def run_algorithm(initialize, capital_base=None, start=None, end=None, handle_data=None, before_trading_start=None, analyze=None, data_frequency='daily', data=None, bundle=None, bundle_timestamp=None, default_extension=True, extensions=(), strict_extensions=True, environ=os.environ, live=False, remote=False, mail=None, exchange_name=None, quote_currency=None, algo_namespace=None, live_graph=False, analyze_live=None, simulate_orders=True, auth_aliases=None, stats_output=None, output=os.devnull): """ Run a trading algorithm. Parameters ---------- capital_base : float The starting capital for the backtest. start : datetime The start date of the backtest. end : datetime The end date of the backtest.. initialize : callable[context -> None] The initialize function to use for the algorithm. This is called once at the very beginning of the run and should be used to set up any state needed by the algorithm. handle_data : callable[(context, BarData) -> None], optional The handle_data function to use for the algorithm. This is called every minute when ``data_frequency == 'minute'`` or every day when ``data_frequency == 'daily'``. before_trading_start : callable[(context, BarData) -> None], optional The before_trading_start function for the algorithm. This is called once before each trading day (after initialize on the first day). analyze : callable[(context, pd.DataFrame) -> None], optional The analyze function to use for the algorithm. This function is called once at the end of the backtest/live run and is passed the context and the performance data. data_frequency : {'daily', 'minute'}, optional The data frequency to run the algorithm at. At backtest both modes are supported, at live mode only the minute mode is supported. data : pd.DataFrame, pd.Panel, or DataPortal, optional The ohlcv data to run the backtest with. This argument is mutually exclusive with: ``bundle`` ``bundle_timestamp`` bundle : str, optional The name of the data bundle to use to load the data to run the backtest with. This argument is mutually exclusive with ``data``. bundle_timestamp : datetime, optional The datetime to lookup the bundle data for. This defaults to the current time. This argument is mutually exclusive with ``data``. default_extension : bool, optional Should the default catalyst extension be loaded. This is found at ``$CATALYST_ROOT/extension.py`` extensions : iterable[str], optional The names of any other extensions to load. Each element may either be a dotted module path like ``a.b.c`` or a path to a python file ending in ``.py`` like ``a/b/c.py``. strict_extensions : bool, optional Should the run fail if any extensions fail to load. If this is false, a warning will be raised instead. environ : mapping[str -> str], optional The os environment to use. Many extensions use this to get parameters. This defaults to ``os.environ``. live : bool, optional Should the algorithm be executed in live trading mode. remote : bool, optional Should the algorithm run on a remote server. currently, available only on backtest mode. mail : str, optional- if running with remote=True then, mandatory. to which email address shall the server send the results to. exchange_name: str The name of the exchange to be used in the backtest/live run. quote_currency: str The base currency to be used in the backtest/live run. algo_namespace: str The namespace of the algorithm. live_graph: bool, optional Should the live graph clock be used instead of the regular clock. analyze_live: callable[(context, pd.DataFrame) -> None], optional The interactive analyze function to be used with the live graph clock in every tick. simulate_orders: bool, optional Should paper trading mode be applied. auth_aliases: str, optional Rewrite the auth file name. It should contain an even list of comma-delimited values. For example: "binance,auth2,bittrex,auth2" stats_output: str, optional The URI of the S3 bucket to which to upload the performance stats. output: str, optional The output file path to which the algorithm performance is serialized. Returns ------- perf : pd.DataFrame The daily performance of the algorithm. """ load_extensions( default_extension, extensions, strict_extensions, environ ) if capital_base is None: raise ValueError( 'Please specify a `capital_base` parameter which is the maximum ' 'amount of base currency available for trading. For example, ' 'if the `capital_base` is 5ETH, the ' '`order_target_percent(asset, 1)` command will order 5ETH worth ' 'of the specified asset.' ) # I'm not sure that we need this since the modified DataPortal # does not require extensions to be explicitly loaded. # This will be useful for arbitrary non-pricing bundles but we may # need to modify the logic. if not live: non_none_data = valfilter(bool, { 'data': data is not None, 'bundle': bundle is not None, }) if not non_none_data: # if neither data nor bundle are passed use 'quantopian-quandl' bundle = 'quantopian-quandl' elif len(non_none_data) != 1: raise ValueError( 'must specify one of `data`, `data_portal`, or `bundle`,' ' got: %r' % non_none_data, ) elif 'bundle' not in non_none_data and bundle_timestamp is not None: raise ValueError( 'cannot specify `bundle_timestamp` without passing `bundle`', ) if remote: if mail is None or not re.match(r"[^@]+@[^@]+\.[^@]+", mail): raise ValueError("Please specify a 'mail' parameter which " "is a valid email address, in order to " "send you back the results") return remote_backtest( handle_data=handle_data, initialize=initialize, before_trading_start=before_trading_start, analyze=None, algofile=None, algotext=None, defines=(), data_frequency=data_frequency, capital_base=capital_base, data=data, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output='--', print_algo=False, local_namespace=False, environ=environ, live=False, exchange=exchange_name, algo_namespace=algo_namespace, quote_currency=quote_currency, live_graph=live_graph, analyze_live=analyze_live, simulate_orders=simulate_orders, auth_aliases=auth_aliases, stats_output=stats_output, mail=mail ) return _run( handle_data=handle_data, initialize=initialize, before_trading_start=before_trading_start, analyze=analyze, algofile=None, algotext=None, defines=(), data_frequency=data_frequency, capital_base=capital_base, data=data, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output=output, print_algo=False, local_namespace=False, environ=environ, live=live, exchange=exchange_name, algo_namespace=algo_namespace, quote_currency=quote_currency, live_graph=live_graph, analyze_live=analyze_live, simulate_orders=simulate_orders, auth_aliases=auth_aliases, stats_output=stats_output )
def remote_run(ctx, algofile, algotext, define, data_frequency, capital_base, bundle, bundle_timestamp, start, end, mail, print_algo, local_namespace, exchange_name, algo_namespace, quote_currency): """Run a backtest for the given algorithm on the cloud. """ if (algotext is not None) == (algofile is not None): ctx.fail( "must specify exactly one of '-f' / '--algofile' or" " '-t' / '--algotext'", ) # check that the start and end dates are passed correctly if start is None and end is None: # check both at the same time to avoid the case where a user # does not pass either of these and then passes the first only # to be told they need to pass the second argument also ctx.fail( "must specify dates with '-s' / '--start' and '-e' / '--end'" " in backtest mode", ) if start is None: ctx.fail("must specify a start date with '-s' / '--start'" " in backtest mode") if end is None: ctx.fail("must specify an end date with '-e' / '--end'" " in backtest mode") if exchange_name is None: ctx.fail("must specify an exchange name '-x'") if quote_currency is None: ctx.fail("must specify a quote currency with '-c' in backtest mode") if capital_base is None: ctx.fail("must specify a capital base with '--capital-base'") if mail is None or not re.match(r"[^@]+@[^@]+\.[^@]+", mail): ctx.fail("must specify a valid email with '--mail'") algo_id = remote_backtest( initialize=None, handle_data=None, before_trading_start=None, analyze=None, algofile=algofile, algotext=algotext, defines=define, data_frequency=data_frequency, capital_base=capital_base, data=None, bundle=bundle, bundle_timestamp=bundle_timestamp, start=start, end=end, output='--', print_algo=print_algo, local_namespace=local_namespace, environ=os.environ, live=False, exchange=exchange_name, algo_namespace=algo_namespace, quote_currency=quote_currency, analyze_live=None, live_graph=False, simulate_orders=True, auth_aliases=None, stats_output=None, mail=mail, ) print(algo_id) return algo_id