示例#1
0
    def bootstrap(self, X, assignment, treatment, y, p, pZ, size=10000, seed=None):
        """Runs a single bootstrap. Fits on bootstrapped sample, then predicts on whole population."""
        idxs = np.random.choice(np.arange(0, X.shape[0]), size=size)
        X_b = X[idxs]

        if isinstance(p[0], (np.ndarray, pd.Series)):
            p0_b = {self.t_groups[0]: convert_pd_to_np(p[0][idxs])}
        else:
            p0_b = {g: prop[idxs] for g, prop in p[0].items()}
        if isinstance(p[1], (np.ndarray, pd.Series)):
            p1_b = {self.t_groups[0]: convert_pd_to_np(p[1][idxs])}
        else:
            p1_b = {g: prop[idxs] for g, prop in p[1].items()}

        pZ_b = pZ[idxs]
        assignment_b = assignment[idxs]
        treatment_b = treatment[idxs]
        y_b = y[idxs]
        self.fit(
            X=X_b,
            assignment=assignment_b,
            treatment=treatment_b,
            y=y_b,
            p=(p0_b, p1_b),
            pZ=pZ_b,
            seed=seed,
        )
        te_b = self.predict(X=X)
        return te_b
示例#2
0
    def __init__(self,
                 method,
                 control_name,
                 X,
                 tau,
                 classes,
                 model_tau=None,
                 features=None,
                 normalize=True,
                 test_size=0.3,
                 random_state=None,
                 override_checks=False,
                 r_learners=None):
        """
        The Explainer class handles all feature explanation/interpretation functions, including plotting
        feature importances, shapley value distributions, and shapley value dependency plots.

        Currently supported methods are:
            - auto (calculates importance based on estimator's default implementation of feature importance;
                    estimator must be tree-based)
                    Note: if none provided, it uses lightgbm's LGBMRegressor as estimator, and "gain" as
                    importance type
            - permutation (calculates importance based on mean decrease in accuracy when a feature column is permuted; estimator can be any form)
            - shapley (calculates shapley values; estimator must be tree-based)
        Hint: for permutation, downsample data for better performance especially if X.shape[1] is large

        Args:
            method (str): auto, permutation, shapley
            control_name (str/int/float): name of control group
            X (np.matrix): a feature matrix
            tau (np.array): a treatment effect vector (estimated/actual)
            classes (dict): a mapping of treatment names to indices (used for indexing tau array)
            model_tau (sklearn/lightgbm/xgboost model object): a model object
            features (np.array): list/array of feature names. If None, an enumerated list will be used.
            normalize (bool): normalize by sum of importances if method=auto (defaults to True)
            test_size (float/int): if float, represents the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples (used for estimating permutation importance)
            random_state (int/RandomState instance/None): random state used in permutation importance estimation
            override_checks (bool): overrides self.check_conditions (e.g. if importance/shapley values are pre-computed)
            r_learners (dict): a mapping of treatment group to fitted R Learners
        """
        self.method = method
        self.control_name = control_name
        self.X = convert_pd_to_np(X)
        self.tau = convert_pd_to_np(tau)
        if self.tau is not None and self.tau.ndim == 1:
            self.tau = self.tau.reshape(-1, 1)
        self.classes = classes
        self.model_tau = LGBMRegressor(
            importance_type='gain') if model_tau is None else model_tau
        self.features = features
        self.normalize = normalize
        self.test_size = test_size
        self.random_state = random_state
        self.override_checks = override_checks
        self.r_learners = r_learners

        if not self.override_checks:
            self.check_conditions()
            self.create_feature_names()
            self.build_new_tau_models()
示例#3
0
    def fit(self, X, p, treatment, y, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {
                treatment_name: convert_pd_to_np(_p)
                for treatment_name, _p in p.items()
            }

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {
            group: deepcopy(self.model_tau)
            for group in self.t_groups
        }
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info('generating out-of-fold CV outcome estimates')
        yhat = cross_val_predict(self.model_mu,
                                 X,
                                 y,
                                 cv=self.cv,
                                 method='predict_proba',
                                 n_jobs=-1)[:, 1]

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            yhat_filt = yhat[mask]
            p_filt = p[group][mask]
            w = (treatment_filt == group).astype(int)

            if verbose:
                logger.info(
                    'training the treatment effect model for {} with R-loss'.
                    format(group))
            self.models_tau[group].fit(X_filt,
                                       (y_filt - yhat_filt) / (w - p_filt),
                                       sample_weight=(w - p_filt)**2)

            self.vars_c[group] = (y_filt[w == 0] - yhat_filt[w == 0]).var()
            self.vars_t[group] = (y_filt[w == 1] - yhat_filt[w == 1]).var()
示例#4
0
    def fit_predict(self, X, treatment, y, p=None, return_ci=False,
                    n_bootstraps=1000, bootstrap_size=10000, verbose=True):
        """Fit the treatment effect and outcome models of the R learner and predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            return_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            verbose (bool): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        self.fit(X, treatment, y, p, verbose=verbose)
        te = self.predict(X)

        if p is None:
            p = self.propensity
        else:
            check_p_conditions(p, self.t_groups)

        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        if not return_ci:
            return te
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            model_mu_global = deepcopy(self.model_mu)
            models_tau_global = deepcopy(self.models_tau)
            te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0], n_bootstraps))

            logger.info('Bootstrap Confidence Intervals')
            for i in tqdm(range(n_bootstraps)):
                te_b = self.bootstrap(X, treatment, y, p, size=bootstrap_size)
                te_bootstraps[:, :, i] = te_b

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100, axis=2)
            te_upper = np.percentile(te_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=2)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.model_mu = deepcopy(model_mu_global)
            self.models_tau = deepcopy(models_tau_global)

            return (te, te_lower, te_upper)
示例#5
0
    def predict(self, X, p, treatment=None, y=None, return_components=False, verbose=True):
        """Predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            return_components (bool, optional): whether to return outcome for treatment and control seperately

        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        dhat_cs = {}
        dhat_ts = {}

        for i, group in enumerate(self.t_groups):
            model_tau_c = self.models_tau_c[group]
            model_tau_t = self.models_tau_t[group]
            dhat_cs[group] = model_tau_c.predict(X)
            dhat_ts[group] = model_tau_t.predict(X)

            _te = (p[group] * dhat_cs[group] + (1 - p[group]) * dhat_ts[group]).reshape(-1, 1)
            te[:, i] = np.ravel(_te)

            if (y is not None) and (treatment is not None) and verbose:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                X_filt = X[mask]
                y_filt = y[mask]
                w = (treatment_filt == group).astype(int)

                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = self.models_mu_c[group].predict(X_filt[w == 0])
                yhat[w == 1] = self.models_mu_t[group].predict(X_filt[w == 1])

                logger.info('Error metrics for group {}'.format(group))
                regression_metrics(y_filt, yhat, w)

        if not return_components:
            return te
        else:
            return te, dhat_cs, dhat_ts
示例#6
0
    def fit(self, X, treatment, y):
        """Fit the inference model

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_c = {group: deepcopy(self.model_c) for group in self.t_groups}
        self.models_t = {group: deepcopy(self.model_t) for group in self.t_groups}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)

            self.models_c[group].fit(X_filt[w == 0], y_filt[w == 0])
            self.models_t[group].fit(X_filt[w == 1], y_filt[w == 1])
示例#7
0
文件: cevae.py 项目: zoeonly/causalml
    def fit(self, X, treatment, y, p=None):
        """
        Fits CEVAE.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)

        self.cevae = CEVAEModel(outcome_dist=self.outcome_dist,
                           feature_dim=X.shape[-1],
                           latent_dim=self.latent_dim,
                           hidden_dim=self.hidden_dim,
                           num_layers=self.num_layers)

        self.cevae.fit(x=torch.tensor(X, dtype=torch.float),
                       t=torch.tensor(treatment, dtype=torch.float),
                       y=torch.tensor(y, dtype=torch.float),
                       num_epochs=self.num_epochs,
                       batch_size=self.batch_size,
                       learning_rate=self.learning_rate,
                       learning_rate_decay=self.learning_rate_decay,
                       weight_decay=self.weight_decay)
示例#8
0
文件: tlearner.py 项目: uber/causalml
    def fit_predict(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        return_components=False,
        verbose=True,
    ):
        """Fit the inference model of the T learner and predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (str): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects. Output dim: [n_samples, n_treatment].
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        self.fit(X, treatment, y)
        te = self.predict(X, treatment, y, return_components=return_components)

        if not return_ci:
            return te
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_c_global = deepcopy(self.models_c)
            models_t_global = deepcopy(self.models_t)
            te_bootstraps = np.zeros(shape=(X.shape[0], self.t_groups.shape[0],
                                            n_bootstraps))

            logger.info("Bootstrap Confidence Intervals")
            for i in tqdm(range(n_bootstraps)):
                te_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                te_bootstraps[:, :, i] = te_b

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100,
                                     axis=2)
            te_upper = np.percentile(te_bootstraps,
                                     (1 - self.ate_alpha / 2) * 100,
                                     axis=2)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models_c = deepcopy(models_c_global)
            self.models_t = deepcopy(models_t_global)

            return (te, te_lower, te_upper)
示例#9
0
    def fit(self, X, treatment, y, p=None, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            verbose (bool, optional): whether to output progress logs
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {
            group: deepcopy(self.model_tau)
            for group in self.t_groups
        }
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info('generating out-of-fold CV outcome estimates')
        yhat = cross_val_predict(self.model_mu,
                                 X,
                                 y,
                                 cv=self.cv,
                                 method='predict_proba',
                                 n_jobs=-1)[:, 1]

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            yhat_filt = yhat[mask]
            p_filt = p[group][mask]
            w = (treatment_filt == group).astype(int)

            if verbose:
                logger.info(
                    'training the treatment effect model for {} with R-loss'.
                    format(group))
            self.models_tau[group].fit(X_filt,
                                       (y_filt - yhat_filt) / (w - p_filt),
                                       sample_weight=(w - p_filt)**2)

            self.vars_c[group] = (y_filt[w == 0] - yhat_filt[w == 0]).var()
            self.vars_t[group] = (y_filt[w == 1] - yhat_filt[w == 1]).var()
示例#10
0
    def fit(self, X, treatment, y):
        """Fit the inference model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_mu_c = {
            group: deepcopy(self.model_mu_c)
            for group in self.t_groups
        }
        self.models_mu_t = {
            group: deepcopy(self.model_mu_t)
            for group in self.t_groups
        }
        self.models_tau_c = {
            group: deepcopy(self.model_tau_c)
            for group in self.t_groups
        }
        self.models_tau_t = {
            group: deepcopy(self.model_tau_t)
            for group in self.t_groups
        }
        self.vars_c = {}
        self.vars_t = {}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)

            # Train outcome models
            self.models_mu_c[group].fit(X_filt[w == 0], y_filt[w == 0])
            self.models_mu_t[group].fit(X_filt[w == 1], y_filt[w == 1])

            # Calculate variances and treatment effects
            var_c = (y_filt[w == 0] -
                     self.models_mu_c[group].predict(X_filt[w == 0])).var()
            self.vars_c[group] = var_c
            var_t = (y_filt[w == 1] -
                     self.models_mu_t[group].predict(X_filt[w == 1])).var()
            self.vars_t[group] = var_t

            # Train treatment models
            d_c = self.models_mu_t[group].predict(
                X_filt[w == 0]) - y_filt[w == 0]
            d_t = y_filt[w == 1] - self.models_mu_c[group].predict(
                X_filt[w == 1])
            self.models_tau_c[group].fit(X_filt[w == 0], d_c)
            self.models_tau_t[group].fit(X_filt[w == 1], d_t)
示例#11
0
    def fit(self, X, treatment, y):
        """
        Fits the DragonNet model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)

        y = np.hstack((y.reshape(-1, 1), treatment.reshape(-1, 1)))

        self.dragonnet = self.make_dragonnet(X.shape[1])

        metrics = [regression_loss, binary_classification_loss, treatment_accuracy, track_epsilon]

        if self.targeted_reg:
            loss = make_tarreg_loss(ratio=self.ratio, dragonnet_loss=self.loss_func)
        else:
            loss = self.loss_func

        self.dragonnet.compile(
            optimizer=Adam(lr=self.learning_rate),
            loss=loss, metrics=metrics)

        adam_callbacks = [
            TerminateOnNaN(),
            EarlyStopping(monitor='val_loss', patience=2, min_delta=0.),
            ReduceLROnPlateau(monitor='loss', factor=0.5, patience=5, verbose=self.verbose, mode='auto',
                              min_delta=1e-8, cooldown=0, min_lr=0)

        ]

        self.dragonnet.fit(X, y,
                           callbacks=adam_callbacks,
                           validation_split=self.val_split,
                           epochs=self.epochs,
                           batch_size=self.batch_size,
                           verbose=self.verbose)

        sgd_callbacks = [
            TerminateOnNaN(),
            EarlyStopping(monitor='val_loss', patience=40, min_delta=0.),
            ReduceLROnPlateau(monitor='loss', factor=0.5, patience=5, verbose=self.verbose, mode='auto',
                              min_delta=0., cooldown=0, min_lr=0)
        ]

        sgd_lr = 1e-5
        momentum = 0.9
        self.dragonnet.compile(optimizer=SGD(lr=sgd_lr, momentum=momentum, nesterov=True), loss=loss, metrics=metrics)
        self.dragonnet.fit(X, y,
                           callbacks=sgd_callbacks,
                           validation_split=self.val_split,
                           epochs=300,
                           batch_size=self.batch_size,
                           verbose=self.verbose)
示例#12
0
    def predict(self,
                X,
                treatment=None,
                y=None,
                return_components=False,
                verbose=True):
        """Predict treatment effects.
        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        yhat_cs = {}
        yhat_ts = {}

        for group in self.t_groups:
            model = self.models[group]

            # set the treatment column to zero (the control group)
            X_new = np.hstack((np.zeros((X.shape[0], 1)), X))
            yhat_cs[group] = model.predict(X_new)

            # set the treatment column to one (the treatment group)
            X_new[:, 0] = 1
            yhat_ts[group] = model.predict(X_new)

            if (y is not None) and (treatment is not None) and verbose:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                w = (treatment_filt == group).astype(int)
                y_filt = y[mask]

                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info('Error metrics for group {}'.format(group))
                regression_metrics(y_filt, yhat, w)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts

        return te
示例#13
0
    def _format_p(p, t_groups):
        """Format propensity scores into a dictionary of {treatment group: propensity scores}.

        Args:
            p (np.ndarray, pd.Series, or dict): propensity scores
            t_groups (list): treatment group names.

        Returns:
            dict of {treatment group: propensity scores}
        """
        check_p_conditions(p, t_groups)

        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {
                treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()
            }

        return p
示例#14
0
    def predict(self,
                X,
                treatment=None,
                y=None,
                p=None,
                return_components=False,
                verbose=True):
        """Predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series, optional): a treatment vector
            y (np.array or pd.Series, optional): an outcome vector
            verbose (bool, optional): whether to output progress logs
        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        yhat_cs = {}
        yhat_ts = {}

        for i, group in enumerate(self.t_groups):
            models_tau = self.models_tau[group]
            _te = np.r_[[model.predict(X)
                         for model in models_tau]].mean(axis=0)
            te[:, i] = np.ravel(_te)
            yhat_cs[group] = np.r_[[
                model.predict(X) for model in self.models_mu_c
            ]].mean(axis=0)
            yhat_ts[group] = np.r_[[
                model.predict(X) for model in self.models_mu_t[group]
            ]].mean(axis=0)

            if (y is not None) and (treatment is not None) and verbose:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                X_filt = X[mask]
                y_filt = y[mask]
                w = (treatment_filt == group).astype(int)

                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info("Error metrics for group {}".format(group))
                regression_metrics(y_filt, yhat, w)

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts
示例#15
0
    def predict(self, X):
        """Predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix

        Returns:
            (numpy.ndarray): Predictions of treatment effects.
        """
        X = convert_pd_to_np(X)
        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            dhat = self.models_tau[group].predict(X)
            te[:, i] = dhat

        return te
示例#16
0
    def fit(self, X, treatment, y, w):
        """Fits the 2SLS model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            w (np.array or pd.Series): an instrument vector
        """

        X, treatment, y, w = convert_pd_to_np(X, treatment, y, w)

        exog = sm.add_constant(np.c_[X, treatment])
        endog = y
        instrument = sm.add_constant(np.c_[X, w])

        self.iv_model = IV2SLS(endog=endog, exog=exog, instrument=instrument)
        self.iv_fit = self.iv_model.fit()
示例#17
0
    def estimate_ate(self, X, treatment, y, p=None):
        """Estimate the Average Treatment Effect (ATE).
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        self.fit(X, treatment, y)

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            ate[i] = self.models[group].coefficients[0]
            ate_lb[i] = self.models[group].conf_ints[0, 0]
            ate_ub[i] = self.models[group].conf_ints[0, 1]

        return ate, ate_lb, ate_ub
示例#18
0
    def fit(self, X, treatment, y):
        """Fit the inference model
        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models = {group: deepcopy(self.model) for group in self.t_groups}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]

            w = (treatment_filt == group).astype(int)
            X_new = np.hstack((w.reshape((-1, 1)), X_filt))
            self.models[group].fit(X_new, y_filt)
示例#19
0
    def fit(self, X, treatment, y, p=None):
        """Fit the inference model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            logger.info('Generating propensity score')
            p = dict()
            p_model = dict()
            for group in self.t_groups:
                mask = (treatment == group) | (treatment == self.control_name)
                treatment_filt = treatment[mask]
                X_filt = X[mask]
                w_filt = (treatment_filt == group).astype(int)
                w = (treatment == group).astype(int)
                p[group], p_model[group] = compute_propensity_score(
                    X=X_filt, treatment=w_filt, X_pred=X, treatment_pred=w)
            self.propensity_model = p_model
            self.propensity = p
        else:
            check_p_conditions(p, self.t_groups)

        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {
                treatment_name: convert_pd_to_np(_p)
                for treatment_name, _p in p.items()
            }

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_mu_c = {
            group: deepcopy(self.model_mu_c)
            for group in self.t_groups
        }
        self.models_mu_t = {
            group: deepcopy(self.model_mu_t)
            for group in self.t_groups
        }
        self.models_tau_c = {
            group: deepcopy(self.model_tau_c)
            for group in self.t_groups
        }
        self.models_tau_t = {
            group: deepcopy(self.model_tau_t)
            for group in self.t_groups
        }
        self.vars_c = {}
        self.vars_t = {}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)

            # Train outcome models
            self.models_mu_c[group].fit(X_filt[w == 0], y_filt[w == 0])
            self.models_mu_t[group].fit(X_filt[w == 1], y_filt[w == 1])

            # Calculate variances and treatment effects
            var_c = (y_filt[w == 0] -
                     self.models_mu_c[group].predict(X_filt[w == 0])).var()
            self.vars_c[group] = var_c
            var_t = (y_filt[w == 1] -
                     self.models_mu_t[group].predict(X_filt[w == 1])).var()
            self.vars_t[group] = var_t

            # Train treatment models
            d_c = self.models_mu_t[group].predict(
                X_filt[w == 0]) - y_filt[w == 0]
            d_t = y_filt[w == 1] - self.models_mu_c[group].predict(
                X_filt[w == 1])
            self.models_tau_c[group].fit(X_filt[w == 0], d_c)
            self.models_tau_t[group].fit(X_filt[w == 1], d_t)
示例#20
0
    def estimate_ate(self,
                     X,
                     treatment,
                     y,
                     p=None,
                     bootstrap_ci=False,
                     n_bootstraps=1000,
                     bootstrap_size=10000):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            bootstrap_ci (bool): whether run bootstrap for confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        te, dhat_cs, dhat_ts = self.fit_predict(X,
                                                treatment,
                                                y,
                                                p,
                                                return_components=True)
        X, treatment, y = convert_pd_to_np(X, treatment, y)

        if p is None:
            p = self.propensity
        else:
            check_p_conditions(p, self.t_groups)
        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {
                treatment_name: convert_pd_to_np(_p)
                for treatment_name, _p in p.items()
            }

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            _ate = te[:, i].mean()

            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            w = (treatment_filt == group).astype(int)
            prob_treatment = float(sum(w)) / w.shape[0]

            dhat_c = dhat_cs[group][mask]
            dhat_t = dhat_ts[group][mask]
            p_filt = p[group][mask]

            # SE formula is based on the lower bound formula (7) from Imbens, Guido W., and Jeffrey M. Wooldridge. 2009.
            # "Recent Developments in the Econometrics of Program Evaluation." Journal of Economic Literature
            se = np.sqrt(
                (self.vars_t[group] / prob_treatment + self.vars_c[group] /
                 (1 - prob_treatment) +
                 (p_filt * dhat_c + (1 - p_filt) * dhat_t).var()) / w.shape[0])

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_mu_c_global = deepcopy(self.models_mu_c)
            models_mu_t_global = deepcopy(self.models_mu_t)
            models_tau_c_global = deepcopy(self.models_tau_c)
            models_tau_t_global = deepcopy(self.models_tau_t)

            logger.info('Bootstrap Confidence Intervals for ATE')
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0],
                                             n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                cate_b = self.bootstrap(X,
                                        treatment,
                                        y,
                                        p,
                                        size=bootstrap_size)
                ate_bootstraps[:, n] = cate_b.mean()

            ate_lower = np.percentile(ate_bootstraps,
                                      (self.ate_alpha / 2) * 100,
                                      axis=1)
            ate_upper = np.percentile(ate_bootstraps,
                                      (1 - self.ate_alpha / 2) * 100,
                                      axis=1)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models_mu_c = deepcopy(models_mu_c_global)
            self.models_mu_t = deepcopy(models_mu_t_global)
            self.models_tau_c = deepcopy(models_tau_c_global)
            self.models_tau_t = deepcopy(models_tau_t_global)
            return ate, ate_lower, ate_upper
示例#21
0
    def fit(self, X, p, treatment, y, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
        """
        check_treatment_vector(treatment, self.control_name)
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        check_p_conditions(p, self.t_groups)
        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info('generating out-of-fold CV outcome estimates')
        yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1)

        for group in self.t_groups:
            treatment_mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[treatment_mask]
            w = (treatment_filt == group).astype(int)

            X_filt = X[treatment_mask]
            y_filt = y[treatment_mask]
            yhat_filt = yhat[treatment_mask]
            p_filt = p[group][treatment_mask]

            if verbose:
                logger.info('training the treatment effect model for {} with R-loss'.format(group))

            if self.early_stopping:
                X_train_filt, X_test_filt, y_train_filt, y_test_filt, yhat_train_filt, yhat_test_filt, \
                    w_train, w_test, p_train_filt, p_test_filt = train_test_split(
                        X_filt, y_filt, yhat_filt, w, p_filt,
                        test_size=self.test_size, random_state=self.random_state
                    )

                self.models_tau[group].fit(X=X_train_filt,
                                           y=(y_train_filt - yhat_train_filt) / (w_train - p_train_filt),
                                           sample_weight=(w_train - p_train_filt) ** 2,
                                           eval_set=[(X_test_filt,
                                                      (y_test_filt - yhat_test_filt) / (w_test - p_test_filt))],
                                           sample_weight_eval_set=[(w_test - p_test_filt) ** 2],
                                           eval_metric=self.effect_learner_eval_metric,
                                           early_stopping_rounds=self.early_stopping_rounds,
                                           verbose=verbose)

            else:
                self.models_tau[group].fit(X_filt, (y_filt - yhat_filt) / (w - p_filt),
                                           sample_weight=(w - p_filt) ** 2,
                                           eval_metric=self.effect_learner_eval_metric)

            self.vars_c[group] = (y_filt[w == 0] - yhat_filt[w == 0]).var()
            self.vars_t[group] = (y_filt[w == 1] - yhat_filt[w == 1]).var()
示例#22
0
    def estimate_ate(self, X, p, treatment, y, bootstrap_ci=False, n_bootstraps=1000, bootstrap_size=10000):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            p (np.ndarray or pd.Series or dict): an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1)
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            bootstrap_ci (bool): whether run bootstrap for confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            verbose (str): whether to output progress logs

        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        te = self.fit_predict(X, p, treatment, y)

        check_p_conditions(p, self.t_groups)
        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            w = (treatment == group).astype(int)
            prob_treatment = float(sum(w)) / X.shape[0]
            _ate = te[:, i].mean()

            se = (np.sqrt((self.vars_t[group] / prob_treatment)
                          + (self.vars_c[group] / (1 - prob_treatment))
                          + te[:, i].var())
                  / X.shape[0])

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            model_mu_global = deepcopy(self.model_mu)
            models_tau_global = deepcopy(self.models_tau)

            logger.info('Bootstrap Confidence Intervals for ATE')
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0], n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                cate_b = self.bootstrap(X, p, treatment, y, size=bootstrap_size)
                ate_bootstraps[:, n] = cate_b.mean()

            ate_lower = np.percentile(ate_bootstraps, (self.ate_alpha / 2) * 100, axis=1)
            ate_upper = np.percentile(ate_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=1)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.model_mu = deepcopy(model_mu_global)
            self.models_tau = deepcopy(models_tau_global)
            return ate, ate_lower, ate_upper
示例#23
0
    def estimate_ate(
        self,
        X,
        treatment=None,
        y=None,
        p=None,
        sample_weight=None,
        bootstrap_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        pretrain=False,
    ):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): only needed when pretrain=False, a treatment vector
            y (np.array or pd.Series):only needed when pretrain=False, an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the
                weight of each observation for `effect_learner`. If None, it assumes equal weight.
            bootstrap_ci (bool): whether run bootstrap for confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            pretrain (bool): whether a model has been fit, default False.
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        if pretrain:
            te = self.predict(X, p)
        else:
            if not len(treatment) or not len(y):
                raise ValueError("treatmeng and y must be provided when pretrain=False")
            te = self.fit_predict(X, treatment, y, p, sample_weight, return_ci=False)

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            w = (treatment == group).astype(int)
            prob_treatment = float(sum(w)) / X.shape[0]
            _ate = te[:, i].mean()

            se = (
                np.sqrt(
                    (self.vars_t[group] / prob_treatment)
                    + (self.vars_c[group] / (1 - prob_treatment))
                    + te[:, i].var()
                )
                / X.shape[0]
            )

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            model_mu_global = deepcopy(self.model_mu)
            models_tau_global = deepcopy(self.models_tau)

            logger.info("Bootstrap Confidence Intervals for ATE")
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0], n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                if p is None:
                    p = self.propensity
                else:
                    p = self._format_p(p, self.t_groups)
                cate_b = self.bootstrap(X, treatment, y, p, size=bootstrap_size)
                ate_bootstraps[:, n] = cate_b.mean()

            ate_lower = np.percentile(
                ate_bootstraps, (self.ate_alpha / 2) * 100, axis=1
            )
            ate_upper = np.percentile(
                ate_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=1
            )

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.model_mu = deepcopy(model_mu_global)
            self.models_tau = deepcopy(models_tau_global)
            return ate, ate_lower, ate_upper
示例#24
0
    def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the
                weight of each observation for `effect_learner`. If None, it assumes equal weight.
            verbose (bool, optional): whether to output progress logs
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        # initialize equal sample weight if it's not provided, for simplicity purpose
        sample_weight = (
            convert_pd_to_np(sample_weight)
            if sample_weight is not None
            else convert_pd_to_np(np.ones(len(y)))
        )
        assert len(sample_weight) == len(
            y
        ), "Data length must be equal for sample_weight and the input data"
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info("generating out-of-fold CV outcome estimates")
        yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1)

        for group in self.t_groups:
            treatment_mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[treatment_mask]
            w = (treatment_filt == group).astype(int)

            X_filt = X[treatment_mask]
            y_filt = y[treatment_mask]
            yhat_filt = yhat[treatment_mask]
            p_filt = p[group][treatment_mask]
            sample_weight_filt = sample_weight[treatment_mask]

            if verbose:
                logger.info(
                    "training the treatment effect model for {} with R-loss".format(
                        group
                    )
                )

            if self.early_stopping:
                (
                    X_train_filt,
                    X_test_filt,
                    y_train_filt,
                    y_test_filt,
                    yhat_train_filt,
                    yhat_test_filt,
                    w_train,
                    w_test,
                    p_train_filt,
                    p_test_filt,
                    sample_weight_train_filt,
                    sample_weight_test_filt,
                ) = train_test_split(
                    X_filt,
                    y_filt,
                    yhat_filt,
                    w,
                    p_filt,
                    sample_weight_filt,
                    test_size=self.test_size,
                    random_state=self.random_state,
                )

                weight = sample_weight_filt
                self.models_tau[group].fit(
                    X=X_train_filt,
                    y=(y_train_filt - yhat_train_filt) / (w_train - p_train_filt),
                    sample_weight=sample_weight_train_filt
                    * ((w_train - p_train_filt) ** 2),
                    eval_set=[
                        (
                            X_test_filt,
                            (y_test_filt - yhat_test_filt) / (w_test - p_test_filt),
                        )
                    ],
                    sample_weight_eval_set=[
                        sample_weight_test_filt * ((w_test - p_test_filt) ** 2)
                    ],
                    eval_metric=self.effect_learner_eval_metric,
                    early_stopping_rounds=self.early_stopping_rounds,
                    verbose=verbose,
                )

            else:
                self.models_tau[group].fit(
                    X_filt,
                    (y_filt - yhat_filt) / (w - p_filt),
                    sample_weight=sample_weight_filt * ((w - p_filt) ** 2),
                    eval_metric=self.effect_learner_eval_metric,
                )

            diff_c = y_filt[w == 0] - yhat_filt[w == 0]
            diff_t = y_filt[w == 1] - yhat_filt[w == 1]
            sample_weight_filt_c = sample_weight_filt[w == 0]
            sample_weight_filt_t = sample_weight_filt[w == 1]
            self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c)
            self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t)
示例#25
0
    def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True):
        """Fit the treatment effect and outcome models of the R learner.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the
                weight of each observation for `effect_learner`. If None, it assumes equal weight.
            verbose (bool, optional): whether to output progress logs
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        if sample_weight is not None:
            assert len(sample_weight) == len(
                y
            ), "Data length must be equal for sample_weight and the input data"
            sample_weight = convert_pd_to_np(sample_weight)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info("generating out-of-fold CV outcome estimates")
        yhat = cross_val_predict(self.model_mu, X, y, cv=self.cv, n_jobs=-1)

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            yhat_filt = yhat[mask]
            p_filt = p[group][mask]
            w = (treatment_filt == group).astype(int)

            weight = (w - p_filt) ** 2
            diff_c = y_filt[w == 0] - yhat_filt[w == 0]
            diff_t = y_filt[w == 1] - yhat_filt[w == 1]
            if sample_weight is not None:
                sample_weight_filt = sample_weight[mask]
                sample_weight_filt_c = sample_weight_filt[w == 0]
                sample_weight_filt_t = sample_weight_filt[w == 1]
                self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c)
                self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t)
                weight *= sample_weight_filt  # update weight
            else:
                self.vars_c[group] = diff_c.var()
                self.vars_t[group] = diff_t.var()

            if verbose:
                logger.info(
                    "training the treatment effect model for {} with R-loss".format(
                        group
                    )
                )
            self.models_tau[group].fit(
                X_filt, (y_filt - yhat_filt) / (w - p_filt), sample_weight=weight
            )
示例#26
0
    def fit_predict(
        self,
        X,
        assignment,
        treatment,
        y,
        p=None,
        pZ=None,
        return_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        return_components=False,
        verbose=True,
        seed=None,
        calibrate=True,
    ):
        """Fit the treatment effect and outcome models of the R learner and predict treatment effects.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            assignment (np.array or pd.Series): a (0,1)-valued assignment vector. The assignment is the
                instrumental variable that does not depend on unknown confounders. The assignment status
                influences treatment in a monotonic way, i.e. one can only be more likely to take the
                treatment if assigned.
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (2-tuple of np.ndarray or pd.Series or dict, optional): The first (second) element corresponds to
                unassigned (assigned) units. Each is an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1). If None will run
                ElasticNetPropensityModel() to generate the propensity scores.
            pZ (np.array or pd.Series, optional): an array of assignment probability of float (0,1); if None
                will run ElasticNetPropensityModel() to generate the assignment probability score.
            return_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            return_components (bool, optional): whether to return outcome for treatment and control seperately
            verbose (str): whether to output progress logs
            seed (int): random seed for cross-fitting
        Returns:
            (numpy.ndarray): Predictions of treatment effects for compliers, , i.e. those individuals
                who take the treatment only if they are assigned. Output dim: [n_samples, n_treatment]
                If return_ci, returns CATE [n_samples, n_treatment], LB [n_samples, n_treatment],
                UB [n_samples, n_treatment]
        """
        X, assignment, treatment, y = convert_pd_to_np(X, assignment, treatment, y)
        self.fit(X, assignment, treatment, y, p, seed, calibrate)

        if p is None:
            p = (self.propensity_0, self.propensity_1)
        else:
            check_p_conditions(p[0], self.t_groups)
            check_p_conditions(p[1], self.t_groups)

        if isinstance(p[0], (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = (
                {treatment_name: convert_pd_to_np(p[0])},
                {treatment_name: convert_pd_to_np(p[1])},
            )
        elif isinstance(p[0], dict):
            p = (
                {
                    treatment_name: convert_pd_to_np(_p)
                    for treatment_name, _p in p[0].items()
                },
                {
                    treatment_name: convert_pd_to_np(_p)
                    for treatment_name, _p in p[1].items()
                },
            )

        if pZ is None:
            pZ = self.propensity_assign

        te = self.predict(
            X, treatment=treatment, y=y, return_components=return_components
        )

        if not return_ci:
            return te
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_mu_c_global = deepcopy(self.models_mu_c)
            models_mu_t_global = deepcopy(self.models_mu_t)
            models_tau_global = deepcopy(self.models_tau)
            te_bootstraps = np.zeros(
                shape=(X.shape[0], self.t_groups.shape[0], n_bootstraps)
            )

            logger.info("Bootstrap Confidence Intervals")
            for i in tqdm(range(n_bootstraps)):
                te_b = self.bootstrap(
                    X, assignment, treatment, y, p, pZ, size=bootstrap_size, seed=seed
                )
                te_bootstraps[:, :, i] = te_b

            te_lower = np.percentile(te_bootstraps, (self.ate_alpha / 2) * 100, axis=2)
            te_upper = np.percentile(
                te_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=2
            )

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models_mu_c = deepcopy(models_mu_c_global)
            self.models_mu_t = deepcopy(models_mu_t_global)
            self.models_tau = deepcopy(models_tau_global)

            return (te, te_lower, te_upper)
示例#27
0
文件: slearner.py 项目: uber/causalml
    def estimate_ate(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        bootstrap_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        pretrain=False,
    ):
        """Estimate the Average Treatment Effect (ATE).

        Args:
            X (np.matrix, np.array, or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            return_ci (bool, optional): whether to return confidence intervals
            bootstrap_ci (bool): whether to return confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            pretrain (bool): whether a model has been fit, default False.
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """

        X, treatment, y = convert_pd_to_np(X, treatment, y)
        if pretrain:
            te, yhat_cs, yhat_ts = self.predict(X,
                                                treatment,
                                                y,
                                                return_components=True)
        else:
            te, yhat_cs, yhat_ts = self.fit_predict(X,
                                                    treatment,
                                                    y,
                                                    return_components=True)

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            _ate = te[:, i].mean()

            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)
            prob_treatment = float(sum(w)) / w.shape[0]

            yhat_c = yhat_cs[group][mask]
            yhat_t = yhat_ts[group][mask]

            se = np.sqrt(
                ((y_filt[w == 0] - yhat_c[w == 0]).var() /
                 (1 - prob_treatment) +
                 (y_filt[w == 1] - yhat_t[w == 1]).var() / prob_treatment +
                 (yhat_t - yhat_c).var()) / y_filt.shape[0])

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not return_ci:
            return ate
        elif return_ci and not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_global = deepcopy(self.models)

            logger.info("Bootstrap Confidence Intervals for ATE")
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0],
                                             n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                ate_b = self.bootstrap(X, treatment, y, size=bootstrap_size)
                ate_bootstraps[:, n] = ate_b.mean()

            ate_lower = np.percentile(ate_bootstraps,
                                      (self.ate_alpha / 2) * 100,
                                      axis=1)
            ate_upper = np.percentile(ate_bootstraps,
                                      (1 - self.ate_alpha / 2) * 100,
                                      axis=1)

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models = deepcopy(models_global)

            return ate, ate_lower, ate_upper
示例#28
0
    def estimate_ate(
        self,
        X,
        assignment,
        treatment,
        y,
        p=None,
        pZ=None,
        bootstrap_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        seed=None,
        calibrate=True,
    ):
        """Estimate the Average Treatment Effect (ATE) for compliers.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            assignment (np.array or pd.Series): an assignment vector. The assignment is the
                instrumental variable that does not depend on unknown confounders. The assignment status
                influences treatment in a monotonic way, i.e. one can only be more likely to take the
                treatment if assigned.
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (2-tuple of np.ndarray or pd.Series or dict, optional): The first (second) element corresponds to
                unassigned (assigned) units. Each is an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1). If None will run
                ElasticNetPropensityModel() to generate the propensity scores.
            pZ (np.array or pd.Series, optional): an array of assignment probability of float (0,1); if None
                will run ElasticNetPropensityModel() to generate the assignment probability score.
            bootstrap_ci (bool): whether run bootstrap for confidence intervals
            n_bootstraps (int): number of bootstrap iterations
            bootstrap_size (int): number of samples per bootstrap
            seed (int): random seed for cross-fitting
        Returns:
            The mean and confidence interval (LB, UB) of the ATE estimate.
        """
        te, yhat_cs, yhat_ts = self.fit_predict(
            X,
            assignment,
            treatment,
            y,
            p,
            return_components=True,
            seed=seed,
            calibrate=calibrate,
        )
        X, assignment, treatment, y = convert_pd_to_np(X, assignment, treatment, y)

        if p is None:
            p = (self.propensity_0, self.propensity_1)
        else:
            check_p_conditions(p[0], self.t_groups)
            check_p_conditions(p[1], self.t_groups)

        if isinstance(p[0], (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = (
                {treatment_name: convert_pd_to_np(p[0])},
                {treatment_name: convert_pd_to_np(p[1])},
            )
        elif isinstance(p[0], dict):
            p = (
                {
                    treatment_name: convert_pd_to_np(_p)
                    for treatment_name, _p in p[0].items()
                },
                {
                    treatment_name: convert_pd_to_np(_p)
                    for treatment_name, _p in p[1].items()
                },
            )

        ate = np.zeros(self.t_groups.shape[0])
        ate_lb = np.zeros(self.t_groups.shape[0])
        ate_ub = np.zeros(self.t_groups.shape[0])

        for i, group in enumerate(self.t_groups):
            _ate = te[:, i].mean()

            mask = (treatment == group) | (treatment == self.control_name)
            mask_1, mask_0 = mask & (assignment == 1), mask & (assignment == 0)
            Gamma = (treatment[mask_1] == group).mean() - (
                treatment[mask_0] == group
            ).mean()

            y_filt_1, y_filt_0 = y[mask_1], y[mask_0]
            yhat_0 = yhat_cs[group][mask_0]
            yhat_1 = yhat_ts[group][mask_1]
            treatment_filt_1, treatment_filt_0 = treatment[mask_1], treatment[mask_0]
            prob_treatment_1, prob_treatment_0 = (
                p[1][group][mask_1],
                p[0][group][mask_0],
            )
            w = (assignment[mask]).mean()

            part_1 = (
                (y_filt_1 - yhat_1).var()
                + _ate**2 * (treatment_filt_1 - prob_treatment_1).var()
                - 2
                * _ate
                * (y_filt_1 * treatment_filt_1 - yhat_1 * prob_treatment_1).mean()
            )
            part_0 = (
                (y_filt_0 - yhat_0).var()
                + _ate**2 * (treatment_filt_0 - prob_treatment_0).var()
                - 2
                * _ate
                * (y_filt_0 * treatment_filt_0 - yhat_0 * prob_treatment_0).mean()
            )
            part_2 = np.mean(
                (
                    yhat_ts[group][mask]
                    - yhat_cs[group][mask]
                    - _ate * (p[1][group][mask] - p[0][group][mask])
                )
                ** 2
            )

            # SE formula is based on the lower bound formula (9) from Frölich, Markus. 2006.
            # "Nonparametric IV estimation of local average treatment effects wth covariates."
            # Journal of Econometrics.
            se = np.sqrt((part_1 / w + part_2 / (1 - w)) + part_2) / Gamma

            _ate_lb = _ate - se * norm.ppf(1 - self.ate_alpha / 2)
            _ate_ub = _ate + se * norm.ppf(1 - self.ate_alpha / 2)

            ate[i] = _ate
            ate_lb[i] = _ate_lb
            ate_ub[i] = _ate_ub

        if not bootstrap_ci:
            return ate, ate_lb, ate_ub
        else:
            t_groups_global = self.t_groups
            _classes_global = self._classes
            models_mu_c_global = deepcopy(self.models_mu_c)
            models_mu_t_global = deepcopy(self.models_mu_t)
            models_tau_global = deepcopy(self.models_tau)

            logger.info("Bootstrap Confidence Intervals for ATE")
            ate_bootstraps = np.zeros(shape=(self.t_groups.shape[0], n_bootstraps))

            for n in tqdm(range(n_bootstraps)):
                cate_b = self.bootstrap(
                    X, assignment, treatment, y, p, pZ, size=bootstrap_size, seed=seed
                )
                ate_bootstraps[:, n] = cate_b.mean()

            ate_lower = np.percentile(
                ate_bootstraps, (self.ate_alpha / 2) * 100, axis=1
            )
            ate_upper = np.percentile(
                ate_bootstraps, (1 - self.ate_alpha / 2) * 100, axis=1
            )

            # set member variables back to global (currently last bootstrapped outcome)
            self.t_groups = t_groups_global
            self._classes = _classes_global
            self.models_mu_c = deepcopy(models_mu_c_global)
            self.models_mu_t = deepcopy(models_mu_t_global)
            self.models_tau = deepcopy(models_tau_global)
            return ate, ate_lower, ate_upper
示例#29
0
    def fit(
        self, X, assignment, treatment, y, p=None, pZ=None, seed=None, calibrate=True
    ):
        """Fit the inference model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            assignment (np.array or pd.Series): a (0,1)-valued assignment vector. The assignment is the
                instrumental variable that does not depend on unknown confounders. The assignment status
                influences treatment in a monotonic way, i.e. one can only be more likely to take the
                treatment if assigned.
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (2-tuple of np.ndarray or pd.Series or dict, optional): The first (second) element corresponds to
                unassigned (assigned) units. Each is an array of propensity scores of float (0,1) in the single-treatment
                case; or, a dictionary of treatment groups that map to propensity vectors of float (0,1). If None will run
                ElasticNetPropensityModel() to generate the propensity scores.
            pZ (np.array or pd.Series, optional): an array of assignment probability of float (0,1); if None
                will run ElasticNetPropensityModel() to generate the assignment probability score.
            seed (int): random seed for cross-fitting
        """
        X, treatment, assignment, y = convert_pd_to_np(X, treatment, assignment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}

        # The estimator splits the data into 3 partitions for cross-fit on the propensity score estimation,
        # the outcome regression, and the treatment regression on the doubly robust estimates. The use of
        # the partitions is rotated so we do not lose on the sample size.  We do not cross-fit the assignment
        # score estimation as the assignment process is usually simple.
        cv = KFold(n_splits=3, shuffle=True, random_state=seed)
        split_indices = [index for _, index in cv.split(y)]

        self.models_mu_c = {
            group: [
                deepcopy(self.model_mu_c),
                deepcopy(self.model_mu_c),
                deepcopy(self.model_mu_c),
            ]
            for group in self.t_groups
        }
        self.models_mu_t = {
            group: [
                deepcopy(self.model_mu_t),
                deepcopy(self.model_mu_t),
                deepcopy(self.model_mu_t),
            ]
            for group in self.t_groups
        }
        self.models_tau = {
            group: [
                deepcopy(self.model_tau),
                deepcopy(self.model_tau),
                deepcopy(self.model_tau),
            ]
            for group in self.t_groups
        }

        if p is None:
            self.propensity_1 = {
                group: np.zeros(y.shape[0]) for group in self.t_groups
            }  # propensity scores for those assigned
            self.propensity_0 = {
                group: np.zeros(y.shape[0]) for group in self.t_groups
            }  # propensity scores for those not assigned
        if pZ is None:
            self.propensity_assign, _ = compute_propensity_score(
                X=X,
                treatment=assignment,
                X_pred=X,
                treatment_pred=assignment,
                calibrate_p=calibrate,
            )
        else:
            self.propensity_assign = pZ

        for ifold in range(3):
            treatment_idx = split_indices[ifold]
            outcome_idx = split_indices[(ifold + 1) % 3]
            tau_idx = split_indices[(ifold + 2) % 3]

            treatment_treat, treatment_out, treatment_tau = (
                treatment[treatment_idx],
                treatment[outcome_idx],
                treatment[tau_idx],
            )
            assignment_treat, assignment_out, assignment_tau = (
                assignment[treatment_idx],
                assignment[outcome_idx],
                assignment[tau_idx],
            )
            y_out, y_tau = y[outcome_idx], y[tau_idx]
            X_treat, X_out, X_tau = X[treatment_idx], X[outcome_idx], X[tau_idx]
            pZ_tau = self.propensity_assign[tau_idx]

            if p is None:
                logger.info("Generating propensity score")
                cur_p_1 = dict()
                cur_p_0 = dict()

                for group in self.t_groups:
                    mask = (treatment_treat == group) | (
                        treatment_treat == self.control_name
                    )
                    mask_1, mask_0 = mask & (assignment_treat == 1), mask & (
                        assignment_treat == 0
                    )
                    cur_p_1[group], _ = compute_propensity_score(
                        X=X_treat[mask_1],
                        treatment=(treatment_treat[mask_1] == group).astype(int),
                        X_pred=X_tau,
                        treatment_pred=(treatment_tau == group).astype(int),
                    )
                    if (treatment_treat[mask_0] == group).sum() == 0:
                        cur_p_0[group] = np.zeros(X_tau.shape[0])
                    else:
                        cur_p_0[group], _ = compute_propensity_score(
                            X=X_treat[mask_0],
                            treatment=(treatment_treat[mask_0] == group).astype(int),
                            X_pred=X_tau,
                            treatment_pred=(treatment_tau == group).astype(int),
                        )
                    self.propensity_1[group][tau_idx] = cur_p_1[group]
                    self.propensity_0[group][tau_idx] = cur_p_0[group]
            else:
                cur_p_1 = dict()
                cur_p_0 = dict()
                if isinstance(p[0], (np.ndarray, pd.Series)):
                    cur_p_0 = {self.t_groups[0]: convert_pd_to_np(p[0][tau_idx])}
                else:
                    cur_p_0 = {g: prop[tau_idx] for g, prop in p[0].items()}
                check_p_conditions(cur_p_0, self.t_groups)

                if isinstance(p[1], (np.ndarray, pd.Series)):
                    cur_p_1 = {self.t_groups[0]: convert_pd_to_np(p[1][tau_idx])}
                else:
                    cur_p_1 = {g: prop[tau_idx] for g, prop in p[1].items()}
                check_p_conditions(cur_p_1, self.t_groups)

            logger.info("Generate outcome regressions")
            for group in self.t_groups:
                mask = (treatment_out == group) | (treatment_out == self.control_name)
                mask_1, mask_0 = mask & (assignment_out == 1), mask & (
                    assignment_out == 0
                )
                self.models_mu_c[group][ifold].fit(X_out[mask_0], y_out[mask_0])
                self.models_mu_t[group][ifold].fit(X_out[mask_1], y_out[mask_1])

            logger.info("Fit pseudo outcomes from the DR formula")

            for group in self.t_groups:
                mask = (treatment_tau == group) | (treatment_tau == self.control_name)
                treatment_filt = treatment_tau[mask]
                X_filt = X_tau[mask]
                y_filt = y_tau[mask]
                w_filt = (treatment_filt == group).astype(int)
                p_1_filt = cur_p_1[group][mask]
                p_0_filt = cur_p_0[group][mask]
                z_filt = assignment_tau[mask]
                pZ_filt = pZ_tau[mask]
                mu_t = self.models_mu_t[group][ifold].predict(X_filt)
                mu_c = self.models_mu_c[group][ifold].predict(X_filt)
                dr = (
                    z_filt * (y_filt - mu_t) / pZ_filt
                    - (1 - z_filt) * (y_filt - mu_c) / (1 - pZ_filt)
                    + mu_t
                    - mu_c
                )
                weight = (
                    z_filt * (w_filt - p_1_filt) / pZ_filt
                    - (1 - z_filt) * (w_filt - p_0_filt) / (1 - pZ_filt)
                    + p_1_filt
                    - p_0_filt
                )
                dr /= weight
                self.models_tau[group][ifold].fit(X_filt, dr, sample_weight=weight**2)
示例#30
0
    def fit(self, X, treatment, y, p=None, seed=None):
        """Fit the inference model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
            seed (int): random seed for cross-fitting
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()
        self._classes = {group: i for i, group in enumerate(self.t_groups)}

        # The estimator splits the data into 3 partitions for cross-fit on the propensity score estimation,
        # the outcome regression, and the treatment regression on the doubly robust estimates. The use of
        # the partitions is rotated so we do not lose on the sample size.
        cv = KFold(n_splits=3, shuffle=True, random_state=seed)
        split_indices = [index for _, index in cv.split(y)]

        self.models_mu_c = [
            deepcopy(self.model_mu_c),
            deepcopy(self.model_mu_c),
            deepcopy(self.model_mu_c),
        ]
        self.models_mu_t = {
            group: [
                deepcopy(self.model_mu_t),
                deepcopy(self.model_mu_t),
                deepcopy(self.model_mu_t),
            ]
            for group in self.t_groups
        }
        self.models_tau = {
            group: [
                deepcopy(self.model_tau),
                deepcopy(self.model_tau),
                deepcopy(self.model_tau),
            ]
            for group in self.t_groups
        }
        if p is None:
            self.propensity = {
                group: np.zeros(y.shape[0])
                for group in self.t_groups
            }

        for ifold in range(3):
            treatment_idx = split_indices[ifold]
            outcome_idx = split_indices[(ifold + 1) % 3]
            tau_idx = split_indices[(ifold + 2) % 3]

            treatment_treat, treatment_out, treatment_tau = (
                treatment[treatment_idx],
                treatment[outcome_idx],
                treatment[tau_idx],
            )
            y_out, y_tau = y[outcome_idx], y[tau_idx]
            X_treat, X_out, X_tau = X[treatment_idx], X[outcome_idx], X[
                tau_idx]

            if p is None:
                logger.info("Generating propensity score")
                cur_p = dict()

                for group in self.t_groups:
                    mask = (treatment_treat == group) | (treatment_treat
                                                         == self.control_name)
                    treatment_filt = treatment_treat[mask]
                    X_filt = X_treat[mask]
                    w_filt = (treatment_filt == group).astype(int)
                    w = (treatment_tau == group).astype(int)
                    cur_p[group], _ = compute_propensity_score(
                        X=X_filt,
                        treatment=w_filt,
                        X_pred=X_tau,
                        treatment_pred=w)
                    self.propensity[group][tau_idx] = cur_p[group]
            else:
                cur_p = dict()
                if isinstance(p, (np.ndarray, pd.Series)):
                    cur_p = {self.t_groups[0]: convert_pd_to_np(p[tau_idx])}
                else:
                    cur_p = {g: prop[tau_idx] for g, prop in p.items()}
                check_p_conditions(cur_p, self.t_groups)

            logger.info("Generate outcome regressions")
            self.models_mu_c[ifold].fit(
                X_out[treatment_out == self.control_name],
                y_out[treatment_out == self.control_name],
            )
            for group in self.t_groups:
                self.models_mu_t[group][ifold].fit(
                    X_out[treatment_out == group],
                    y_out[treatment_out == group])

            logger.info("Fit pseudo outcomes from the DR formula")

            for group in self.t_groups:
                mask = (treatment_tau == group) | (treatment_tau
                                                   == self.control_name)
                treatment_filt = treatment_tau[mask]
                X_filt = X_tau[mask]
                y_filt = y_tau[mask]
                w_filt = (treatment_filt == group).astype(int)
                p_filt = cur_p[group][mask]
                mu_t = self.models_mu_t[group][ifold].predict(X_filt)
                mu_c = self.models_mu_c[ifold].predict(X_filt)
                dr = ((w_filt - p_filt) / p_filt / (1 - p_filt) *
                      (y_filt - mu_t * w_filt - mu_c *
                       (1 - w_filt)) + mu_t - mu_c)
                self.models_tau[group][ifold].fit(X_filt, dr)