def get_transforms(stage: str = None, mode: str = None): """ @TODO: Docs. Contribution is welcome """ return Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
sys.exit() # # Data # In[ ]: import collections import torch from catalyst.contrib.datasets import MNIST from catalyst.contrib.data.transforms import ToTensor, Compose, Normalize bs = 32 num_workers = 0 data_transform = Compose([ToTensor(), Normalize((0.1307, ), (0.3081, ))]) loaders = collections.OrderedDict() trainset = MNIST("./data", train=False, download=True, transform=data_transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=bs, shuffle=True, num_workers=num_workers) testset = MNIST("./data", train=False, download=True, transform=data_transform) testloader = torch.utils.data.DataLoader(testset, batch_size=bs,
loaders["train"] = train_loader loaders["valid"] = valid_loader return loaders data_transform = Compose( [ Augmentor( dict_key="features", augment_fn=lambda x: torch.from_numpy( x.copy().astype(np.float32) / 255.0 ).unsqueeze_(0), ), Augmentor(dict_key="features", augment_fn=Normalize((0.5,), (0.5,)),), Augmentor( dict_key="targets", augment_fn=lambda x: torch.from_numpy( x.copy().astype(np.float32) / 255.0 ).unsqueeze_(0), ), ] ) loaders = get_loaders(data_transform) # # Model # In[ ]: