def test_iterator(chain_of_integrators):
    analogSignals = [ConstantSignal(0.1)]
    digitalControl = DigitalControl(Ts, M)
    statespacesimulator = StateSpaceSimulator(chain_of_integrators["system"],
                                              digitalControl,
                                              analogSignals,
                                              t_stop=Ts * 1000)
    for control_signal in statespacesimulator:
        pass
示例#2
0
def test_estimation_with_circuit_simulator():
    eta2 = 1e12
    K1 = 1000
    K2 = 0

    analogSystem = AnalogSystem(A, B, CT, Gamma, Gamma_tildeT)
    # analogSignals = [Sinusoidal(0.5, 10)]
    analogSignals = [ConstantSignal(0.25)]
    digitalControl = DigitalControl(Ts, M)
    circuitSimulator = StateSpaceSimulator(analogSystem,
                                           digitalControl,
                                           analogSignals,
                                           t_stop=Ts * 1000)
    estimator = DigitalEstimator(analogSystem, digitalControl, eta2, K1, K2)
    estimator(circuitSimulator)
    for est in estimator:
        print(est)
def test_large_integrator():
    N = 20
    M = N
    A = np.eye(N) * rho + np.eye(N, k=-1) * beta
    B = np.zeros((N, 1))
    B[0] = beta
    CT = np.zeros((N, 1)).transpose()
    CT[-1] = 1.0
    Gamma_tildeT = np.eye(N)
    Gamma = Gamma_tildeT * (-beta)
    analogSystem = AnalogSystem(A, B, CT, Gamma, Gamma_tildeT)
    analogSignals = [ConstantSignal(0.1)]
    digitalControl = DigitalControl(Ts, M)
    statespacesimulator = StateSpaceSimulator(analogSystem,
                                              digitalControl,
                                              analogSignals,
                                              t_stop=Ts * 1000)
    for control_signal in statespacesimulator:
        pass
示例#4
0
def main():
    # Analog system
    analog_system = ChainOfIntegrators(betaVec, rhoVec, kappaVec)

    # Initialize the digital control.
    digital_control = DigitalControl(T, M)

    # Instantiate the analog signal
    analog_signal = Sinusodial(amplitude, frequency, phase, offset)

    # Instantiate the simulator.
    simulator = StateSpaceSimulator(analog_system,
                                    digital_control, [analog_signal],
                                    t_stop=end_time)
    # Depending on your analog system the step above might take some time to
    # compute as it involves precomputing solutions to initial value problems.

    # Construct byte stream.
    byte_stream = control_signal_2_byte_stream(simulator, M)
    write_byte_stream_to_file("./temp.adc", byte_stream)
    os.remove("./temp.adc")
示例#5
0
# Set the peak amplitude.
amplitude = 2.5  # 2.5 V is the theoretical limit for the hardware prototype
# Choose the sinusoidal frequency via an oversampling ratio (OSR).
OSR = 1 << 8
frequency = 1.0 / (T * OSR)
# Instantiate the analog signal
analog_signal = Sinusoidal(amplitude, frequency)
# print to ensure correct parametrization.
print(analog_signal)

# simulate for 1024 cycles
n_cycles = 1 << 10
end_time = T * n_cycles
# Instantiate the simulator.
simulator = StateSpaceSimulator(pcb.analog_system,
                                pcb.digital_control, [analog_signal],
                                t_stop=end_time)

##############################################################################
# Finally we extract the bitstream and store it in a numpy array.

ctrl_stream = np.zeros((n_cycles, M))
for index, s in enumerate(simulator):
    ctrl_stream[index, :] = np.array(s)

##############################################################################
# -------------------
# Barcode Style
# -------------------
# We want to display the individual control bit signals in a barcode manner.
# We achieve this by filling the area between the rectangular control signals
示例#6
0
from cbadc.simulator import StateSpaceSimulator

# Set simulation precision parameters
atol = 1e-6
rtol = 1e-12
max_step = T / 10.

# Instantiate digital controls
digital_control1 = DigitalControl(T, M)
digital_control2 = DigitalControl(T, M)
print(digital_control1)

# Instantiate simulators.
simulator1 = StateSpaceSimulator(analog_system,
                                 digital_control1, [analog_signal],
                                 atol=atol,
                                 rtol=rtol,
                                 max_step=max_step)
simulator2 = StateSpaceSimulator(analog_system,
                                 digital_control2, [analog_signal],
                                 atol=atol,
                                 rtol=rtol,
                                 max_step=max_step)

print(simulator1)

###############################################################################
# Default and Mid point FIR Filter
# --------------------------------
#
# Next we instantiate the quadratic and default estimator
def test_initialization(chain_of_integrators):
    analogSignals = [ConstantSignal(0.1)]
    digitalControl = DigitalControl(Ts, M)
    StateSpaceSimulator(chain_of_integrators["system"], digitalControl,
                        analogSignals)
示例#8
0
def test_benchmark_state_space_simulation_algorithm(benchmark):
    est = StateSpaceSimulator(analogSystem, digitalControl, analogSignals)
    result = benchmark(iterate_through, est)
    assert (result == size)
示例#9
0
def test_estimation_with_circuit_simulator():
    eta2 = 1e12

    K1 = 1 << 10
    K2 = 1 << 10
    size = K2 << 2
    window = 1000
    size_2 = size // 2
    window_2 = window // 2
    left_w = size_2 - window_2
    right_w = size_2 + window_2

    analogSystem = AnalogSystem(A, B, CT, Gamma, Gamma_tildeT)
    analogSignals = [Sinusodial(amplitude, frequency, phase)]
    digitalControl1 = DigitalControl(Ts, M)
    digitalControl2 = DigitalControl(Ts, M)
    digitalControl3 = DigitalControl(Ts, M)
    digitalControl4 = DigitalControl(Ts, M)

    tf_abs = np.abs(
        analogSystem.transfer_function_matrix(np.array([2 * np.pi * frequency
                                                        ])))
    print(tf_abs, tf_abs.shape)

    simulator1 = StateSpaceSimulator(analogSystem, digitalControl1,
                                     analogSignals)
    simulator2 = StateSpaceSimulator(analogSystem, digitalControl2,
                                     analogSignals)
    simulator3 = StateSpaceSimulator(analogSystem, digitalControl3,
                                     analogSignals)
    simulator4 = StateSpaceSimulator(analogSystem, digitalControl4,
                                     analogSignals)
    estimator1 = DigitalEstimator(analogSystem, digitalControl1, eta2, K1, K2)
    estimator2 = ParallelEstimator(analogSystem, digitalControl2, eta2, K1, K2)
    estimator3 = FIRFilter(analogSystem, digitalControl3, eta2, K1, K2)
    estimator4 = IIRFilter(analogSystem, digitalControl4, eta2, K2)
    estimator1(simulator1)
    estimator2(simulator2)
    estimator3(simulator3)
    estimator4(simulator4)

    tf_1 = estimator1.signal_transfer_function(
        np.array([2 * np.pi * frequency]))[0]

    e1_array = np.zeros(size)
    e2_array = np.zeros(size)
    e3_array = np.zeros(size)
    e4_array = np.zeros(size)
    e1_error = 0
    e2_error = 0
    e3_error = 0
    e4_error = 0

    for index in range(size):
        e1 = estimator1.__next__()
        e2 = estimator2.__next__()
        e3 = estimator3.__next__()
        e4 = estimator4.__next__()
        e1_array[index] = e1
        e2_array[index] = e2
        e3_array[index] = e3
        e4_array[index] = e4
        t = index * Ts
        u = analogSignals[0].evaluate(t)
        u_lag = analogSignals[0].evaluate(t - estimator4.filter_lag() * Ts)
        if (index > left_w and index < right_w):
            print(
                f"Time: {t: 0.2f}, Input Signal: {u * tf_1}, e1: {e1}, e2: {e2}, e3: {e3}, e4: {e4}"
            )
            e1_error += np.abs(e1 - u * tf_1)**2
            e2_error += np.abs(e2 - u * tf_1)**2
            e3_error += np.abs(e3 - u_lag * tf_1)**2
            e4_error += np.abs(e4 - u_lag * tf_1)**2
    e1_error /= window
    e2_error /= window
    e3_error /= window
    e4_error /= window
    print(f"""Digital estimator error:        {e1_error}, {10 *
        np.log10(e1_error)} dB""")
    print(f"""Parallel estimator error:       {e2_error}, {10 *
        np.log10(e2_error)} dB""")
    print(f"""FIR filter estimator error:     {e3_error}, {10 *
        np.log10(e3_error)} dB""")
    print(f"""IIR filter estimator error:     {e4_error}, {10 *
        np.log10(e4_error)} dB""")

    assert (np.allclose(e1_error, 0, rtol=1e-6, atol=1e-6))
    assert (np.allclose(e2_error, 0, rtol=1e-6, atol=1e-6))
    assert (np.allclose(e3_error, 0, rtol=1e-6, atol=1e-6))
    assert (np.allclose(e4_error, 0, rtol=1e-6, atol=1e-6))
示例#10
0
 def setup():
     StateSpaceSimulator(analogSystem, digitalControl, analogSignals)
###############################################################################
# Simulating
# -------------
#
# Next, we set up the simulator. Here we use the
# :py:class:`cbadc.simulator.StateSpaceSimulator` for simulating the
# involved differential equations as outlined in
# :py:class:`cbadc.analog_system.AnalogSystem`.
#

# Simulate for 2^18 control cycles.
end_time = T * (1 << 18)

# Instantiate the simulator.
simulator = StateSpaceSimulator(analog_system,
                                digital_control, [analog_signal],
                                t_stop=end_time)
# Depending on your analog system the step above might take some time to
# compute as it involves precomputing solutions to initial value problems.

# Let's print the first 20 control decisions.
index = 0
for s in simulator:
    if (index > 19):
        break
    print(f"step:{index} -> s:{np.array(s)}")
    index += 1

# To verify the simulation parametrization we can
print(simulator)