:
            highlight(
                algotext,
                PythonLexer(),
                TerminalFormatter(),
                outfile=sys.stdout,
            )
        else:
            click.echo(algotext)

    if bundle is not None:
        bundles = bundle.split(',')

        def get_trading_env_and_data(bundles):
            env = data = None

            b = 'poloniex'
            if len(bundles) == 0:
                return env, data
            elif len(bundles) == 1:
                b = bundles[0]

            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            prefix, connstr = re.split(
                r'sqlite:///',
                str(bundle_data.asset_finder.engine.url),
                maxsplit=1,
            )
            if prefix:
                raise ValueError(
                    "invalid url %r, must begin with 'sqlite:///'" %
                    str(bundle_data.asset_finder.engine.url), )

            open_calendar = get_calendar('OPEN')

            env = TradingEnvironment(
                load=partial(load_crypto_market_data, environ=environ),
                bm_symbol='USDT_BTC',
                trading_calendar=open_calendar,
                asset_db_path=connstr,
                environ=environ,
            )

            first_trading_day = bundle_data.minute_bar_reader.first_trading_day

            data = DataPortal(
                env.asset_finder,
                open_calendar,
                first_trading_day=first_trading_day,
                minute_reader=bundle_data.minute_bar_reader,
                five_minute_reader=bundle_data.five_minute_bar_reader,
                daily_reader=bundle_data.daily_bar_reader,
                adjustment_reader=bundle_data.adjustment_reader,
            )

            return env, data

        def get_loader_for_bundle(b):
            bundle_data = load(
                b,
                environ,
                bundle_timestamp,
            )

            if b == 'poloniex':
                return CryptoPricingLoader(
                    bundle_data,
                    data_frequency,
                    CryptoPricing,
                )
            elif b == 'quandl':
                return USEquityPricingLoader(
                    bundle_data,
                    data_frequency,
                    USEquityPricing,
                )
            raise ValueError("No PipelineLoader registered for bundle %s." % b)

        loaders = [get_loader_for_bundle(b) for b in bundles]
        env, data = get_trading_env_and_data(bundles)

        def choose_loader(column):
            for loader in loaders:
                if column in loader.columns:
                    return loader
            raise ValueError("No PipelineLoader registered for column %s." %
                             column)

    else:
        env = TradingEnvironment(environ=environ)
        choose_loader = None

    perf = TradingAlgorithm(
        namespace=namespace,
        env=env,
        get_pipeline_loader=choose_loader,
        sim_params=create_simulation_parameters(
            start=start,
            end=end,
            capital_base=capital_base,
            data_frequency=data_frequency,
            emission_rate=data_frequency,
        ),
        **{
            'initialize': initialize,
            'handle_data': handle_data,
            'before_trading_start': before_trading_start,
            'analyze': analyze,
        } if algotext is None else {
            'algo_filename': getattr(algofile, 'name', '<algorithm>'),
            'script': algotext,
        }).run(
            data,
            overwrite_sim_params=False,
        )

    if output == '-':
        click.echo(str(perf))
    elif output != os.devnull:  # make the catalyst magic not write any data
        perf.to_pickle(output)

    return perf
示例#15
0
    def test_handle_adjustment(self, set_screen):
        AAPL, MSFT, BRK_A = assets = self.assets

        window_lengths = [1, 2, 5, 10]
        vwaps = self.compute_expected_vwaps(window_lengths)

        def vwap_key(length):
            return "vwap_%d" % length

        def initialize(context):
            pipeline = Pipeline()
            context.vwaps = []
            for length in vwaps:
                name = vwap_key(length)
                factor = VWAP(window_length=length)
                context.vwaps.append(factor)
                pipeline.add(factor, name=name)

            filter_ = (USEquityPricing.close.latest > 300)
            pipeline.add(filter_, 'filter')
            if set_screen:
                pipeline.set_screen(filter_)

            attach_pipeline(pipeline, 'test')

        def handle_data(context, data):
            today = normalize_date(get_datetime())
            results = pipeline_output('test')
            expect_over_300 = {
                AAPL: today < self.AAPL_split_date,
                MSFT: False,
                BRK_A: True,
            }
            for asset in assets:
                should_pass_filter = expect_over_300[asset]
                if set_screen and not should_pass_filter:
                    self.assertNotIn(asset, results.index)
                    continue

                asset_results = results.loc[asset]
                self.assertEqual(asset_results['filter'], should_pass_filter)
                for length in vwaps:
                    computed = results.loc[asset, vwap_key(length)]
                    expected = vwaps[length][asset].loc[today]
                    # Only having two places of precision here is a bit
                    # unfortunate.
                    assert_almost_equal(computed, expected, decimal=2)

        # Do the same checks in before_trading_start
        before_trading_start = handle_data

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[max(window_lengths)],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            # Yes, I really do want to use the start and end dates I passed to
            # TradingAlgorithm.
            overwrite_sim_params=False,
        )
示例#16
0
    def test_handle_adjustment(self, set_screen):
        AAPL, MSFT, BRK_A = assets = self.assets

        window_lengths = [1, 2, 5, 10]
        vwaps = self.compute_expected_vwaps(window_lengths)

        def vwap_key(length):
            return "vwap_%d" % length

        def initialize(context):
            pipeline = Pipeline()
            context.vwaps = []
            for length in vwaps:
                name = vwap_key(length)
                factor = VWAP(window_length=length)
                context.vwaps.append(factor)
                pipeline.add(factor, name=name)

            filter_ = (USEquityPricing.close.latest > 300)
            pipeline.add(filter_, 'filter')
            if set_screen:
                pipeline.set_screen(filter_)

            attach_pipeline(pipeline, 'test')

        def handle_data(context, data):
            today = normalize_date(get_datetime())
            results = pipeline_output('test')
            expect_over_300 = {
                AAPL: today < self.AAPL_split_date,
                MSFT: False,
                BRK_A: True,
            }
            for asset in assets:
                should_pass_filter = expect_over_300[asset]
                if set_screen and not should_pass_filter:
                    self.assertNotIn(asset, results.index)
                    continue

                asset_results = results.loc[asset]
                self.assertEqual(asset_results['filter'], should_pass_filter)
                for length in vwaps:
                    computed = results.loc[asset, vwap_key(length)]
                    expected = vwaps[length][asset].loc[today]
                    # Only having two places of precision here is a bit
                    # unfortunate.
                    assert_almost_equal(computed, expected, decimal=2)

        # Do the same checks in before_trading_start
        before_trading_start = handle_data

        algo = TradingAlgorithm(
            initialize=initialize,
            handle_data=handle_data,
            before_trading_start=before_trading_start,
            data_frequency='daily',
            get_pipeline_loader=lambda column: self.pipeline_loader,
            start=self.dates[max(window_lengths)],
            end=self.dates[-1],
            env=self.env,
        )

        algo.run(
            FakeDataPortal(self.env),
            # Yes, I really do want to use the start and end dates I passed to
            # TradingAlgorithm.
            overwrite_sim_params=False,
        )