def predict_batch(self, batch): batch = any2device(batch, self.device) if len(batch) == 4: ( city_id_tensor, booker_country_tensor, device_class_tensor, affiliate_id_tensor, ) = batch elif len(batch) == 5: ( city_id_tensor, booker_country_tensor, device_class_tensor, affiliate_id_tensor, y, ) = batch else: raise RuntimeError out = self.model( city_id_tensor, booker_country_tensor, device_class_tensor, affiliate_id_tensor, ) return out
def predict_batch(self, batch): batch = any2device(batch, self.device) if len(batch) == 12: ( city_id_tensor, # booker_country_tensor, device_class_tensor, affiliate_id_tensor, month_checkin_tensor, num_checkin_tensor, days_stay_tensor, days_move_tensor, hotel_country_tensor, num_visit_drop_duplicates_tensor, num_visit_tensor, num_visit_same_city_tensor, num_stay_consecutively_tensor, ) = batch elif len(batch) == 14: ( city_id_tensor, # booker_country_tensor, device_class_tensor, affiliate_id_tensor, month_checkin_tensor, num_checkin_tensor, days_stay_tensor, days_move_tensor, hotel_country_tensor, num_visit_drop_duplicates_tensor, num_visit_tensor, num_visit_same_city_tensor, num_stay_consecutively_tensor, y_s, y_h, ) = batch else: raise RuntimeError out_s, out_h = self.model( city_id_tensor, # booker_country_tensor, device_class_tensor, affiliate_id_tensor, month_checkin_tensor, num_checkin_tensor, days_stay_tensor, days_move_tensor, hotel_country_tensor, num_visit_drop_duplicates_tensor, num_visit_tensor, num_visit_same_city_tensor, num_stay_consecutively_tensor, ) return out_s, out_h
def predict_batch(self, batch): batch = any2device(batch, self.device) if len(batch) == 14: input_tensors = batch elif len(batch) == 15: input_tensors = batch[:-1] else: raise RuntimeError out = self.model(*input_tensors) return out
def _get_optimizer(self, stage: str, model: Union[Model, Dict[str, Model]], **params) -> Optimizer: # @TODO 1: refactoring; this method is too long # @TODO 2: load state dicts for schedulers & criterion layerwise_params = params.pop("layerwise_params", OrderedDict()) no_bias_weight_decay = params.pop("no_bias_weight_decay", True) # linear scaling rule from https://arxiv.org/pdf/1706.02677.pdf lr_scaling_params = params.pop("lr_linear_scaling", None) if lr_scaling_params: data_params = dict(self.stages_config[stage]["data_params"]) batch_size = data_params.get("batch_size") per_gpu_scaling = data_params.get("per_gpu_scaling", False) distributed_rank = utils.get_rank() distributed = distributed_rank > -1 if per_gpu_scaling and not distributed: num_gpus = max(1, torch.cuda.device_count()) batch_size *= num_gpus base_lr = lr_scaling_params.get("lr") base_batch_size = lr_scaling_params.get("base_batch_size", 256) lr_scaling = batch_size / base_batch_size params["lr"] = base_lr * lr_scaling # scale default lr else: lr_scaling = 1.0 # getting model parameters model_key = params.pop("_model", None) if model_key is None: assert isinstance( model, nn.Module ), "model is key-value, but optimizer has no specified model" model_params = utils.process_model_params(model, layerwise_params, no_bias_weight_decay, lr_scaling) elif isinstance(model_key, str): model_params = utils.process_model_params( model[model_key], layerwise_params, no_bias_weight_decay, lr_scaling, ) elif isinstance(model_key, (list, tuple)): model_params = [] for model_key_ in model_key: model_params_ = utils.process_model_params( model[model_key_], layerwise_params, no_bias_weight_decay, lr_scaling, ) model_params.extend(model_params_) else: raise ValueError("unknown type of model_params") load_from_previous_stage = params.pop("load_from_previous_stage", False) optimizer_key = params.pop("optimizer_key", None) optimizer = OPTIMIZERS.get_from_params(**params, params=model_params) if load_from_previous_stage and self.stages.index(stage) != 0: checkpoint_path = f"{self.logdir}/checkpoints/best_full.pth" checkpoint = utils.load_checkpoint(checkpoint_path) dict2load = optimizer if optimizer_key is not None: dict2load = {optimizer_key: optimizer} utils.unpack_checkpoint(checkpoint, optimizer=dict2load) # move optimizer to device device = utils.get_device() for param in model_params: param = param["params"][0] state = optimizer.state[param] for key, value in state.items(): state[key] = utils.any2device(value, device) # update optimizer params for key, value in params.items(): for pg in optimizer.param_groups: pg[key] = value return optimizer
def _batch2device(self, batch: Mapping[str, Any], device): res = utils.any2device(batch, device) return res
def main(args, _=None): """Run the ``catalyst-data text2embeddings`` script.""" batch_size = args.batch_size num_workers = args.num_workers max_length = args.max_length pooling_groups = args.pooling.split(",") utils.set_global_seed(args.seed) utils.prepare_cudnn(args.deterministic, args.benchmark) if hasattr(args, "in_huggingface"): model_config = BertConfig.from_pretrained(args.in_huggingface) model_config.output_hidden_states = args.output_hidden_states model = BertModel.from_pretrained(args.in_huggingface, config=model_config) tokenizer = BertTokenizer.from_pretrained(args.in_huggingface) else: model_config = BertConfig.from_pretrained(args.in_config) model_config.output_hidden_states = args.output_hidden_states model = BertModel(config=model_config) tokenizer = BertTokenizer.from_pretrained(args.in_vocab) if hasattr(args, "in_model"): checkpoint = utils.load_checkpoint(args.in_model) checkpoint = {"model_state_dict": checkpoint} utils.unpack_checkpoint(checkpoint=checkpoint, model=model) model = model.eval() model, _, _, _, device = utils.process_components(model=model) df = pd.read_csv(args.in_csv) df = df.dropna(subset=[args.txt_col]) df.to_csv(f"{args.out_prefix}.df.csv", index=False) df = df.reset_index().drop("index", axis=1) df = list(df.to_dict("index").values()) num_samples = len(df) open_fn = LambdaReader( input_key=args.txt_col, output_key=None, lambda_fn=partial( tokenize_text, strip=args.strip, lowercase=args.lowercase, remove_punctuation=args.remove_punctuation, ), tokenizer=tokenizer, max_length=max_length, ) dataloader = utils.get_loader( df, open_fn, batch_size=batch_size, num_workers=num_workers, ) features = {} dataloader = tqdm(dataloader) if args.verbose else dataloader with torch.no_grad(): for idx, batch in enumerate(dataloader): batch = utils.any2device(batch, device) bert_output = model(**batch) mask = (batch["attention_mask"].unsqueeze(-1) if args.mask_for_max_length else None) if utils.check_ddp_wrapped(model): # using several gpu hidden_size = model.module.config.hidden_size hidden_states = model.module.config.output_hidden_states else: # using cpu or one gpu hidden_size = model.config.hidden_size hidden_states = model.config.output_hidden_states features_ = process_bert_output( bert_output=bert_output, hidden_size=hidden_size, output_hidden_states=hidden_states, pooling_groups=pooling_groups, mask=mask, ) # create storage based on network output if idx == 0: for key, value in features_.items(): name_ = key if isinstance(key, str) else f"{key:02d}" _, embedding_size = value.shape features[name_] = np.memmap( f"{args.out_prefix}.{name_}.npy", dtype=np.float32, mode="w+", shape=(num_samples, embedding_size), ) indices = np.arange(idx * batch_size, min((idx + 1) * batch_size, num_samples)) for key, value in features_.items(): name_ = key if isinstance(key, str) else f"{key:02d}" features[name_][indices] = _detach(value)
def main(args, _=None): batch_size = args.batch_size num_workers = args.num_workers max_length = args.max_length pooling_groups = args.pooling.split(",") utils.set_global_seed(args.seed) utils.prepare_cudnn(args.deterministic, args.benchmark) model_config = BertConfig.from_pretrained(args.in_config) model_config.output_hidden_states = args.output_hidden_states model = BertModel(config=model_config) checkpoint = utils.load_checkpoint(args.in_model) checkpoint = {"model_state_dict": checkpoint} utils.unpack_checkpoint(checkpoint=checkpoint, model=model) model = model.eval() model, _, _, _, device = utils.process_components(model=model) tokenizer = BertTokenizer.from_pretrained(args.in_vocab) df = pd.read_csv(args.in_csv) df = df.dropna(subset=[args.txt_col]) df.to_csv(f"{args.out_prefix}.df.csv", index=False) df = df.reset_index().drop("index", axis=1) df = list(df.to_dict("index").values()) num_samples = len(df) open_fn = LambdaReader( input_key=args.txt_col, output_key=None, lambda_fn=get_features, tokenizer=tokenizer, max_length=max_length, ) dataloader = utils.get_loader( df, open_fn, batch_size=batch_size, num_workers=num_workers, ) features = {} poolings = {} dataloader = tqdm(dataloader) if args.verbose else dataloader with torch.no_grad(): for idx, batch in enumerate(dataloader): batch = utils.any2device(batch, device) features_ = model(**batch) # create storage based on network output if idx == 0: # class _, embedding_size = features_[1].shape features["class"] = np.memmap( f"{args.out_prefix}.class.npy", dtype=np.float32, mode="w+", shape=(num_samples, embedding_size), ) if args.output_hidden_states: # all embeddings for i, feature_ in enumerate(features_[2]): name_ = f"embeddings_{i + 1:02d}" _, _, embedding_size = feature_.shape poolings[name_] = LamaPooling( features_in=embedding_size, groups=pooling_groups, ) features[name_] = np.memmap( f"{args.out_prefix}.{name_}.npy", dtype=np.float32, mode="w+", shape=(num_samples, embedding_size), ) else: # last _, _, embedding_size = features_[0].shape poolings["last"] = LamaPooling( features_in=embedding_size, groups=pooling_groups, ) features["last"] = np.memmap( f"{args.out_prefix}.last.npy", dtype=np.float32, mode="w+", shape=(num_samples, embedding_size), ) indices = np.arange(idx * batch_size, min((idx + 1) * batch_size, num_samples)) features["class"][indices] = _detach(features_[1]) if args.output_hidden_states: # all embeddings for i, feature_ in enumerate(features_[2]): name_ = f"embeddings_{i + 1:02d}" feature_ = poolings[name_](feature_) features[name_][indices] = _detach(feature_) else: feature_ = poolings[name_](features_[0]) features["last"][indices] = _detach(feature_)