def catalyst_inference(runner: Runner, dataset_class: torch.utils.data.Dataset, dataset_config: dict, dataloader_config: dict, nn_model_class: torch.nn.Module, nn_model_config: dict, checkpoint_path: str, device: str): dataset = dataset_class(**dataset_config) loader = torch.utils.data.DataLoader(dataset, **dataloader_config) model = nn_model_class(device=device, **nn_model_config) prediction = np.concatenate([ el['logits'].detach().cpu().numpy() for el in runner.predict_loader( loader=loader, model=model, resume=checkpoint_path) ]) return prediction
def trace_model( model: Model, runner: Runner, batch=None, method_name: str = "forward", mode: str = "eval", requires_grad: bool = False, opt_level: str = None, device: Device = "cpu", predict_params: dict = None, ) -> ScriptModule: """ Traces model using runner and batch Args: model: Model to trace runner: Model's native runner that was used to train model batch: Batch to trace the model method_name (str): Model's method name that will be used as entrypoint during tracing mode (str): Mode for model to trace (``train`` or ``eval``) requires_grad (bool): Flag to use grads opt_level (str): Apex FP16 init level, optional device (str): Torch device predict_params (dict): additional parameters for model forward Returns: (ScriptModule): Traced model """ if batch is None or runner is None: raise ValueError("Both batch and runner must be specified.") if mode not in ["train", "eval"]: raise ValueError(f"Unknown mode '{mode}'. Must be 'eval' or 'train'") predict_params = predict_params or {} tracer = _TracingModelWrapper(model, method_name) if opt_level is not None: utils.assert_fp16_available() # If traced in AMP we need to initialize the model before calling # the jit # https://github.com/NVIDIA/apex/issues/303#issuecomment-493142950 from apex import amp model = model.to(device) model = amp.initialize(model, optimizers=None, opt_level=opt_level) # TODO: remove `check_trace=False` # after fixing this bug https://github.com/pytorch/pytorch/issues/23993 params = {**predict_params, "check_trace": False} else: params = predict_params getattr(model, mode)() utils.set_requires_grad(model, requires_grad=requires_grad) _runner_model, _runner_device = runner.model, runner.device runner.model, runner.device = tracer, device runner.predict_batch(batch, **params) result: ScriptModule = tracer.tracing_result runner.model, runner.device = _runner_model, _runner_device return result