#optimal value #[-0.53699102] # --- Acquisition optimizer acq_opt = GPyOpt.optimization.AcquisitionOptimizer(optimizer='CMA', inner_optimizer='lbfgs2', space=space) # --- Acquisition function #acquisition = uEI_noiseless(model, space, optimizer=acq_opt, utility=U) acquisition = uPI(model, space, optimizer=acq_opt, utility=U) # --- Evaluator evaluator = GPyOpt.core.evaluators.Sequential(acquisition) # --- Run CBO algorithm max_iter = 50 for i in range(1): filename = './experiments/test5_PI_h_noiseless_' + str(i) + '.txt' print(filename) bo_model = cbo.CBO(model, space, objective, acquisition, evaluator, initial_design, expectation_utility=expectation_U) bo_model.run_optimization(max_iter=max_iter, parallel=False, plot=False, results_file=filename)
best_val_found = np.inf for x0 in starting_points: res = scipy.optimize.fmin_l_bfgs_b(func, x0, approx_grad=True, bounds=bounds) if best_val_found > res[1]: best_val_found = res[1] x_opt = res[0] print('optimum') print(x_opt) print('h(optimum)') print(h(x_opt)) print('optimal value') print(-best_val_found) # --- Acquisition optimizer acq_opt = GPyOpt.optimization.AcquisitionOptimizer(optimizer='lbfgs2', inner_optimizer='lbfgs2', space=space) # --- Acquisition function acquisition = uEI_noiseless(model, space, optimizer=acq_opt, utility=U) # --- Evaluator evaluator = GPyOpt.core.evaluators.Sequential(acquisition) # --- Run CBO algorithm max_iter = 50 for i in range(1): filename = './experiments/test4_EIh_noiseless_' + str(i) + '.txt' bo_model = cbo.CBO(model, space, objective, acquisition, evaluator, initial_design) bo_model.run_optimization(max_iter=max_iter, parallel=False, plot=False, results_file=filename)