def calc_other(self, df): ''' Calculates variables that depend on z and rho ''' dfs = {'c': df[df['tax_treat'] == 'corporate'].copy(), 'nc': df[df['tax_treat'] == 'non-corporate'].copy()} # separate into corp and non-corp dataframe here for t in self.__p.entity_list: for f in self.__p.financing_list: dfs[t]['ucc_' + str(f)] = eq_ucc( dfs[t]['rho_' + str(f)], dfs[t]['delta']) dfs[t]['metr_' + str(f)] = eq_metr( dfs[t]['rho_' + str(f)], self.__p.r_prime[t][f], self.__p.inflation_rate) dfs[t]['mettr_' + str(f)] = eq_mettr( dfs[t]['rho_' + str(f)], self.__p.s[t][f]) dfs[t]['tax_wedge_' + str(f)] = eq_tax_wedge( dfs[t]['rho_' + str(f)], self.__p.s[t][f]) dfs[t]['eatr_' + str(f)] = eq_eatr( dfs[t]['rho_' + str(f)], dfs[t]['metr_' + str(f)], self.__p.profit_rate, self.__p.u[t]) df = pd.concat(dfs, ignore_index=True, copy=True) return df
def test_eq_tax_wedge(rho, s, expected_val): test_val = cf.eq_tax_wedge(rho, s) assert(np.allclose(test_val, expected_val))
def test_eq_tax_wedge(rho, s, expected_val): test_val = cf.eq_tax_wedge(rho, s) assert (np.allclose(test_val, expected_val))