示例#1
0
    def _plot_get_source(self, conf_list, runs, X, inc_list, hp_names):
        """
        Create ColumnDataSource with all the necessary data
        Contains for each configuration evaluated on any run:

          - all parameters and values
          - origin (if conflicting, origin from best run counts)
          - type (default, incumbent or candidate)
          - # of runs
          - size
          - color

        Parameters
        ----------
        conf_list: list[Configuration]
            configurations
        runs: list[int]
            runs per configuration (same order as conf_list)
        X: np.array
            configuration-parameters as 2-dimensional array
        inc_list: list[Configuration]
            incumbents for this conf-run
        hp_names: list[str]
            names of hyperparameters

        Returns
        -------
        source: ColumnDataSource
            source with attributes as requested
        """
        # Remove all configurations without any runs
        keep = [i for i in range(len(runs)) if runs[i] > 0]
        runs = np.array(runs)[keep]
        conf_list = np.array(conf_list)[keep]
        X = X[keep]

        source = ColumnDataSource(data=dict(x=X[:, 0], y=X[:, 1]))
        for k in hp_names:  # Add parameters for each config
            source.add([c[k] if c[k] else "None" for c in conf_list],
                       escape_parameter_name(k))
        default = conf_list[0].configuration_space.get_default_configuration()
        conf_types = [
            "Default" if c == default else "Final Incumbent" if c
            == inc_list[-1] else "Incumbent" if c in inc_list else "Candidate"
            for c in conf_list
        ]
        # We group "Local Search" and "Random Search (sorted)" both into local
        origins = [self._get_config_origin(c) for c in conf_list]
        source.add(conf_types, 'type')
        source.add(origins, 'origin')
        sizes = self._get_size(runs)
        sizes = [
            s * 3 if conf_types[idx] == "Default" else s
            for idx, s in enumerate(sizes)
        ]
        source.add(sizes, 'size')
        source.add(self._get_color(source.data['type']), 'color')
        source.add(runs, 'runs')
        # To enforce zorder, we categorize all entries according to their size
        # Since we plot all different zorder-levels sequentially, we use a
        # manually defined level of influence
        num_bins = 20  # How fine-grained the size-ordering should be
        min_size, max_size = min(source.data['size']), max(source.data['size'])
        step_size = (max_size - min_size) / num_bins
        if step_size == 0:
            step_size = 1
        zorder = [
            str(int((s - min_size) / step_size)) for s in source.data['size']
        ]
        source.add(zorder, 'zorder')  # string, so we can apply group filter

        return source
示例#2
0
    def plot(self,
             X,
             conf_list: list,
             runs_per_quantile,
             inc_list: list = None,
             contour_data=None,
             time_slider=False):
        """
        plots sampled configuration in 2d-space;
        uses bokeh for interactive plot
        saves results in self.output, if set

        Parameters
        ----------
        X: np.array
            np.array with 2-d coordinates for each configuration
        conf_list: list
            list of ALL configurations in the same order as X
        runs_per_quantile: list[np.array]
            configurator-run to be analyzed, as a np.array with
            the number of target-algorithm-runs per config per quantile.
        inc_list: list
            list of incumbents (Configuration)
        contour_data: list
            contour data (xx,yy,Z)
        time_slider: bool
            whether or not to have a time_slider-widget on cfp-plot
            INCREASES FILE-SIZE DRAMATICALLY

        Returns
        -------
        (script, div): str
            script and div of the bokeh-figure
        over_time_paths: List[str]
            list with paths to the different quantiled timesteps of the
            configurator run (for static evaluation)
        """
        if not inc_list:
            inc_list = []
        over_time_paths = []  # development of the search space over time

        hp_names = [
            k.name for k in  # Hyperparameter names
            conf_list[0].configuration_space.get_hyperparameters()
        ]

        # Get individual sources for quantiles
        sources = [
            self._plot_get_source(conf_list, quantiled_run, X, inc_list,
                                  hp_names)
            for quantiled_run in runs_per_quantile
        ]

        # Define what appears in tooltips
        # TODO add only important parameters (needs to change order of exec pimp before conf-footprints)
        hover = HoverTool(
            tooltips=[('type', '@type'), ('origin',
                                          '@origin'), ('runs', '@runs')] +
            [(k, '@' + escape_parameter_name(k)) for k in hp_names])

        # bokeh-figure
        x_range = [min(X[:, 0]) - 1, max(X[:, 0]) + 1]
        y_range = [min(X[:, 1]) - 1, max(X[:, 1]) + 1]

        scatter_glyph_render_groups = []
        for idx, source in enumerate(sources):
            if not time_slider or idx == 0:
                # Only plot all quantiles in one plot if timeslider is on
                p = figure(plot_height=500,
                           plot_width=600,
                           tools=[hover, 'save'],
                           x_range=x_range,
                           y_range=y_range)
                if contour_data is not None:
                    p = self._plot_contour(p, contour_data, x_range, y_range)
            views, markers = self._plot_create_views(source)
            self.logger.debug("Plotting quantile %d!", idx)
            scatter_glyph_render_groups.append(
                self._plot_scatter(p, source, views, markers))
            if self.output_dir:
                file_path = "cfp_over_time/configurator_footprint" + str(
                    idx) + ".png"
                over_time_paths.append(os.path.join(self.output_dir,
                                                    file_path))
                self.logger.debug("Saving plot to %s", over_time_paths[-1])
                export_bokeh(p, over_time_paths[-1], self.logger)

        if time_slider:
            self.logger.debug("Adding timeslider")
            slider = self._plot_get_timeslider(scatter_glyph_render_groups)
            layout = column(p, widgetbox(slider))
        else:
            self.logger.debug("Not adding timeslider")
            layout = column(p)

        script, div = components(layout)

        if self.output_dir:
            path = os.path.join(self.output_dir,
                                "content/images/configurator_footprint.png")
            export_bokeh(p, path, self.logger)

        return (script, div), over_time_paths
示例#3
0
    def plot(self,
             X,
             conf_list: list,
             runs_per_quantile,
             inc_list: list=None,
             contour_data=None,
             use_timeslider=False,
             use_checkbox=True,
             timeslider_labels=None):
        """
        plots sampled configuration in 2d-space;
        uses bokeh for interactive plot
        saves results in self.output, if set

        Parameters
        ----------
        X: np.array
            np.array with 2-d coordinates for each configuration
        conf_list: list
            list of ALL configurations in the same order as X
        runs_per_quantile: list[np.array]
            configurator-run to be analyzed, as a np.array with
            the number of target-algorithm-runs per config per quantile.
        inc_list: list
            list of incumbents (Configuration)
        contour_data: list
            contour data (xx,yy,Z)
        use_timeslider: bool
            whether or not to have a time_slider-widget on cfp-plot
            INCREASES FILE-SIZE DRAMATICALLY
        use_checkbox: bool
            have checkboxes to toggle individual runs

        Returns
        -------
        (script, div): str
            script and div of the bokeh-figure
        over_time_paths: List[str]
            list with paths to the different quantiled timesteps of the
            configurator run (for static evaluation)
        """
        if not inc_list:
            inc_list = []
        over_time_paths = []  # development of the search space over time

        hp_names = [k.name for k in  # Hyperparameter names
                    conf_list[0].configuration_space.get_hyperparameters()]

        # bokeh-figure
        x_range = [min(X[:, 0]) - 1, max(X[:, 0]) + 1]
        y_range = [min(X[:, 1]) - 1, max(X[:, 1]) + 1]

        # Get individual sources for quantiles
        sources, used_configs = zip(*[self._plot_get_source(conf_list, quantiled_run, X, inc_list, hp_names)
                                      for quantiled_run in runs_per_quantile])

        # We collect all glyphs in one list
        # Then we have to dicts to identify groups of glyphs (for interactivity)
        # They map the name of the group to a list of indices (of the respective glyphs that are in the group)
        # Those indices refer to the main list of all glyphs
        # This is necessary to enable interactivity for two inputs at the same time
        all_glyphs = []
        overtime_groups = {}
        run_groups = {run : [] for run in self.configs_in_run.keys()}

        # Iterate over quantiles (this updates overtime_groups)
        for idx, source, u_cfgs in zip(range(len(sources)), sources, used_configs):
            # Create new plot if necessary (only plot all quantiles in one single plot if timeslider is on)
            if not use_timeslider or idx == 0:
                p = self._create_figure(x_range, y_range)
                if contour_data is not None:  # TODO
                    contour_handles, color_mapper = self._plot_contour(p, contour_data, x_range, y_range)

            # Create views and scatter
            views, views_by_run, markers = self._create_views(source, u_cfgs)
            scatter_handles = self._scatter(p, source, views, markers)
            self.logger.debug("Quantile %d: %d scatter-handles", idx, len(scatter_handles))
            if len(scatter_handles) == 0:
                self.logger.debug("No configs in quantile %d (?!)", idx)
                continue

            # Add to groups
            start = len(all_glyphs)
            all_glyphs.extend(scatter_handles)
            overtime_groups[str(idx)] = [str(i) for i in range(start, len(all_glyphs))]
            for run, indices in views_by_run.items():
                run_groups[run].extend([str(start + i) for i in indices])

            # Write to file
            if self.output_dir:
                file_path = "cfp_over_time/configurator_footprint" + str(idx) + ".png"
                over_time_paths.append(os.path.join(self.output_dir, file_path))
                self.logger.debug("Saving plot to %s", over_time_paths[-1])
                export_bokeh(p, over_time_paths[-1], self.logger)

        # Add hovertool (define what appears in tooltips)
        # TODO add only important parameters (needs to change order of exec pimp before conf-footprints)
        hover = HoverTool(tooltips=[('type', '@type'), ('origin', '@origin'), ('runs', '@runs')] +
                                   [(k, '@' + escape_parameter_name(k)) for k in hp_names],
                          renderers=all_glyphs)
        p.add_tools(hover)

        # Build dashboard
        timeslider, checkbox, select_all, select_none, checkbox_title = self._get_widgets(all_glyphs, overtime_groups, run_groups,
                                                                                          slider_labels=timeslider_labels)
        contour_checkbox, contour_title = self._contour_radiobuttongroup(contour_handles, color_mapper)
        layout = p
        if use_timeslider:
            self.logger.debug("Adding timeslider")
            layout = column(layout, widgetbox(timeslider))
        if use_checkbox:
            self.logger.debug("Adding checkboxes")
            layout = row(layout,
                         column(widgetbox(checkbox_title),
                                widgetbox(checkbox),
                                row(widgetbox(select_all, width=100),
                                    widgetbox(select_none, width=100)),
                                widgetbox(contour_title),
                                widgetbox(contour_checkbox)))

        if self.output_dir:
            path = os.path.join(self.output_dir, "content/images/configurator_footprint.png")
            export_bokeh(p, path, self.logger)

        return layout, over_time_paths